
Tensor-Matrix Products with a Compressed Sparse Tensor

Shaden Smith
shaden@cs.umn.edu

George Karypis
karypis@cs.umn.edu

Department of Computer Science and Engineering
University of Minnesota, USA

ABSTRACT
The Canonical Polyadic Decomposition (CPD) of tensors is
a powerful tool for analyzing multi-way data and is used ex-
tensively to analyze very large and extremely sparse datasets.
The bottleneck of computing the CPD is multiplying a sparse
tensor by several dense matrices. Algorithms for tensor-
matrix products fall into two classes. The first class saves
floating point operations by storing a compressed tensor for
each dimension of the data. These methods are fast but
suffer high memory costs. The second class uses a single
uncompressed tensor at the cost of additional floating point
operations. In this work, we bridge the gap between the two
approaches and introduce the compressed sparse fiber (CSF)
a data structure for sparse tensors along with a novel par-
allel algorithm for tensor-matrix multiplication. CSF offers
similar operation reductions as existing compressed methods
while using only a single tensor structure. We validate our
contributions with experiments comparing against state-of-
the-art methods on a diverse set of datasets. Our work uses
58% less memory than the state-of-the-art while achieving
81% of the parallel performance on 16 threads.

1. INTRODUCTION
Extending a matrix to span more than two dimensions re-
sults in a tensor. Tensors are data structures that represent
multi-way data that is found in many modern applications.
Recently, tensors have become popular in communities such
as data mining, recommender systems, and health informat-
ics [8,10,17]. Tensors in these domains can have dimensions
(called modes) with tens of millions of features and are very
sparse. One example is a ratings matrix extended to include
contextual information, resulting in user-item-context tuples
associated with item ratings. Those tuples naturally form a
three-mode tensor.

Tensor factorization is a powerful tool for analyzing multi-
way data. The Canonical Polyadic Decomposition (CPD),
also known as PARAFAC, is a factorization that has long
been used in fields such as psychometrics [5] and chem-

istry [12]. The CPD is a generalization of the singular value
decomposition, outputting a matrix factor for each mode of
the tensor. Tensor factorization can be used to find a low-
rank representation of sparse data, which provides insights
not usually obvious in the original dimensionality.

A common algorithm for finding the CPD is the method
of alternating least squares (ALS), which approximates the
non-convex optimization problem with a series of convex
least squares solutions and iterates until some convergence
criteria is met. At the core of each least squares problem
is a tensor-matrix product, in which the sparse tensor is
multiplied by the dense matrix factors. Every ALS itera-
tion executes a tensor-matrix product for each mode of the
tensor.

The mode-centric nature of the computations is a major
challenge when designing high-performance tensor algorithms.
Optimized algorithms such as SPLATT [19] and DFacTo [6]
rely on a different compressed representation of the tensor
for each mode in order to reduce floating point operations
(FLOPs) and to extract parallelism. The high memory foot-
print of the optimized methods imposes size constraints on
the input tensor, especially in the number of modes repre-
sented. The alternative approach is to use a single represen-
tation of the tensor in its original tuple form. This approach
trades a smaller memory footprint for missed opportunities
for parallelism and fewer floating-point operations.

In this work, we address the memory/computation trade-off
by extending SPLATT to operate on a single compressed
tensor. Our adapted data structure, called compressed sparse
fiber (CSF), works with an arbitrary number of modes and
allows us to perform tensor-matrix products with intermedi-
ate memory constant in the number of modes and the rank
of the factorization. We show that tiling over the sparsity
structure removes the need for mutexes and sophisticated
synchronization on shared memory systems. In summary,
our contributions are:

1. Serial and shared-memory parallel algorithms for tensor-
matrix multiplication that operate on a single tensor
representation stored in CSF.

2. A method of tiling over a sparse tensor that avoids
locking during parallel computation.

3. An extensive set of experiments evaluating our method
against state-of-the-art approaches. This evaluation



shows that on average, our parallel algorithm requires
58% less memory than the best state-of-the-art ap-
proach while achieving 81% of the performance on 16
threads.

The rest of this paper is organized as follows. Section 2 in-
troduces notation and includes a brief background on tensor
factorization. Section 3 discusses state-of-the-art approaches
to tensor-matrix multiplication. Section 4 introduces the
CSF data structure and associated serial algorithms, and
Section 4.3 describes their parallelization. Our experimental
evaluation is discussed in Section 5 and results are discussed
in Section 6. Lastly, we make some concluding remarks and
discuss future work in Section 7.

2. BACKGROUND AND NOTATION
We denote matrices as A and tensors as X . The nonzero
element with coordinate (i, j, k) is X (i, j, k). A tensor X
has m modes and nnz(X ) nonzero values. A colon in the
place of an index represents all members of that mode. For
example, A(:, f) is column f of matrix A. Fibers are the
generalization of matrix rows and columns and are the re-
sult of holding all but one index constant. One example
is X (i, j, :, l). Slices are the result of holding all but two
indices constant, creating a matrix.

A tensor can be unfolded, or matricized, into a matrix along
any of its modes. In the mode-n matricization, the mode-n
fibers form the columns of the resulting matrix. The mode-
n unfolding of X is denoted as X(n). If X has dimensions
I×J×K×L, then X(2) is of dimension J×IKL.

There are two essential matrix operations used in CPD. The
Hadamard product, denoted by A ∗ B, is the element-wise
multiplication of A and B. The Khatri-Rao product, denoted
by A � B, is the column-wise Kronecker product. If A is
I×J and B is M×J , then A � B is IM×J .

2.1 Canonical Polyadic Decomposition
Let the tensor X have m modes and dimensions I1× . . .×Im.
The CPD of rank-F seeks to decompose X into matrix fac-
tors A1 ∈ RI1×F , . . . ,Am ∈ RIm×F . Outer products of the
F matrix columns form rank-1 tensors approximating X :

X ≈
F∑

f=1

A1(:, f) ◦ · · · ◦Am(:, f).

We are almost always interested in F � max{I1, . . . , Im}
for sparse tensors and consider F to be a small constant on
the order of 10 or 100.

The CPD is computed by solving the following non-convex
optimization problem:

minimize
A1,...,Am

||X(1) −A1 (Am � · · ·� A2)ᵀ ||F .

A popular method is to use ALS, which is an iterative algo-
rithm that solves the problem with a series of convex solu-
tions. It is based on the observation that if we hold all but
one variable constant, the problem has a least squares solu-
tion. During ALS we hold all factors constant and cyclicly
update A1, . . . ,Am. This process is repeated until we con-
verge on a local minimum.

Algorithm 1 Computing the CPD with ALS

1: while not converged do
2: for i ∈ {1, 2, . . . ,m} do . Iterate over all modes
3: M← 1F×F

4: for j ∈ {1, 2, . . . ,m} \ {i} do
5: M←M ∗

(
Aᵀ

jAj

)
6: end for
7: Âi ← X(i) (Am � · · ·� Ai+1 � Ai−1 � · · ·� A1)

8: Ai ← Âi

(
M−1

)
9: Normalize columns of Ai

10: end for
11: end while

Algorithm 1 shows the steps performed in ALS. The bulk of
the work is performed in line 7, and the operation associated
with it is often called the matricized tensor times Khatri-
Rao product (MTTKRP). Explicitly forming the Khatri-Rao
product results in a dense matrix of dimension

∏
j 6=i Ij×F ,

requiring orders of magnitude more memory than the origi-
nal sparse tensor. Instead, the block structure of the Khatri-
Rao product is exploited to perform the multiplication in
place. The fastest MTTKRP algorithms can execute MT-
TKRP in O(F · nnz(X )) FLOPs, with the leading constant
dependent on the sparsity pattern of the tensor [6, 16,19].

We refer the reader to the survey by Kolda and Bader [11]
for a more thorough discussion of tensor factorization.

3. RELATED WORK
MTTKRP algorithms fall into two classes. The first class
stores tensors as an uncompressed list of nonzeros and their
coordinates. During MTTKRP, each nonzero in X con-
tributes to Â via

Â1(i, f)← X (i, j, . . . , l) [A2(j, :) ∗ · · · ∗Am(l, f)] . (1)

Approaches following Equation (1) use mF ·nnz(X ) FLOPs
for MTTKRP. Tensor Toolbox [1, 2] is a widely used Mat-
lab package for dense and sparse tensor operations. Sparse
tensors are stored in coordinate format and MTTKRP re-
quires O(nnz(X )) intermediate storage. HyperTensor [9]
is a recent work for computing the CPD on distributed-
memory systems. It uses hypergraph partitioning to dis-
tribute nonzeros while minimizing communication. The ten-
sor is uncompressed and its MTTKRP algorithm is a direct
implementation of Equation (1).

The second class of MTTKRP algorithms uses compressed
structures for each mode of X . The compressed structure re-
duces the number of operations required during MTTKRP
by factoring out redundant multiplications. DFacTo [6]
is a CPD algorithm for three-mode tensors on distributed-
memory systems. Each of the three compressed tensors
is stored as two compressed sparse row (CSR) matrices.

Columns of Â are computed one at a time via two sparse
matrix-vector multiplications. DFacTo executes 2F (P +
nnz(X )) FLOPs, where P is the number of non-empty X (i, :, k)
fibers.

Ravindran et al. introduced an alternative approach to MT-
TKRP for 3D tensors [16]. The authors reformulated the





i j k l
1 1 1 2
1 1 1 3
1 2 1 3
1 2 2 1
2 2 1 1
2 2 1 3
2 2 2 2


(a)

i

j

k

l

1

1

1

2 3

2

1

3

2

1

2

2

1

1 3

2

2

(b)

i

j

k

l 1

1

2

2

2

2

1

2

1

1

1

2

2

2

3

1

1

1

2

1

2

2

1

(c)

Figure 1: (a) X , a 2×2×2×3 sparse tensor stored in coordinate form. (b) The mode-1 tree of X . (c) The mode-4 tree of X .

tensor-matrix products into a series of matrix-matrix prod-
ucts with the frontal X (:, :, k) slices, resulting in a single
access pattern of the tensor at the cost of O(nnz(X )) in-
termediate memory. This work was mostly theoretical and
left implementation, parallelization, and evaluation to future
work.

3.1 SPLATT
Our prior work, called SPLATT [18,19], is a parallel toolkit
for sparse tensors on shared- and distributed-memory sys-
tems. SPLATT is implemented for 3D tensors and stores
each representation in a data structure extended from CSR.
Consider the case of storing the mode-1 representation of
a tensor. Tensor nonzeros are sorted into X (i, j, :) fibers.
Fibers are stored as sparse vectors via two arrays: an in-
teger array storing the mode-3 indices and an array of the
floating-point values. Non-empty fibers are given integer
keys storing the mode-2 indices and then grouped by their
mode-1 indices into X (i, :, :) slices. Tensor slices can be
thought of a matrix in CSR whose rows are the non-empty
fibers.

DFacTo and SPLATT ultimately execute the same num-
ber of FLOPs, but feature different memory access patterns.
Contrary to the column-centric computation of DFacTo,
SPLATT computes whole rows of Â at a time by process-
ing all of the fibers in a single slice together:

Â1(i, :)←
I2∑
j=1

(
A2(j, :) ∗

I3∑
k=1

X (i, j, k)A3(k, :)

)
.

Fibers in distinct slices can be processed in parallel, resulting
in coarse-grained parallelism. SPLATT distributes whole
slices to threads without worries of race conditions. Since
updates are done at the granularity of matrix rows, only F
words of intermediate memory per thread are needed.

4. MEMORY-EFFICIENT MTTKRP
We will now detail the data structure and algorithms de-
veloped in this work to achieve memory-efficient, parallel
computations.

4.1 Compressed Sparse Fiber
Our objective is to design a data structure for sparse ten-
sors which reduces memory consumption, can be used for
all modes of MTTKRP, and can be efficiently parallelized
on multi-core architectures.

Suppose we have a sparse tensor with dimensions I1 ≤ · · · ≤
Im. We form a tree with m levels from each of the X (i, :
, . . . , :) subtensors. Nodes in level l contain indices found
in the lth mode. Paths from root to leaf encode a nonzero
coordinate and their values are also stored in the leaves.
Figure 1 is an example of a four-mode tensor in this form.

We call this tree-based structure compressed sparse fiber
(CSF). A tensor stored in this structure is called a CSF
tensor. Leaves in a CSF tensor represent nonzeros, and sib-
ling leaves form the fiber that is the result of holding all but
the last index constant. These nonzero fibers are the key to
fast MTTKRP algorithms.

Compression in a CSF tensor is visualized by the branch-
ing factor. Nodes with more than one child are the result
of joining two or more repeated indices. Storage savings
compound as we move deeper into a node’s subtrees. For
example, in Figure 1, the mode-1 tree uses only two nodes
to store the mode-1 coordinates for all seven nonzeros.

When forming a CSF tensor, we follow an optimization used
by SPLATT and first sort the tensor modes by increasing
length. Using the smallest tensor mode as root nodes at-
tempts to maximize the branching factor of the tree, result-
ing in additional compression.

4.2 MTTKRP Algorithms for CSF
Storing m different compressed tensors makes it easy to ex-
tract coarse-grained parallelism, but is not memory-efficient
and does not scale to tensors with more than a few modes.
Later, in Section 6.1 we show that SPLATT on average
uses 80% more memory than the uncompressed data to store
three compressed tensors. We will now detail how it is pos-
sible to perform MTTKRP on any mode of a CSF tensor
while reducing floating-point operations in a manner similar
to SPLATT.

4.2.1 Computing for the Root Mode
Computing for the mode stored at the root of a CSF tensor
is a direct adaptation of the MTTKRP algorithm used by
SPLATT. The keys of the root nodes determine which row
of Â1 to update. We call our adaptation CSF-ROOT.

Nonzero X (i, j, . . . , l) scales the row vector A2(j, :) ∗ · · · ∗
Am(l, :). A sibling nonzero, X (i, j, . . . , p), will likewise re-
quire A2(j, :) ∗ · · · ∗Am(p, :). Note that the multiplications
only differ in the Am terms which correspond to leaf nodes



Algorithm 2 MTTKRP on root nodes

1: function CSF-ROOT(node)
2: d← DEPTH(node)
3: id← IDX(node) . Extract the dth coordinate
4: if d = m then
5: . Scale by the nonzero value if on the last level
6: return VAL(node) ·Ad(id, :)
7: end if
8:
9: Z(d, :)← 0

10: for c ∈ children(node) do
11: Z(d, :)← Z(d, :) + CSF-ROOT(c)
12: end for
13: return Z(d, :) ∗Ad(id, :)
14: end function

in the tree. CSF-ROOT saves operations by factoring out
the repeated multiplications and instead accumulates sibling
nonzeros into a buffer. Once completed, the buffer is scaled
by the factored multiplication and the result is propagated
up the tree. The optimization is not unique to the leaf level;
we can save operations by factoring redundant multiplica-
tions at each level of the tree.

Algorithm 2 shows a recursive implementation of CSF-ROOT.
CSF-ROOT performs a depth-first traversal on the CSF
tensor. Row Â1(i, :) is completed at the end of the traversal
of the ith tree. Hadamard products are efficiently accu-
mulated in Z, an m×F matrix which in general is a small
constant in size. A node in the mith level accumulates the
contributions from all children into Z(mi, :) before propagat-
ing its own contributions up the tree. After all nodes in the
ith tree have been processed, Z(1, :) is written to Â1(i, :).

4.2.2 Computing for the Leaf Mode
MTTKRP on the longest mode uses the keys of the leaves to
determine the output row of Âm. We use the same principle
from CSF-ROOT to factor redundant Hadamard products
and save floating-point operations. In this case, instead of
accumulating nonzeros in a buffer to propagate up the tree,
we recursively propagate Hadamard products down the tree
and allow siblings to reuse previous multiplications. We call
this algorithm CSF-LEAF and present a recursive imple-
mentation in Algorithm 3.

4.2.3 Computing for Interior Modes
Processing internal nodes relies on a combination of the
CSF-ROOT and CSF-LEAF algorithms. Whereas CSF-
ROOT determines write locations by the root nodes and
CSF-LEAF uses the leaves, we now use one of the middle
modes. We must process both parent and children subtrees
before results can be stored. A recursive implementation
of this algorithm, called CSF-INTERNAL, is detailed in
Algorithm 4.

Assume we are computing for the wth level of the tree.
We first propagate Hadamard products down the tree us-
ing CSF-LEAF until the we are (w − 1) levels deep. Next,
we use CSF-ROOT to propagate the contributions of the
entire node’s subtree up to Z(w, :). The final result is the
Hadamard product of Z(w − 1, :) and Z(w, :).

Algorithm 3 MTTKRP on leaf nodes

1: function CSF-LEAF(node)
2: d← DEPTH(node)
3: id← IDX(node) . Extract the dth coordinate
4: if d = m then
5: . Last level uses nonzeros and writes to Âm

6: Âm(id, :)← Âm(id, :) + VAL(node) · Z(d, :)
7: return
8: end if
9:

10: if d = 1 then . Initialize Z
11: Z(1, :)← A1(id, :)
12: else
13: . Propagate Hadamard products down the tree
14: Z(d, :)← Z(d− 1, :) ∗Ad(id, :)
15: end if
16: for c ∈ children(node) do
17: CSF-LEAF(c)
18: end for
19: end function

Algorithm 4 MTTKRP on mode w, an interior level

1: function CSF-INTERNAL(node)
2: d← DEPTH(node)
3: id← IDX(node) . Extract the dth coordinate
4: if d = 1 then . Initialize the first level
5: Z(1, :)← Ad(id, :)
6: else if d < w then . Move down to level w − 1
7: Z(d, :)← Z(d− 1, :) ∗Ad(id, :)
8: for c ∈ children(node) do
9: CSF-INTERNAL(c)

10: end for
11: else . Use CSF-ROOT to complete computation
12: Z(d, :)← CSF-ROOT(node)

13: Âw(id, :)← Âw(id, :) + (Z(d− 1, :) ∗ Z(d, :))
14: end if
15: end function

4.3 Parallel Formulation and Tiling
A parallelization of CSF-ROOT can exploit the same coarse-
grained parallelism that SPLATT features. There are I1
root nodes and each writes to a unique row of Â1. Thus, we
can simply distribute whole trees to threads and avoid race
conditions.

When parallelizing CSF-ROOT and CSF-LEAF, an im-
portant observation is that it is no longer safe to simply
parallelize over trees and avoid race conditions. There is no
guarantee that non-root keys are unique to the any tree, and
thus we must now synchronize updates to the output matrix.
One way of doing this is to reduce contention by storing a
large number of mutexes, N , and using mutex i (mod N)
when writing to row i. This, however, is not an adequate
solution. Even if we completely eliminate contention, at the
leaf level we pay the price of locking and unlocking a mutex
for every nonzero.

Instead, we developed a method that eliminates the need for
locks by imposing an m-dimensional tiling over X . Suppose
we are computing on the second mode of a tensor. We use
the tiling along the second mode to induce a 1D partitioning



A(1)

A(2)

A(3)

Figure 2: An m-dimensional tiling over X for three proces-
sors. The tiles in whichever mode we are computing on form
a 1D decomposition of the tensor. The tiling induces a par-
titioning of the matrix factors, which are distributed among
threads to remove race conditions.

of the tensor nonzeros and Â2. If the 1D blocks of nonzeros
are distributed to threads, due to the nature of the tiling
they will write to non-overlapping rows of Â2. Figure 2
illustrates our tiling procedure for three threads on a three-
mode tensor.

Lock-free parallelism comes with a price. Fibers that cross
tile boundaries are treated as separate fibers, which increases
storage overhead and decreases the number of factored mul-
tiplications. It is tempting to use a large number of small
tiles in order to improve cache locality, but in practice this
results in more storage than the uncompressed tensor and
little to no performance benefit. Thus, we only use as many
tiles per mode as there are available threads.

5. EXPERIMENTAL METHODOLOGY
5.1 Experimental Setup
The CSF data structure and associated algorithms were im-
plemented and integrated into the the SPLATT toolkit.
SPLATT is written in C using OpenMP with double-precision
floating-point numbers and 64-bit integers. All source code
is available for download1. Source code was compiled with
GCC 4.9.2 using optimization level three.

During our discussion, we will refer to experiments on un-
tiled tensors as CSF-M (CSF with mutexes) and tiled ten-
sors as CSF-T (CSF with tiling). We benchmarked our
CSF-based algorithms against two competing algorithms.
COORD is a direct implementation of Equation (1) and is
to our knowledge the fastest MTTKRP algorithm for un-
compressed tensors. We use the original SPLATT kernel as
a benchmark for compressed tensors.

We used F = 16 for all experiments. Experiments were
performed on an HP ProLiant BL280c G6 blade server with
two oct-core E5-2670 Xeon processors running at 2.6 GHz.

5.2 Datasets
Table 1 is a summary of the datasets we used for evalua-
tion. The Netflix dataset is a user-item-time ratings tensor
taken from the Netflix Prize competition [3]. Two datasets

1http://cs.umn.edu/~splatt/

Table 1: Summary of datasets.

Dataset I1 I2 I3 nnz
NELL-2 12K 9K 28K 77M
Beer 33K 66K 960K 94M
Netflix 480K 18K 2K 100M
Delicious 532K 17M 3M 140M
NELL-1 3M 2M 25M 143M
Amazon 5M 18M 2M 1.7B

nnz is the number of nonzero entries in the
dataset. K, M, and B stand for thousand, mil-
lion, and billion, respectively.

come from the Never Ending Language-Learning (NELL)
project [4] which is freely available. Both tensors represent
noun-verb-noun triplets. NELL-1 is a complete, extremely
sparse tensor and NELL-2 is a smaller, more dense version in
which the infrequent items have been pruned. Delicious is a
user-item-tag dataset originally crawled by Görlitz et al. [7].
Beer [14] and Amazon [13] are user-item-word tensors parsed
from Beer Advocate and Amazon product reviews, respec-
tively. We used Porter stemming [15] on review text during
parsing.

6. RESULTS
6.1 Comparison of Storage Requirements
Figure 3 shows the storage required for the uncompressed
(COORD) tensor and the compressed tensor storage for-
mats. CSF-M consistently has the smallest memory foot-
print and averages 68% less memory than SPLATT and 42%
less memory than COORD. CSF-M achieves its best com-
pression on NELL-1, with CSF using 73% less memory than
SPLATT. After adding storage overhead from tiling for 16
threads, CSF-T still uses 58% less memory than SPLATT
and 24% less than COORD. Overall, CSF-M and CSF-T
always use less memory than COORD and SPLATT.

6.2 Performance Benchmarks
We evaluate the performance of our parallel CSF-based al-
gorithms against SPLATT and COORD. We first examine
performance on individual modes using the three parallel al-
gorithms and compare against SPLATT and COORD tim-
ings on the same modes. We then examine total MTTKRP
runtime.

Table 2 compares the runtimes of performing MTTKRP on
the smallest tensor modes (the root nodes). Since CSF-
ROOT is the SPLATT algorithm adapted to the CSF data
structure, performance between the two methods is nearly
identical. With the exception of the Netflix dataset, CSF-
ROOT sees little benefit from tiling. Since tiles must be
large, they offer little cache benefit and do not mitigate any
locks. Netflix is an exception because its root and internal
dimensions are very small compared to the leaf dimension.
Most of the computation is done during nonzero accumula-
tion instead of propagating results back up the tree.

Table 3 shows the runtimes of CSF-INTERNAL, which
computes MTTKRP on the middle tensor modes (interior
nodes). CSF-M outperforms SPLATT on half of the datasets.
CSF-M and CSF-T both outperform SPLATT on the Ama-



NELL-2 Beer Netflix Delicious NELL-1 Amazon
Dataset

100

101

102

T
e
n
so

r 
st

o
ra

g
e
 (

G
B

)

3
.7

4
.5 5

.0

8
.2 8
.8

9
9
.3

2
.3

2
.8 3
.0

4
.2 4
.3

5
1
.9

1
.1

1
.4 1

.6

2
.6

2
.4

3
6
.4

1
.2

1
.8 2

.1

4
.0

3
.6

4
7
.5

SPLATT COORD CSF-M CSF-T

Figure 3: Required storage in gigabytes for each dataset, logarithmic scale.

Table 2: CSF-ROOT with 16 threads.

Dataset COORD SPLATT CSF-M CSF-T
NELL-2 4.30 0.10 0.10 0.11
Beer 5.20 0.12 0.12 0.17
Netflix 15.46 0.23 0.24 0.18
Delicious 11.25 0.55 0.56 1.22
NELL-1 18.95 1.11 1.00 1.29
Amazon 96.04 3.61 3.71 6.18

Values are the best time in seconds to execute MTTKRP on the
smallest mode of the tensor. COORD is serial while SPLATT, CSF-
M, and CSF-T all use 16 threads.

zon tensor with 1.7 billion nonzeros, with CSF-T reaching
2.3× speedup over parallel SPLATT. We attribute this to
CSF-based algorithms sometimes performing fewer FLOPs
than SPLATT on non-root modes. This is possible because
different views of the same tensor can results in drastic dif-
ferences in computation. For example, a user-item-time rat-
ings tensor will have more nonzeros in the (item, time) fibers
than (user, item) because users are unlikely to rate items
more than once. The discrepancy between mode represen-
tations is illustrated in Figure 1.

Tiling improves performance of CSF-INTERNAL on three
tensors. We only have to lock when writing to an internal
node, and thus if there is a large amount of computation in
the leaves of the tree it may be more beneficial to skip tiling.

CSF-LEAF runtimes are shown in Table 4. SPLATT is
faster than CSF-M on all but the smallest tensor, NELL-
2. Leaf computation operates on the longest mode of the
tensor and is the most taxing MTTKRP step on the CPU

Table 3: CSF-INTERNAL with 16 threads.

Dataset COORD SPLATT CSF-M CSF-T
NELL-2 4.35 0.08 0.15 0.11
Beer 5.24 0.12 0.17 0.19
Netflix 15.55 0.50 0.33 0.23
Delicious 15.66 1.15 0.96 1.27
NELL-1 24.22 1.10 1.18 1.73
Amazon 97.12 15.91 12.28 6.96

Values are the best time in seconds to execute MTTKRP on the in-
terior mode of the tensor. COORD is serial while SPLATT, CSF-M,
and CSF-T all use 16 threads.

memory hierarchy because each nonzero can result in a write
to distant memory outside of the CPU cache. As expected,
parallel scalability is very poor without tiling because a mu-
tex is locked and unlocked on every nonzero.

Finally, we examine the total MTTKRP runtime in Table 5.
CSF-M averages 40% as fast as SPLATT without tiling and
81% as fast with tiling enabled. CSF-T is comparable in
performance to SPLATT even on our largest tensor, while
using over 50 gigabytes less memory.

7. CONCLUSIONS AND FUTURE WORK
Tensor factorization has emerged as a growing tool for large-
scale data analysis. Modern tensors are extremely sparse
and feature irregular data accesses as a result of their mode-
centric computations. In this work, we presented the com-
pressed sparse fiber (CSF) format for sparse tensors and
three associated shared-memory parallel algorithms for per-
forming tensor-matrix multiplication. This is the first par-
allel work to only use a single compressed tensor representa-



Table 4: CSF-LEAF with 16 threads.

Dataset COORD SPLATT CSF-M CSF-T
NELL-2 4.49 0.10 1.21 0.10
Beer 5.23 0.17 1.71 0.21
Netflix 15.65 0.15 1.51 0.40
Delicious 15.06 1.07 2.43 2.30
NELL-1 18.44 1.58 3.16 3.01
Amazon 96.47 3.79 121.05 11.07

Values are the best time in seconds to execute MTTKRP on the
longest mode of the tensor. COORD is serial while SPLATT, CSF-
M, and CSF-T all use 16 threads.

Table 5: Total MTTKRP iteration time with 16 threads.

Dataset COORD SPLATT CSF-M CSF-T
NELL-2 13.14 0.28 1.46 0.31
Beer 15.67 0.41 2.00 0.57
Netflix 46.66 0.89 2.08 0.81
Delicious 41.97 2.77 3.95 4.79
NELL-1 61.60 3.79 5.34 6.03
Amazon 289.64 23.31 137.03 24.21

Values are the best time in seconds to execute MTTKRP across all
three modes. COORD is serial while SPLATT, CSF-M, and CSF-T
all use 16 threads.

tion that allows for significant memory savings and consis-
tent data access patterns. On average, our algorithms used
58% less memory than the state-of-the-art while achieving
81% of its parallel performance.

There are several points of future work. One direction is to
investigate the cache-friendly reorderings developed in [19].
It may be possible to exploit the single access pattern of the
tensor and find even more successful reorderings than before.
Second, it may be beneficial to only tile over some modes of
the tensor. The mixed results of CSF-INTERNAL suggest
that is sometimes better to use locks instead of introducing
the overhead of tiling for parallelism. Additionally, this ap-
proach would lessen the memory overhead that results from
tiling, allowing for work with larger multi-core systems.

Acknowledgments
This work was supported in part by NSF (IIS-0905220, OCI-
1048018, CNS-1162405, IIS-1247632, IIP-1414153, IIS-1447788),
Army Research Office (W911NF-14-1-0316), Intel Software
and Services Group, and the Digital Technology Center at
the University of Minnesota. Access to research and comput-
ing facilities was provided by the Digital Technology Center
and the Minnesota Supercomputing Institute.

8. REFERENCES
[1] B. W. Bader and T. G. Kolda. Efficient MATLAB

computations with sparse and factored tensors. SIAM
Journal on Scientific Computing, 30(1):205–231,
December 2007.

[2] B. W. Bader, T. G. Kolda, et al. Matlab tensor
toolbox version 2.6, Feb. 2015.
http://www.sandia.gov/˜tgkolda/TensorToolbox/.

[3] J. Bennett and S. Lanning. The netflix prize. In
Proceedings of KDD cup and workshop, volume 2007,

page 35, 2007.

[4] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R.
Hruschka, and T. M. Mitchell. Toward an architecture
for never-ending language learning. In In AAAI, 2010.

[5] J. D. Carroll and J.-J. Chang. Analysis of individual
differences in multidimensional scaling via an n-way
generalization of “Eckart-Young” decomposition.
Psychometrika, 35(3):283–319, 1970.

[6] J. H. Choi and S. Vishwanathan. DFacTo: Distributed
factorization of tensors. In Advances in Neural
Information Processing Systems, pages 1296–1304,
2014.

[7] O. Görlitz, S. Sizov, and S. Staab. Pints: peer-to-peer
infrastructure for tagging systems. In IPTPS, page 19,
2008.

[8] J. C. Ho, J. Ghosh, and J. Sun. Marble:
high-throughput phenotyping from electronic health
records via sparse nonnegative tensor factorization. In
Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 115–124. ACM, 2014.

[9] O. Kaya and B. Uçar. Scalable sparse tensor
decompositions in distributed memory systems.
Technical report, 2015.

[10] T. G. Kolda and B. Bader. The TOPHITS model for
higher-order web link analysis. In Proceedings of Link
Analysis, Counterterrorism and Security 2006, 2006.

[11] T. G. Kolda and B. W. Bader. Tensor decompositions
and applications. SIAM review, 51(3):455–500, 2009.

[12] S. Leurgans and R. T. Ross. Multilinear models:
applications in spectroscopy. Statistical Science, pages
289–310, 1992.

[13] J. McAuley and J. Leskovec. Hidden factors and
hidden topics: understanding rating dimensions with
review text. In Proceedings of the 7th ACM conference
on Recommender systems, pages 165–172. ACM, 2013.

[14] J. McAuley, J. Leskovec, and D. Jurafsky. Learning
attitudes and attributes from multi-aspect reviews. In
Data Mining (ICDM), 2012 IEEE 12th International
Conference on, pages 1020–1025. IEEE, 2012.

[15] M. F. Porter. An algorithm for suffix stripping.
Program, 14(3):130–137, 1980.

[16] N. Ravindran, N. D. Sidiropoulos, S. Smith, and
G. Karypis. Memory-efficient parallel computation of
tensor and matrix products for big tensor
decomposition. In Proceedings of the Asilomar
Conference on Signals, Systems, and Computers, 2014.

[17] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson,
A. Hanjalic, and N. Oliver. Tfmap: optimizing map
for top-n context-aware recommendation. In
Proceedings of the 35th international ACM SIGIR
conference on Research and development in
information retrieval, pages 155–164. ACM, 2012.

[18] S. Smith and G. Karypis. Dms: Distributed sparse
tensor factorization with alternating least squares.
Technical report, 2015.

[19] S. Smith, N. Ravindran, N. D. Sidiropoulos, and
G. Karypis. SPLATT: Efficient and parallel sparse
tensor-matrix multiplication. In International Parallel
& Distributed Processing Symposium (IPDPS’15),
2015.


