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• Exact shared memory cosine similarity graph construction methods are proposed.
• Work by filtering the search space, ignoring objects that will not be neighbors.
• Threshold bounded graph construction works extremely well with high thresholds.
• Fast approximate graph used to bootstrap k-nearest neighbor graph construction.
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a b s t r a c t

The nearest neighbor graph is an important structure in many data mining methods for clustering,
advertising, recommender systems, and outlier detection. Constructing the graph requires computing up
to n2 similarities for a set of n objects. This high complexity has led researchers to seek approximate
methods, which find many but not all of the nearest neighbors. In contrast, we leverage shared memory
parallelism and recent advances in similarity joins to solve the problem exactly. Our method considers all
pairs of potential neighbors but quickly filters pairs that could not be a part of the nearest neighbor graph,
based on similarity upper bound estimates. The filtering is data dependent and not easily predicted, which
poses load balance challenges in parallel execution. We evaluated our methods on several real-world
datasets and found they work up to two orders of magnitude faster than existing methods, display linear
strong scaling characteristics, and incur less than 1% load imbalance during filtering.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Computing the nearest neighbor graph (NNG), or similarity
graph, for a set of objects is a common task in many data anal-
ysis tasks, including clustering [13,25], online advertising [34],
recommender systems [17], data cleaning [7,45], and query re-
finement [11,40]. For example, effective clustering methods [47]
have been devised that work by partitioning the nearest neighbor
graph of a set of objects. In the recommender systems domain,
item-based nearest neighbor collaborative filtering algorithms de-
rive recommendations (e.g., books or movies) from the k most
similar items to each of the user’s preferred items [29]. More-
over, state-of-the-art online advertising [34] and recommender
systems [15,16,35] methods rely on an initially computed NNG to
guide the discovery of the latent factormodels used for recommen-
dation.
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Often, real-world objects are depicted as vectors in a high-
dimensional feature space, each dimension quantifying a rele-
vant attribute of the object. Similarity between objects is then
computed as a function of their feature vectors. In this work, we
focus on objects represented as sparse non-negative vectors and
compute the proximity between two objects as the cosine similarity
of their vector representations. Sparse non-negative vectors have
been successfully used for decades in many mining tasks. As a
few examples, they are the standard way to encode document
collections in preparation for search [33] or text mining [27], user
ratings or purchase history in recommender systems [29], and are
often used to depict the structure of chemical compounds [44].

Given a set ofnobjectsD = {d1, d2, . . . , dn}, theNNGG = (V , E)
is a directed graph which consists of a vertex set V , corresponding
to the objects in D, and an edge for each pair (vi, vj) when the ith
and jth objects are neighbors. In most problems, the neighbors of
interest are those with close connections, which has given rise to
two important problems that we study in this article. The all-pairs
similarity search (APSS) or ϵ-NNG construction problem finds, for
each object in the set, all other objectswith a similarity value above
a certain threshold ϵ. On the other hand, the k-NNG construction
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problem seeks to find the k closest neighbors to each object in the
set D, i.e. those objects j, j ̸= i, with highest similarity sim(di, dj).

A naïve approach to construct the NNG executes O(n2) object
comparisons. Despitemany existingworks on the subject, efficient
NNG construction algorithms addressing high dimensional sparse
data are still being actively researched. In two recent works [3,4],
we introduced L2AP and L2Knng, two serial methods that effi-
ciently construct the exact ϵ-NNG and k-NNG, respectively, by
ignoring unimportant object pair comparisons. For each object in
D, our methods consider all other objects as potential neighbors.
However, most objects that are not one of the desired nearest
neighbors are pruned (removed from consideration) without fully
computing their similarity.

The two methods share a similar filtering strategy. For a given
query object, a potential neighbor, which we call the candidate
object, can be pruned if an upper bound of its similarity with the
query object is smaller than ϵ (for L2AP) or than the minimum
similarity value among any of the k closest currently known neigh-
bors of the query (for L2Knng). Given its reliance on minimum
neighborhood similarities, as a way to boost its pruning effective-
ness, L2Knng first identifies, for each object, k similar objects that
may not be its nearest neighbors. We proposed L2Knng-a1 for
this task, a fast approximate graph construction method that we
showed achieves high recall in less time than other state-of-the-art
methods [4].

Unlike our two previous works, the focus of this article is on
cosine similarity ϵ-NNG and k-NNG construction in the shared
memory parallel setting. The filtering performed during the con-
struction is data dependent and not easily predicted, which poses
load balance challenges in this context. Furthermore, marshaling
neighborhood updatesmay cause contention in both the initial ap-
proximate graph construction and the filtering phases of L2Knng.
We design novel sharedmemory parallel algorithms for the ϵ-NNG
and k-NNG construction problems which use a number of cache-
tiling optimizations, combined with fine-grained dynamically
balanced parallel tasks, to construct graphs up to two orders of
magnitude faster than existing methods. Our methods display lin-
ear strong scaling characteristics and incur less than 1% load imbal-
ance during filtering. Specifically, our parallel ϵ-NNG construction
method, pL2AP, solves the APSS problem, using 24 threads, 5.4×–
231.6× faster than the best parallel baseline and 12.3×–33.9×
faster than the fastest serial method on datasets with hundreds of
millions of non-zeros. Using 16 threads, our approximate k-NNG
construction method, pL2Knng-a, is 1.5×–21.7× more efficient
than the best approximate state-of-the-art baseline, and our exact
variant, pL2Knng, achieves 3.0×–12.9× speedup over an efficient
exact baseline.

Please note that the current paper is a consolidated and ex-
tended version of two previous workshop papers we presented at
the Irregular Applications: Architectures andAlgorithmsworkshop
in 2015–2016, namely [5] and [6]. The article is self-contained and
significantly improves upon the initial published papers. Specifi-
cally, we have made the following enhancements: (i) we present a
unified description of our two filtering-based algorithms for shared
memory nearest neighbor graph construction, pointing out the
filtering criteria differences between the two methods; (ii) we
extended the presentation of our serial L2AP method, clarifying
the filtering differences between it and a competing method, APT;
(iii) we improved the presentation of our serial L2Knng method
and of the query vector mask-hashing technique in pL2AP; (iv)
we greatly expanded our experimental evaluation of both pL2AP
and pL2Knng, adding or extending the discussion on nine different
experiments; and (v) we added a discussion section that highlights

1 The method is called L2KnngApprox in [4].

strengths and challenges in our parallel cosine similarity graph
construction methods.

The remainder of the paper is organized as follows. Section 2 in-
troduces the problem and notation used throughout the paper.We
start our algorithmic presentation by first giving an overviewof the
serial algorithms in Section 3, which will clarify the presentation
of our parallel methods in Section 4. Along the way, in Section 3.2,
we will also introduce some enhancements over our initial serial
k-NNG construction method that led to 1.5x efficiency improve-
ment.Wedescribe our evaluationmethodology and analyze exper-
imental results in Sections 5 and 6. Section 7 summarizes related
works, and Section 8 concludes the paper.

2. Definition & notations

We adopt a similar notation as in our earlier work [4]. Let di
denote the ith of n objects inD, di ∈ Rm denote the feature vector in
m-dimensional Euclidean space associated with the ith object, and
di,j the value (or weight) of the jth feature of object di. Wemeasure
vector similarity via the cosine function,

cos(di, dj) =
∑m

l=1 di,l × dj,l
∥di∥2 × ∥dj∥2

.

Since cosine similarity is invariant to changes in the length of
vectors, we assume that all vectors have been scaled to be of unit
length (∥di∥ = 1,∀di ∈ D). Given that, the cosine between two
vectors di and dj is simply their dot-product, which we denote by⟨
di, dj

⟩
. This not only simplifies the presentation of the algorithm

but also reduces the number of floating point operations needed
to solve the problem at hand.

The neighborhood of an object di in D, denoted by Γdi , is the
set of objects in D \ {di} whose similarity with di is the highest
among all objects in D \ {di}. The NNG of D is a directed graph
G = (V , E) where vertices correspond to the objects and an edge
(vi, vj) indicates that the jth object is in the neighborhood of the ith
object.We are interested in two specific NNGs. The ϵ-NNG restricts
the neighborhood of each object di to only those objects dj with a
similarity sim(di, dj) ≥ ϵ. The k-NNG restricts the neighborhood of
di to the kmost similar objects to di. An approximate k-NNG is one in
which the k neighbors of each vertex do not necessarily correspond
to the kmost similar objects.

We denote by the minimum (neighborhood) similarity σdi the
minimum similarity between object di and one of its current k
neighbors. We say that a neighborhood is improved when its min-
imum similarity σdi increases in value, and it is complete once all
correct neighbors that belong to a neighborhood have been added
to it. Given sparse vectors, it is possible that an object dj may have
less than k possible neighbors, as we ignore all null similarities
and dj may have non-zero features in common with less than
k other objects in D. In this case, by convention, the σdj value
of its neighborhood is the minimum among all similarities in its
neighborhood, and its neighborhood is complete.

An inverted index representation of D is a set of m lists, I =
{I1, I2, . . . , Im}, one for each feature, containing pairs (di, di,j),
where di is an indexed object that has a non-zero value for feature
j and di,j is that value. The index may store additional information,
such as the position of the feature in the given document or other
statistics.

Given a vector dq and a dimension j, we will denote by d≤jq
the vector obtained by keeping the j leading dimensions in dq,
(dq,1, . . . , dq,j, 0, . . . , 0), which we call the (inclusive) prefix (vec-
tor) of dq. Similarly, we refer to d>j

q = (0, . . . , 0, dq,j+1, . . . , dq,m) as
the (exclusive) suffix ofdq, obtained by setting the first jdimensions
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Table 1
Notation used throughout the work.

Description

D Set of objects
k Size of desired neighborhoods
ϵ Minimum neighbor similarity threshold
di Vector representing object di
di,j Value for jth feature in di

d≤li , d>l
i Prefix and suffix of di at dimension l

Γdi Neighborhood for object di
σdi Smallest similarity value in Ndi
N Set of neighborhoods
N̂ Set of initial approximate neighborhoods
I Inverted index
µ Candidate list sizes
γ Number of neighborhood enhancement updates
θ Number of objects in an inverted index tile
ζ Number of non-zeros in an inverted index tile
η Number of objects in a query tile

of dq to 0. The exclusive prefix d<j
q and inclusive suffix d≥jq are

analogously defined. One can then verify that

dq = d≤jq + d>j
q ,

∥dq∥
2
= ∥d≤jq ∥

2
+ ∥d>j

q ∥
2, and⟨

dc, dq
⟩
=

⟨
dc, d≤jq

⟩
+

⟨
dc, d>j

q

⟩
.

Table 1 provides a summary of notation used in this work.

3. Serial algorithms

In this section, we present an overview of our serial ϵ-NNG and
k-NNG construction methods, L2AP and L2Knng. In describing the
methods, we will also analyze the flow of computation and data in
the algorithms, which will inform our algorithmic choices for the
parallel methods described in Section 4.

3.1. L2AP

Most serial APSS solutions follow a similar computation frame-
work, first introduced by Bayardo et al. [11]. The main idea in the
framework is to decompose the computation of DDT , which finds
all pairwise similarities for objects in D, into

DDT
= DAT

+ DBT ,

where D = A+ B, and matrices A and B contain disjoint subsets of
the non-zero values in D. Specifically, for the ith object, A contains
the prefix vector d≤li and B contains the suffix vector d>l

i as their
respective ith rows. The segmentation point l is chosen individually
for each object such that all correct neighbor pairs, those that will
be part of the exact solution,will have a non-zero dot-product after
computing DBT . The computation of DAT is then restricted to only
those object pairs with non-zero values in DBT . Additional object
pairs are pruned (eliminated from consideration) during both ma-
trix product computations by relying on different similarity upper
bounds that are checked against the threshold ϵ, which is an input
to the problem. Fig. 1 depicts a conceptual decomposition ofmatrix
D into its prefix and suffix components.

Algorithm 1 describes the sequential similarity search execu-
tion in the AllPairs framework. Given that cosine similarity is com-
mutative, the framework only computes the lower triangular part
ofDDT . The algorithm incrementally finds the result by identifying
each object’s neighbors, one object at a time, in a given processing
order. While processing an object dq, which we call the query,
a list of potential candidates is generated (line 5) by computing
cq = dqBT

<i, where BT
<i contains only rows that come before i in the

processing order. The inverted index I is a growing compressed

Fig. 1. Decomposition of matrix D into its prefix and suffix sections, denoted as
matrices A and B.

Algorithm 1 The AllPairs Framework
1: function AllPairs(D, ϵ)
2: Set processing order for vectors and features
3: O← ∅, Ij ← ∅, for j = 1, . . . ,m
4: for each q = 1, . . . , n do
5: cq ← GenerateCandidates(dq, I, ϵ)
6: O← O ∪ VerifyCandidates(dq, cq, I, ϵ)
7: Index(dq, I, ϵ)
8: return O

sparse column (CSC) representation of BT
<i. A candidate for the ith

object is any object with a non-zero value in cq. Some of the values
in cq are expressly set to zero (candidate pruning) if a similarity
estimate with that candidate is below ϵ. In the second stage, each
candidate is verified (line 6) by computing, for each candidate dc ,⟨
dq, d≤c

⟩
+ cq,c , where d≤c = A(c, :) is the prefix of dc , those values

of dc not included in B. Additional candidates are pruned and only
those with a similarity of at least ϵ are added to the result. In
the final stage (line 7), the query object is analyzed and some of
its suffix features and other meta-data are added to the growing
inverted index I.

Awekar and Samatova [9] provide the only existing shared
memory parallel algorithm to solve the ϵ-NNG construction prob-
lem, which we call pAPT. Their method is based on an existing
serial APSS algorithm they developed, APT [8], and uses a similar
filtering strategy as described in this section. In the remainder of
this section, we highlight the pruning choices in APT and L2AP.
Additionally, we analyze memory access patterns inherent in the
computations in each stage of the framework. Table 2 provides a
quick reference for these pruning choices.

3.1.1. Indexing
Since lists in the inverted index are traversed each time a search

is performed for a query object, it is beneficial to index as few
values as possible. Indexing is delayed in the framework until the
similarity estimate of the query prefix with any unprocessed object
reaches the threshold ϵ (line 3 in Algorithm 2). Any unprocessed
similar object, one with a similarity of at least ϵ with the query, is
guaranteed in thisway to have at least one feature in commonwith
the query object. Then, when that similar object is processed, the
query object will be found while traversing the index.

Algorithm 2 Indexing in the AllPairs Framework
1: function Index(dq, I, ϵ)
2: for each j = 1, . . . ,m, s.t. dq,j > 0 do
3: if sim(dq

≤j, d>q) ≥ ϵ then ▷ idx bound
4: Ij ← Ij ∪ {(dq, dq,j)} ▷ add suffix to index

While improving computation efficiency by limiting the num-
ber of non-zeros traversed when identifying neighbors for a query
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Table 2
Similarity estimates in APT/pAPT and L2AP/pL2AP.

Bound Stage Estimate APT/pAPT L2AP/pL2AP

idx idx sim(d≤jq , d>q)
⟨
d≤jq ,mx≥q

⟩
min(

⟨
d≤jq ,mx≥q

⟩
, ∥d≤jq ∥2)

sz c.g. min(∥dc∥0) (ϵ/∥dq∥∞)2 (ϵ/∥dq∥∞)2

rs sim(d≤jq , d<q)
⟨
d≤jq ,mx

⟩
min(

⟨
d≤jq ,mx

⟩
, ∥d≤jq ∥2)

l2cg sim(d<j
q , d<j

c ) – ∥d<j
q ∥2 × ∥d

<j
c ∥2

ps c.v. sim(dq, d≤c ) – min(
⟨
d≤c ,mx≥c

⟩
, ∥d≤c ∥2)

dps1 sim(dq, d≤c ) min(∥dq∥∞ × ∥d≤c ∥1, ∥dq∥1 × ∥d≤c ∥∞) min(∥dq∥0, ∥d≤c ∥0)× ∥dq∥∞ × ∥d≤c ∥∞
dps2 sim(dq, d≤c ) – min(∥dq∥0, ∥d≤lc ∥0)× ∥d≤lq ∥∞ × ∥d≤lc ∥∞

l2cv sim(d<j
q , d<j

c ) – ∥d<j
q ∥2 × ∥d

<j
c ∥2

The vectors dq and dc represent the query and candidate objects, respectively. Prefix and suffix vectors are defined in Section 2. The prefix vector ∥d≤c ∥ is the un-indexed
portion of the candidate. The vectormx represents the max vector, containing the maximum value for each feature in the dataset. Features in the max vectormx≥q are also
upper-bounded by ∥dq∥∞ . The feature j represents a non-zero feature in the query and/or the candidate. Here, the feature l is the last un-indexed candidate feature in the
feature processing order that the query also has in common.

Fig. 2. Example partial indexing.

object, the partial indexing of only suffix values in each query object
is also an effective pruning strategy. Note that some objects may
not have any features in common with the query suffix. These ob-
jects are automatically removed from consideration, without even
starting to compare them to the query. Fig. 2 shows an example for
indexing a query object dq in our framework. In the figure, shaded
cells represent non-zero values, and the index j is chosen such that
the similarity of the prefixd≤jq with anyunprocessed object is lower
than ϵ. Let dq+1, dq+2, and dq+3 be three such unprocessed objects.
When dq is considered as a potential neighbor for these objects, our
method initially explicitly computes only the suffix dot-product⟨
d>j
q , d>j

c
⟩
, and estimates the prefix dot-product

⟨
d≤jq , d≤jc

⟩
only for

those non-zero suffix dot-products. As such,while dq+3 and dq have
feature f1 in common, dq will never be considered as a potential
neighbor for dq+3.

APT computes the prefix similarity estimate sim(d≤jq , d>q),
which we call the idx bound, as the dot product between the query
vector and the max vector, the vector made up of all maximum
feature values in the dataset, denoted as mx. Note that, if the dot
product between the query prefix and the maximum vector is
below the threshold ϵ, the query can only be a neighbor of one of
the remaining unprocessed objects if they have at least one feature
in common in the query suffix, which has already been indexed.
This upper bound similarity estimate is improved by processing
objects in non-increasing order of their maximum feature weights
(∥di∥∞ ≥ ∥dj∥∞, ∀ i < j), and then bounding the max vector by
the maximum feature weight in the query,

sim(d≤jq , d>q)APT ≤
⟨
d≤jq ,mx≥q

⟩
, where,

mx≥q = ⟨min(mx1, ∥dq∥∞), . . .,min(mxm, ∥dq∥∞)⟩.

Fig. 3. Percent execution times for the WW500 dataset. The stacked bars show the
percent of search time taken by the indexing (idx), candidate generation (cg), and
candidate verification (cv) phases in L2AP, for similarity thresholds ranging from
0.1 to 0.9.

In addition, L2AP uses the ℓ2-normof the query prefix ending at in-
dex j, inclusive, ∥d≤jq ∥, as an estimate of the query object similarity
with any other object, which includes unprocessed objects,

sim(d≤jq , d>q)L2AP ≤ min(
⟨
d≤jq ,mx≥q

⟩
, ∥d≤jq ∥2).

Assuming an unprocessed candidate object does not have non-
zero values for any of the query suffix features, then their prefix
norm ∥d≤jc ∥2 = 1. However, since by construction ∥d≤jq ∥2 < ϵ,
leveraging the Cauchy–Schwarz inequality,

⟨
d≤jq , d≤jc

⟩
< ϵ and the

candidate need not be considered. By constructing a partial index
(adding only the suffix of each vector to the index), our method
automatically ignores these objects.

When indexing each query suffix non-zero value (line 4 in
Algorithm 2), L2AP also indexes additional meta-data, such as the
ℓ2-norm of the query prefix and its maximum value, which are
used in future pruning. The similarity estimate of the un-indexed
query prefix with unprocessed objects is also stored, to be used
during candidate verification as an effective pruning strategy for
false positive candidates.

Data access analysis. Indexing requires traversing the sparse query
vector and accessing values in the max vector, which are stored as
a dense array. Since this process occurs only once for each object
in the set, it takes much less of the overall search time than the
other two stages in the framework. As an example, Fig. 3 shows
the percent of overall search time taken by each of the three stages
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Fig. 4. Use of accumulator data structure during candidate generation.

in L2AP, for ϵ ranging from 0.1 to 0.9 and the WW500 dataset (see
Section 5 for dataset details). Furthermore, values in both the query
vector and feature maximum values are accessed sequentially, in
sorted feature processing order, and can take advantage of soft-
ware and hardware pre-fetching to reduce latency. As a result, we
will focus on optimizing the other two stages in the framework. It
is important to note, however, that the size of the inverted index
is highly dependent on the similarity threshold ϵ. As shown in
Fig. 1 of [3], higher thresholds allow delaying indexing further and
lead to a smaller inverted index, which can lead to more potential
candidates being automatically pruned.

3.1.2. Candidate generation
During the candidate generation stage of the framework, which

is described in Algorithm 3, the lists in the current version of
the inverted index associated with non-zero feature values in the
query object are scanned, one list at a time. An accumulator (map
based data structure that accumulates values for given keys) is
used to keep track of partial dot-products between the query and
encountered objects. Once accumulation has started for an object,
it becomes a candidate. Fig. 4 depicts the use of an accumulator data
structure during candidate generation for a query d3 in an example
dataset. In the figure, cells with solid background represent non-
zero values. Our algorithm traverses only the inverted index lists
for features 1, 2, and 5, which have non-zero values in d3. Within
those lists, which are sorted in increasing object processing ID
order, only non-zeros for documents with a smaller ID are accu-
mulated, depicted by the red line bisecting each list. The right-side
of the figure shows the multiply–add operations that are executed
and the accumulator structure (here depicted as a simple list).

Algorithm 3 Candidate Generation in the AllPairs Framework
1: function GenerateCandidates(dq, I, ϵ)
2: cq ← ∅ ▷ accumulator
3: for each j = 1, . . . ,m, s.t. dq,j > 0 do
4: for each (dc , dc,j) ∈ Ij do
5: check whether to prune dc ▷ sz bound
6: if cq,c > 0 or dc is a new candidate with

sim(dc , dq) estimated at least ϵ then ▷ rs bound
7: cq,c ← cq,c + dq,j × dc,j
8: check whether to prune dc ▷ l2cg bound
9: return cq

Accumulation is prevented for a new object in two additional
ways. First, the size of the candidate vector (number of non-zeros)
is checked against a minimum size estimate, which we call the size
(sz) bound, and candidates with too few non-zeros are ignored.

Both APT and L2AP use the same bound in this step.2 Second,
no new candidates are accepted if the query prefix does not have
enough weight to achieve at least ϵ similarity with an indexed
object. Index lists are traversed in inverse feature processing order,
and the similarity estimate sim(dc, dq) in line 6 of Algorithm 3 is
approximated as the similarity of the query prefix with any in-
dexed object, sim(d≤jq , d<q), which we call the remaining similarity
(rs) bound. In APT, the approximation is based on computing the
similarity of the query with the max vector, while L2AP addition-
ally bounds it by the prefix ℓ2-norm of the query,

sim(d≤jq , d<q)APT ≤
⟨
d≤jq ,mx

⟩
,

sim(d≤jq , d<q)L2AP ≤ min(
⟨
d≤jq ,mx

⟩
, ∥d≤jq ∥2).

While accumulating partial dot-products with candidates, at each
feature they have in common with the query, L2AP also checks an
additional bound, l2cg , based on estimating the prefix similarity up
to that feature, leveraging the Cauchy–Schwarz inequality, as

sim(d<j
q , d<j

c ) ≤ ∥d<j
q ∥2 × ∥d

<j
c ∥2.

Data access analysis. The critical memory access portions of the
candidate generation stage are updating values in the accumulator
data structure, which can be reused for each query, and traversing
index lists. If these structures take upmore than the available cache
memory, the computation will be delayed while data is loaded
from main memory.

Due to the predefined object processing order, objects that
do not meet the minimum size requirement when traversing the
index will also not meet the requirement for future query objects
and can be removed from the index. Removing objects from the
index is a costly operation, and APT instead updates inverted list
start pointers, effectively removing objects from the start of the list
until an object of adequate size is found. These objectswill not need
to be traversed in future iterations and can speed up computation.
Experiments in [3] showed this technique had limited benefit and
L2AP does not use it.

3.1.3. Candidate verification
Candidate verification iterates through the list of candidates

and computes the partial similarity between the query vector and
the un-indexed portion of each candidate, adding it to the already
accumulated similarity (line 7 in Algorithm 4). Each candidate is
first vetted based on an upper bound of its un-indexed prefix
similarity with any object stored during indexing. APT uses the
Hölder inequality to derive this bound, which we name dps1, as

sim(dq, d≤c )APT ≤ min(∥dq∥∞ × ∥d≤c ∥1, ∥dq∥1 × ∥d≤c ∥∞).

L2AP uses several different estimates here. First, since the
query follows the candidate in processing order, the similarity
sim(dq, d≤c ) can be approximated as the similarity sim(d≤c , d>c),
which was computed and stored while indexing dc , and is equiva-
lent to

sim(dq, d≤c )L2AP ≤ min(
⟨
d≤c ,mx≥c

⟩
, ∥d≤c ∥2).

We call this bound ps. Second, L2AP uses a different dps1 bound
that, while theoretically inferior to the one in APT with regards
to candidate pruning, was slightly more efficient to compute in
experiments on a wide range of datasets in [3],

sim(dq, d≤c )L2AP ≤ min(∥dq∥0, ∥d≤c ∥0)× ∥dq∥∞ × ∥d≤c ∥∞.

2 Note that [3] uses a different sz bound, ϵ/(∥dq∥∞ × ∥dc∥∞), and erroneously
states it is superior to (ϵ/∥dq∥∞)2 . We found both bounds provide limited benefit
for different values of ϵ, and chose to use the same bound as APT in this work to
simplify comparison.
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Third, after finding the last un-indexed candidate feature l in the
feature processing order that the query also has in common, L2AP
checks a tighter version of the dps1 bound, which we call dps2,

sim(dq, d≤c )L2AP ≤ min(∥dq∥0, ∥d≤lc ∥0)× ∥d
≤l
q ∥∞ × ∥d

≤l
c ∥∞.

Finally, while computing the prefix dot-product, at each common
feature, L2AP checks the Cauchy–Schwarz inequality based esti-
mate, which here we call l2cv,

sim(d<j
q , d<j

c ) ≤ ∥d<j
q ∥2 × ∥d

<j
c ∥2.

Algorithm 4 Candidate Verification in the AllPairs Framework
1: function VerifyCandidates(dq, cq, I, ϵ)
2: for each dc s.t. cq,c > 0 do
3: check whether to prune dc ▷ ps and dps1 bounds
4: Find highest j s.t. d≤c,j > 0 ∧ dq,j > 0
5: check whether to prune dc ▷ dps2 bound
6: for each j s.t. d≤c,j > 0 ∧ dq,j > 0 do
7: cq,c ← cq,c + dq,j × dc,j
8: check whether to prune dc ▷ l2cv bound
9: store similarity if cq,c ≥ ϵ

Data access analysis. The accumulator is not critical in the can-
didate verification stage, as processing occurs for one candidate
at a time. The partial accumulated similarity of a candidate can
be looked up once and further accumulation can occur on the
stack. On the other hand, feature values and meta-data associated
with those features in the query vector are accessed in a ran-
dom fashion, based on the features encountered in the candidate
object. To facilitate computing dot products between the query
and candidate vectors, we have found it beneficial to insert the
feature values of the query vector, its prefix ℓ2-norm values, and
its prefix maximum values in a hash table. When iterating through
the sparse version of a candidate object’s un-indexed prefix, the
query feature, prefix maximum and ℓ2-norm values can then be
quickly looked up in O(1) time. The cost of using a hash table can
be offset by reusing the structure for verifyingmany candidates. An
alternative to looking up query values in a hash table would be to
traverse the candidate and query vectors concurrently, assuming
a predefined global feature traversal order. We have found that, in
most cases (other than datasets with small number of vector non-
zeros), this strategy leads to 2×–3× slower execution times.

3.2. L2Knng

Our k-NNG construction method, L2Knng, relies on similar
filtering as discussed in Section 3.1. However, since the method
does not have a global minimum similarity threshold ϵ as input, it
cannot use the sameupper bound similarity estimates andprocess-
ing order as L2AP. L2Knng instead relies on minimum similarity
values in each of the object neighborhoods as bounding thresholds
for the filtering framework. Due to this fact, unlike L2AP, which
processes each neighborhood independently, L2Knng must keep
track of n k-neighborhoods throughout its execution. Updating
these neighborhoods can become a source of thread contention in
the shared memory parallel setting. In this section, we will give an
overview of L2Knng, paying close attention to data access patterns
and potential contention.

L2Knng execution consists of two phases. First, in the approxi-
mate graph construction phase, L2Knng finds an initial k neighbors
for each of the objects in D by calling our approximate graph con-
struction method, L2Knng-a. The minimum neighborhood simi-
larities in each of the neighborhoods of the approximate graph
are then used as pruning thresholds in the filtering phase, which
outputs the exact nearest neighbor graph.L2Knng-a constructs the

approximate graph in two steps. First, in the initial graph construc-
tion (IC) step, neighbors that are more likely to be in the exact
k-NNG are chosen based on shared features with high weight.
Then, a number of graph enhancement (GE) steps are executed
which attempt to improve the quality of the neighborhoods by
finding closer neighbors among the neighbors of the current neigh-
bors. Algorithm 5 gives an overview of this process.

Algorithm 5 The L2Knng Algorithm
1: function L2Knng(D, k, γ , µ)
2: N̂ ← IC(D, k, µ) ▷ Begin L2Knng-a
3: for each i = 1, 2, . . . , γ do
4: N̂ ← GE(D, k, µ, N̂ ) ▷ End L2Knng-a
5: N ← Filter(D, k, N̂ )
6: return N

Our serial improvements in L2Knng focused on the approx-
imate graph construction phase of the method. At a very high
level, each of the steps in the L2Knng-a execution is composed of
the following tasks, which are shown in Algorithms 6 and 7 and
will be detailed later in the discussion. Input data or the current
neighborhoods are sorted and indexed to facilitate the selection of
neighbor candidates (srt). Then, for each query object, a candidate
list of potential neighbors is selected (sel) that may improve the
current neighborhood. Data associated with the query object is
optionally entered into a data structure that can facilitate fast
dot-product computations or pruning (ins). Then, dot-products are
computed between the query and each of the chosen candidates
(sim), skipping someof the candidateswhose similarity has already
been previously computed. Finally, some of the neighborhoods are
updated (upd) with computed similarities that improve them.

Algorithm 6 Initial graph construction in L2Knng-a
1: function IC(D, k, µ)
2: Create inverted index of D ▷ srt
3: Sort vectors in D and inverted index lists ▷ srt
4: for each i = 1, 2, . . . , |D| do
5: Choose µ candidates for the ith object ▷ sel
6: Hash the ith object ▷ ins
7: Compute similarities of di with all µ candidates ▷ sim
8: Update Γi and candidate neighborhoods ▷ upd
9: N̂ =

⋃
Γi

10: return N̂

Algorithm 7 Graph enhancement in L2Knng-a
1: function GE(D, k, µ)
2: Create N, sparse matrix version of N̂ ▷ srt
3: Create inverted index of N ▷ srt
4: Sort vectors and inverted lists in N ▷ srt
5: for each i = 1, 2, . . . , |D| do
6: Choose µ candidates for the ith object ▷ sel
7: Hash the ith object ▷ ins
8: Compute similarities of di with all µ candidates ▷ sim
9: Update Γi and candidate neighborhoods ▷ upd
10: N̂ =

⋃
Γi

11: return N̂

In an effort to gauge where the algorithm spends most of its
time, we instrumented the L2Knng-a code with timers for each of
the tasks. Table 3 shows the percent of the overall execution time in
each phase taken by each of the tasks in the initial construction and
graph enhancement phases, when searching for 10, 100, and 500
nearest neighbors in two datasets described in Section 5. In each
of the experiments, we only executed one round of neighborhood
enhancements (γ = 1) and chose candidate list sizes (µ) that
would lead to average recall of at least 95%, i.e., L2Knng-a finds
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Table 3
Percent of the computation time for different sections of the approximate graph
construction.

Dataset k sort sel ins sim upd perc

Initial construction

RCV1 10 3.17 5.57 0.16 88.04 3.07 78
RCV1 100 4.44 5.70 0.26 80.30 9.30 39
RCV1 500 1.11 5.27 0.06 83.48 10.07 57

WW500 10 24.07 0.94 1.15 73.06 0.78 69
WW500 100 7.92 0.91 0.31 89.57 1.29 52
WW500 500 2.46 0.82 0.10 94.77 1.84 53

Graph enhancement

RCV1 10 1.74 20.59 3.05 69.54 5.08 22
RCV1 100 2.65 20.98 0.26 72.29 3.82 61
RCV1 500 3.03 26.84 0.06 66.64 3.42 43

WW500 10 0.27 3.97 5.01 89.52 1.24 31
WW500 100 0.37 2.38 0.33 96.25 0.67 48
WW500 500 0.59 2.44 0.11 96.03 0.84 47

The table shows, for the initial graph construction and neighborhood enhancement
phases of the L2Knng-a method, the percent of execution time of different tasks
within each phase discussed in Section 3.2. The perc column shows the percent of
the overall L2Knng-a execution taken up by the current phase of the algorithm.
For each experiment, tasks taking up a significant portion of the execution time are
highlighted in bold.

most of the nearest neighbors for each object. The last column
in the table (perc) shows the percent of the overall L2Knng-a
execution taken up by the current phase (IC or GE) of the algorithm.
The results of this experiment show that L2Knng-a spends the
majority of its execution time selecting candidates and computing
similarities between query and candidate objects. Indexing and
sorting can also account for a significant portion of the execution
time when k is small. While graph enhancement takes up less
time for small values of k, it accounts for almost half of the overall
execution for larger k values.

Given these observations, we focused our efforts to improve
L2Knng-a on the similarity computation, sorting, and candidate
selection tasks. In the following sections we will detail each of the
L2Knng-a tasks and our proposed improvements.

3.2.1. Index and sort
L2Knng-a chooses candidates in the IC phase by matching ob-

jects with common high weight features. To facilitate this search,
it sorts the entries in each object vector and in each inverted index
list in non-increasing weight order. Then, it selects candidates
for a query object by iterating through the inverted index lists
associated with its highest weight features.

Since only µ candidates are selected for each query object, it
is not necessary to fully sort all entries of the object vectors and
inverted lists. With high probability, each inverted list will contain
more than two entries (one entry will be associatedwith the query
object). Thus, as an enhancement to L2Knng-a, we propose sorting
only the top-µ values in each vector and inverted list. For each
vector and inverted list with lengths greater than µ, we first apply
a select procedure [26], which partitions the list such that the
leading µ values are greater or equal to the remaining values, and
then sort only the leading µ values. This improvement reduces the
complexity of sorting a list from O(l log l), where l is the size of the
list, to O(l + µ logµ), and can be beneficial when µ is small or for
datasets with very long vectors or inverted lists.

In each GE phase, L2Knng-a chooses candidates by matching
neighbors and neighbors’ neighbors with high similarity values. It
first creates a sparse matrix version of the current approximate
neighborhood graph, N, such that the ith row of N corresponds to
the k-neighborhood of the ith object. It sorts the entries in each
row ofN in non-increasing value order and selects candidates for a

query object by iterating through rows in N associated with those
objects that are the closest neighbors of the query, i.e., the column
IDs of the leading entries in the query neighborhood row. For those
query objects with less than µ candidates selected through this
process, L2Knng-a further iterates through neighborhoods of ob-
jects that have the query object as their neighbor, in non-increasing
order of their similaritywith the query.We call this process reverse
candidate selection. To facilitate this search, L2Knng-a creates an
inverted index for N and sorts the inverted lists in the index in
non-increasing value order. In our experiments, we have found
reverse candidate selection rarely improves effectiveness and can
often degradeGE efficiency. InpL2Knng, we skip this optimization,
do not create an inverted index for N, and only sort its row entries.

3.2.2. Candidate selection
In the IC phase, L2Knng-a selects candidates by iterating

through two inverted lists at a time associated with the highest
values in the query vector. Algorithm 8 describes this procedure.
The function nextList provides the inverted list associated with the
next non-increasing value in q. The function nextCand provides the
next candidate in the chosen list, skipping the query object and any
other objects that have already been selected. L2Knng-a uses an
accumulation data structure to both track whether an object has
already been selected as a candidate and to compute its partial dot-
product with the query, denoted as

⟨
q, a≤

⟩
in Algorithm 8. Here, a≤

is the prefix of a up to and including the feature associatedwith the
index list A. Given two potential candidates ca and cb, L2Knng-a
chooses ca only if its partial dot-productwith the query considering
features already processed is greater than that of cb.

Algorithm 8 Candidate selection in the IC phase of L2Knng-a
1: function SelectCandidatesIC(D, q, µ)
2: A← nextList(q), B← nextList(q), C = ∅
3: while |C |< µ and A ̸= ∅ and B ̸= ∅ do
4: if A = ∅ or B = ∅ then
5: Choose candidates only from the remaining list
6: a← nextCand(A), b← nextCand(B)
7: if

⟨
q, a≤

⟩
>

⟨
q, b≤

⟩
then

8: C ← C ∪ a
9: A← A \ a
10: A← nextList(q) if A = ∅
11: else
12: C ← C ∪ b
13: B← B \ b
14: B← nextList(q) if B = ∅
15: end while
16: return C

We have improved candidate selection in the IC phase of
L2Knng-a by simplifying the candidate choice condition (line 7 of
Algorithm 8) to dq,f (A) × da,f (A) < dq,f (B) × db,f (B), where f (A) is the
feature ID of inverted list A. This simplification keeps the original
intent in the selection and has not shown decreased effectiveness
in experiments. Instead, the efficiency of this step is increased by
removing the need to compute partial dot-products. Furthermore,
we use a bitvector data structure to track candidates that have
already been selected, which uses less cachememory andmay also
help increase performance.

The GE phase selects candidates by iterating through neighbors’
neighborhoods, selecting the neighbor a with the next smaller
similarity value in the query’s neighborhood. The neighbors of a
are then visited in non-increasing similarity value order. While
iterating through these neighbors, candidates are only accepted if
their similarity value is greater than the similarity between a and
the query. We have not made changes to the selection process in
this phase of L2Knng-a. Fig. 5 shows, as an example, the process
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of selecting candidates for an object d1 during the GE phase of our
method, given k = 2. In the figure, we only show relevant edges
for d1 and its neighbors. Edgeweights represent object similarities.
Given a candidate list size µ = 3, L2Knng-a first follows the
edge towards d9 and selects its neighbors as candidates, in non-
increasing order of edgeweights; then, L2Knng-a follows the edge
towards d2 and adds its highest weight neighbor to the candidate
list.

3.2.3. Query insertion and similarity computation
Since L2Knng-a computes the similarity of a query vector with

many (namely, µ) different candidate vectors, it creates a dense
version of the query vector, inserting its values into an array of
sizem. Each dot-product can then be computed as a sparse–dense
vector dot-product, by iterating through the non-zero values of the
candidate vector and looking up values of the query vector in the
array. Given a vector q representing the dense version of dq, the
dot-product

⟨
q, dc

⟩
can be computed as,

for each j = 1, . . . ,m s.t. dc,j > 0 do
s← s+ dc,j × qj.

As computing dot-products takes up the most time in the
L2Knng-a execution, we tried several other strategies for exe-
cuting this operation, including (1) packing the larger of the two
sparse vectors into the space of the smaller vector, trying to
take advantage of vectorization capabilities of modern hardware.
(2) computing sparse–sparse vector dot-products, and (3) the
query vector mask-hashing technique described in [4]. In our ex-
periments, none of the new dot-product computation strategies
lead to improved performance under a wide range of execution
parameters in the shared-memory parallel setting.

3.2.4. L2Knng filtering
After constructing the initial approximate NNG through

L2Knng-a, our exact method uses the filtering framework pre-
sented in Section 3.1 to improve each object neighborhood un-
til completion. The object processing order in L2AP, which was
chosen to enhance some of the similarity bounds used in index
construction and filtering, will not be appropriate for L2Knng. In-
stead, L2Knng processes objects in non-non-increasing minimum
neighborhood similarity order.Moreover, the filtering boundsused
in L2Knng do not depend on the maximum value in each object,
which allows L2Knng to dynamically change the object processing
order. In pL2Knng, we followed the same overall filtering strategy.
The interested reader can find further details in [4].

4. Parallel algorithms

We now present parallel solutions to the ϵ-NNG and k-NNG
problems. First, we summarize algorithmic choices in the method
of Awekar and Samatova, pAPT. We then introduce pL2AP, which
was designed based on the memory access observations we made
in Section 3.1, with the goal of improving cache locality during
similarity search. Finally, we present pL2Knng, our parallel k-NNG
construction method, which is based on observations detailed in
Section 3.2.

4.1. pAPT

Awekar and Samatova introduced the first sharedmemory par-
allel APSS algorithm [9], pAPT, based on their serial APT algorithm,
which we describe in Algorithm 9. Their main idea was to pre-
compute the partial inverted index (lines 4 –5), rather than in-
dexing each object after its processing, and allow threads to share

Fig. 5. Graph enhancement example.

the index structure. To prevent synchronization overheads when
removing values associated with short vectors from the inverted
index (line 5 of Algorithm 3), pAPT duplicates, for each thread, a
list of offsets from the beginning of each inverted list. Then, each
threadmodifies its own offsets, incrementing them to remove only
items at the start of inverted lists.

Algorithm 9 The pAPT Algorithm
1: function pAPT(D, ϵ)
2: Set processing order for vectors and/or features
3: O← ∅, Ij ← ∅, for j = 1, . . . ,m
4: for each q = 1, . . . , n do
5: Index(dq, I, ϵ)
6: for each q = 1, . . . , n, in parallel do
7: cq ← GenerateCandidates(dq, I, ϵ)
8: O← O ∪ VerifyCandidates(dq, cq, I, ϵ)
9: return O

Awekar and Samatova proposed three load balancing strategies
in pAPT: block, round-robin, and dynamic partitioning. The ob-
ject processing order in the filtering framework, namely in non-
increasing maximum value order, after first normalizing object
vectors, means that objects with few non-zeros are processed first,
and thosewithmany non-zeros last. As a result, statically assigning
n/nt consecutive objects to each thread, where nt is the number of
threads, leads to load imbalance. Awekar and Samatova attempted
to fix the potential imbalance by assigning subsets of query objects
with equal number of non-zeros to each thread, but found this
strategy is still worse than round-robin or dynamic partitioning.
The best performing load balancing strategy in their experiments
was dynamic partitioning, which assigns a small set of objects to a
thread as soon as it has finished processing its previously assigned
set.

4.2. pL2AP

Our new method, pL2AP, uses the same indexing, candidate
generation and verification pruning choices as L2AP. Additionally,
pL2AP employs two strategies aimed at improving cache locality
during search. First, cache-tiling breaks up the inverted index into
blocks that can fit in the systemcache, reducing latency during can-
didate generation. Second, for datasets with high dimensionality,
mask-based hash tables can greatly reduce the amount of memory
required for storing query object values and meta-data during
search, allowing them to persist in the cache during candidate
verification. Algorithm 10 provides an overview of our method.
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Algorithm 10 The pL2AP Algorithm
1: function pL2AP(D, ϵ, h, ζ , η)
2: Set processing order for vectors and features
3: for each q = 1, . . . , n in parallel do
4: S ← FindIndexSplit(dq, ϵ)
5: K ← FindIndexAssignments(S, ζ )
6: O← ∅, Ik,j ← ∅, for j = 1, . . . ,m and k = 1, . . . , K
7: for each q = 1, . . . , n do
8: Index(dq, I, S, ϵ)
9: for each k = 1, . . . , K do
10: for each l = S[k], . . . , n, in increments of η do
11: for each q = l, . . . ,min(l+η −1, n), in parallel do
12: cq ← GenerateCandidates(dq, Ik, ϵ)
13: O← O ∪ VerifyCandidates(dq, cq, Ik, ϵ)
14: return O

4.2.1. Cache-tiling
Cache-tiling aims to increase cache locality during the can-

didate generation stage of the similarity search by ensuring the
inverted index and accumulator structures fit in cache. To achieve
this, the inverted index is split into several consecutive sections,
called tiles, and each index is used in turn to find neighbors. Choos-
ing the size of each cache tile is non-trivial in the APSS problem,
due to the varying number of feature values being indexed for
each object. For example, choosing to index the same number of
objects in each tile will lead to large indexes for the final tiles
to be processed which may not fit in cache. Instead, pL2AP first
finds the first feature to be indexed in each object (line 4), which
also provides the number of values to be indexed in each object.
These counts are used to define the consecutive sets of objects to
be indexed together in each tile. The list S, containing tile start and
end offsets given the predefined processing order, is then used to
index each object suffix in their assigned inverted index (line 8).

We use an array to track accumulated similarities for candi-
dates. Since the accumulation array is randomly accessed for differ-
ent candidates encounteredwhile traversing the inverted index, nt
accumulation arrays should also fit in cache along with the index,
one for each thread. The size of the accumulation array is the same
as the number of objects assigned to an index.

The un-indexed portion of each un-pruned candidate vector is
sequentially accessed during candidate verification. To maximize
cache locality, we explicitly create a sparse forward index contain-
ing prefix values for objects in each tile.

During parallel sections (lines 3 and 11), pL2AP follows a dy-
namic task partitioning approach, assigning a small set of objects
to a thread to process as soon as it has finished processing its
previous assigned set. Since candidate pruning is unpredictable, a
thread may get assigned objects that finish processing quickly and
may jump ahead many places in the processing order. This may
lead to loss of cache locality if some threads read query objects
from different portions of the dataset. To prevent this, we process
queries η at a time, in a block synchronous fashion, where η is
an input parameter, forcing threads to read from the same subset
of query vectors, which should be located in close proximity in
memory.

4.2.2. Query vector mask-hashing
During candidate verification, pL2AP traverses the candidate

prefix sequentially, rather than the query prefix, and checks
whether the query has non-zero values for the encountered fea-
tures. When a common feature is found, query object meta-data
(prefix ℓ2-norm or maximum value) are used to check whether
the candidate can be pruned. An efficient way to locate query
vector values and meta-data during this process is to store them

Fig. 6. Example query hash table use in pL2AP.

in arrays, as dense vectors. However, for datasets with high dimen-
sionality (generally above 106), this technique can lead to polluting
the cache with zero values from the dense arrays, evicting other
necessary data.

Given that query vectors are sparse, and their features are
always processed in a predefined order, we developed a heuristic
hash-table data structure that uses a small amount of cache space,
takes advantage of O(1) access times formost look-ups and leads to
few collisions in practice. A small array of size h+max(∥dq∥0)− 1
is used in pL2AP to store matching offsets in one or more lists
containing the query data. Here, h = 2α (α ≥ 0) is a predefined
parameter, generally much smaller than m, and max(∥dq∥0) is the
maximum number of non-zero features for any object. An efficient
hashing function maps feature IDs to the [0, h − 1] domain, and
collisions are entered in the hash-table array in order, startingwith
index h. Since partial dot-product computations with candidates
follow the same traversal order, collisions can be quickly resolved
by traversing only a subset of the overflow features. In practice,
however, we have found that less than 1% of hash key look-ups
end in collision.

Fig. 6 provides an example of how a query object might use the
hash table in pL2AP, for h = 22. The hash table array is initialized
with negative values. Traversing the query non-zeros in reverse
feature processing order, the 11th query feature is mapped to the
4th hash table cell, via an efficient truncate operation, 11 & (4−1),
where & is the bitwise AND logical operator. The feature ID is
stored in the hash table at the mapped key index, and one or
more value arrays are populated with salient information about
the query at the same key index location. PL2AP tracks the query
prefix value, size, maximum value, and ℓ2-norm at each index,
which are used to check different pruning bounds. In a similar
fashion, the 10th query feature is mapped to the 3rd hash table
cell, and the 4th query feature to the 1st hash table cell. When
mapping the 2nd query feature, the collision is handled by entering
the item in the overflow part of the hash table array, in traversal
order. When verifying a candidate dc , its forward index features
are traversed in the same order as the query was traversed. Thus,
when collisions occur, they can be found by partially traversing the
overflow section of the hash table, keeping a pointer to the last cell
with a feature ID greater or equal than the sought ID.

To avoid excessive collisions, pL2AP dynamically chooses
whether to use the hash-table or dense arrays for the query object
data. Specifically, objects with less than h/23 non-zeros will use
the hash-table data structure, while the rest will use dense vector
representations of the query and meta-data vectors.
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4.3. PL2Knng

Algorithm 11 describes our parallel k-NNG construction
method, pL2Knng. Our method follows the same computation
strategy as L2Knng, incorporating the improvements described in
Section 3.2. Namely, an approximate graph is first constructed,
which provides filtering thresholdswhen deriving the exact neigh-
borhood graph. Then, for each query object, pL2Knng indexes
some of its prefix values, ensuring that the query object can be
found in subsequent searches by objects that belong in the query
neighborhood or whose neighborhood the query can enhance.
During candidate generation (CG), using the index, pL2Knng selects
a list of candidates for the query, which are a superset of its correct
neighbors. Part of the query similarity value with each candidate
is computed during the CG stage, and upper-bound estimates on
the similarity are used to prune some of the candidates. Finally,
pL2Knng completes the similarity computation in the candidate
verification (CV) stage, performing additional pruning based on
several upper-bound similarity estimates, and updates the query
and candidate neighborhoods if the result can enhance them. For
full details on the filtering process, see [4].

Algorithm 11 The pL2Knng algorithm.
1: function pL2KNN(D, k, ζ , θ , η)
2: N̂ ← pL2KNN-a(D, k)
3: Set object processing order given N̂
4: z ← 0, r ← 0, i← 1, I ← ∅
5: while i ≤ n do
6: j← i
7: for each i = j, . . . , n do ▷ Identify next tile
8: S ← FindIndexSplit(di, σdi )
9: z ← z + nnz(di

>)
10: r ← r + 1
11: if z ≥ ζ or r = θ then
12: i← i+ 1
13: break
14: for each q = j, . . . , i in parallel do ▷ Create index I
15: Index(dq, I, S, σdq )
16: for each l = j, . . . , n, in increments of η do ▷ Filter
17: for each q = l, . . . ,min(l+η −1, n), in parallel do
18: cq ← GenerateCandidates(dq, I, k)
19: VerifyCandidates(dq, cq, I, N̂ , k)
20: I ← ∅
21: Update un-processed object processing order given N̂
22: end while
23: return N̂

Threads concurrently process different query objects in
pL2Knng. We devised a lock-less thread cooperation and neigh-
borhood update strategy that allows threads to dynamically share
available work and leads to good load balance in general. In the
remainder of this section, we will describe these strategies, which
are incorporated both in the initial approximate graph construc-
tion and the filtering stages in pL2Knng.

4.3.1. Cache-tiling
In order to enable cooperative processing of different query

objects in its filtering phase, pL2Knng indexes objects prior to
filtering. The index is split into several tiles, corresponding to a
set of consecutive objects in the object processing order, and each
index is used in turn to find neighbors. During filtering, threads
can all read the sections of the index they need in order to find
candidates for their respective query objects. Since many different
sections of the index may be accessed concurrently, it is beneficial
for the index to fit in the available cache memory on the system.
The index size is highly data dependent.

Cache-tiling in pL2Knng is similar to the procedure described
in Section 4.2.1 for pL2AP. However, the number of values that
are indexed in pL2Knng depends on themagnitude of those values
and the current minimum similarity in the object’s neighborhood,
which is not known a priori and changes throughout the algorithm
execution. A poor quality (low recall) initial approximate graph, for
example, will lead to more values that need to be indexed in each
object to ensure a correct result. The size of each tile is dynamically
chosen to contain at most θ indexed objects and ζ indexed non-
zeros.

In pL2Knng, objects are processed in non-increasing value or-
der of their minimum neighborhood similarity σdi . Taking advan-
tage of the commutative property of cosine similarity, pL2Knng
only compares a query object against objects that come before it in
the object processing order. After completing the filtering process
using the current index, it can be discarded. The filtering leads
to improved minimum neighborhood similarities of un-indexed
objects in the neighborhood graph represented by N̂ . As a result,
pL2Knng then updates the object processing order of un-indexed
objects, improving index reduction andpruning during subsequent
searches that use the next index tile.

After indexing a set of objects, pL2Knng splits the set of query
objects (those that come after the first indexed object in the pro-
cessing order) into query blocks of size η. Threads are then dynam-
ically assigned a small number of consecutive queries at a time,
which they process sequentially. Our method keeps track of the
k-nearest neighbors of an object by using a heap data structure.
Note that, after finding neighbors for a given query object, a thread
can safely update the query neighborhood heap. However, it can-
not also update the neighborhood of a candidate without locking,
as another thread may be trying to concurrently update the same
heap. As such, pL2Knng keeps a candidate list in memory for each
of the objects in the query block, deferring candidate neighborhood
updates until all query block objects have been processed. The
parameter η should be chosen to ensure η × θ values can be
stored in memory, as each candidate list has a maximum size of θ .
Moreover,moderately small η values can ensure the candidate lists
are cache-resident, leading to improved performance. The same
query set cache-tiling strategy is also used in the IC and GE phases
of our method. However, each candidate list size is µ there, so the
memory necessary to store candidates is η ×max(µ, θ ).

4.3.2. Neighborhood updates
As mentioned in the previous section, since each object is in-

dependently processed by a thread, each thread can update the
query neighborhood as soon as it has found a candidate object that
can improve it. We have found it beneficial, however, to update
the query neighborhood after finalizing similarity computations
for all candidates. Given a set of candidates C with |C | > k, we first
select [26] the top-k values in the list, filtering out those less than
σq, the currentminimumsimilarity in the query neighborhood, and
then sequentially insert them in the query heap.

Our strategy for updating candidate neighborhoods is slightly
different. Each thread is assigned a sequential block of n/p candi-
date objects whose neighborhoods they are responsible to update,
where p is the number of processing elements (threads). When a
candidate list is constructed, candidates are added in the order they
are found during the candidate selection process, which results in
a semi-random ordering. After updating the query neighborhood,
before moving on to the next query, the thread re-arranges the
similarities in the candidate list to ensure efficient candidate list
updates. Each value is checked against the minimum similarity
σc of the candidate neighborhood and discarded if it cannot im-
prove that neighborhood. The thread then partitions the remaining
values into p sections s.t. the ith section contains similarities for
objects in the ith candidate block, which will be updated by the
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Fig. 7. Segmentation of candidate lists for neighborhood updates.

Table 4
Dataset statistics.

Dataset n m nnz µr σr µc σc

RCV1 0.80M 0.05M 62M 76 55 1347 8350
WW500 0.24M 0.66M 202M 830 386 306 3323
WW200 1.02M 0.66M 437M 430 302 659 8273

For each dataset, n is the number of vectors/objects (rows), m is the number of
features (columns), nnz is the number of non-zero values, µr and σr are the mean
and standard deviation of row lengths (number of non-zeros), andµc and σc are the
same statistics for column lengths.

ith thread after the query block has finished being processed. The
thread also records the starting and ending offset of each segment
in the candidate list. Fig. 7 shows this strategy for objects d1–d5
from a set of 16 objects, given 4 threads. This partitioning enables
fast candidate neighborhoodupdates at the endof eachquery block
processing, as each thread only needs to traverse a subset of each
candidate list to perform its required updates.

4.4. Parallel implementation details

Given the pL2Knng neighborhood update strategy described in
Section 4.3.2, the parallel execution of our algorithm does not lead
to any race conditions. In pL2AP, threads perform independent
similarity searches. At the end of each query tile, a single thread
consolidates the results from all threads into the output graph. The
parallel implementation of our methods is thus straight-forward,
relying only on OpenMP parallel for loops and barrier
statements.

5. Experimental methodology

In this section, we describe the datasets, baseline algorithms,
and performance measures used in our experiments.

5.1. Datasets

We use three text-based datasets to evaluate each method.
They represent some real-world and benchmark text corpora of-
ten used in text-categorization research. Their characteristics, in-
cluding number of objects (n), features (m), and non-zeros (nnz),
row/column length mean and standard deviation (µr/c , σr/c), are
detailed in Table 4. Standard pre-processing, including tokeniza-
tion, lemmatization, and tf-idf scaling, were used to encode text
documents as vectors. We present additional details below.

• RCV1 is a standard benchmark corpus containing over
800,000 newswire stories provided by Reuters, Ltd. for re-
search purposes, made available by Lewis et al. [31].
• WW500 contains documents with at least 500 distinct fea-

tures, extracted from the October 2014 article dump of the
English Wikipedia3 (Wiki dump).
• WW200 contains documents from the Wiki dump with at

least 200 distinct features.

Fig. 8. Non-zero distributions in rows/objects (top) and columns/inverted lists
(bottom) in our three datasets. In the top graph, the WW200 and WW500 lines
coincide, as WW500 is a proper subset of WW200.

As can be seen from the mean and standard deviation values
listed in Table 4, the datasetswe chose are quite variedwith respect
to their row and column lengths. Fig. 8 provides another insight
into the non-zero composition in the three datasets, showing the
distribution of row (top) and column (bottom) lengths. As both
row and column frequency distributions in the datasets follow
the power-law, we plot the graphs log–log scaled. Note that the
WW200 and WW500 lines coincide in the top graph for most
points, as WW500 is a proper subset of WW200.

5.2. Baseline approaches

We compare our methods against the following baselines.

5.2.1. ϵ-NNG construction experiments
• IdxJoin, APT, and L2AP are baseline serial APSS search

methods described in detail in [3]. We report speedup over
the fastest execution time of any of the serial methods.
• pL2AP is our parallel ϵ-NNG construction method, detailed

in Section 4.2.
• pIdxJoin uses similar cache-tiling as pL2AP, but does not

use any pruning when computing similarities. For each
block of queries, pIdxJoin sequentially retrieves a block

3 http://download.wikimedia.org.

http://download.wikimedia.org
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of objects to search against and indexes all their values.
Threads then share the index to compute similarities, via
accumulation, of each assigned query object against all
indexed objects, retaining those resulting pairs above the
threshold ϵ.
• pAPT is the sharedmemory parallel APSSmethod byAwekar

and Samatova [9], which we described in detail in 4.1.
• pL2APrr follows the same parallelism strategy as pAPT, but

takes advantage of the advanced pruning bounds of L2AP.
After first indexing the suffixes of all objects, pL2APrr dy-
namically assigns small sets of query objects for processing
to available threads. For each query object, pL2APrr indexes
the same values and performs the same pruning in the
candidate generation and verification stages as pL2AP.

5.2.2. k-NNG construction experiments
• pL2Knng is our parallel k-NNG construction method, de-

tailed in Section 4.3.
• pKIdxJoin is a straight-forward baseline similar to IDX

in [36]. The method uses similar cache-tiling as pL2Knng,
but does not use any pruning when computing similarities.
For each set of queries, pKIdxJoin sequentially retrieves a
set of objects to search against and indexes all their values.
Threads then share the index to compute similarities, via
accumulation, of each assigned object in a query tile against
all indexed objects, retaining the top-k matches for each
object.
• GF is an approximate k-NNG constructionmethod proposed

by Park et al. [36]. We have created a shared memory
parallel version of GF , which we call pGF , using the same
thread cooperation strategy as in pL2Knng-a. Threads first
work together to index enough high-weight features for
each object to ensure µ candidate neighbors have at least
one feature in common with each input object. Then, they
dynamically split the work of computing similarities of each
object in an inverted list against all other objects in the list.
Each thread updates the neighborhood of an assigned query
object as soon as it has finished computing the similarity
with a candidate object. Threads synchronize at the end of
each inverted index list, reading computed similarities by
all threads in order to update neighborhoods for blocks of
objects assigned to each thread.
• NN-Descent is a shared memory parallel approximate

k-NNG construction method designed by Dong et al. [23]
to work with generic similarity measures which has been
shown effective for both sparse and dense input.

Locality sensitive hashing (LSH) has been a popular method
for top-k search, but we have found that it does not in general
performwell in the k-NNG construction setting when one requires
high average recall. Both GF and NN-Descent have been shown
to outperform LSH in this setting, for k typically ≥10. Moreover,
pL2Knng significantly outperforms GF and NN-Descent in both
serial and parallel execution environments. As a result, we have
chosen not to compare against LSH in this work.

5.3. Performance measures

When comparing approximate k-NNG construction methods,
we use average recall to measure the accuracy of the returned
result. We obtain the correct k-NNG via a brute-force search, then
compute the average recall as,

R =
1
|D|

∑
di∈D

# correct neighbors in Ndi

|Ndi |
.

An important characteristic in our experiments is CPU runtime,
which is measured in seconds. I/O time needed to load the dataset
into memory or write output to the file system should be the same
for all methods and is ignored. Between a method A and a baseline
method B, we report speedup as the ratio of B’s execution time
and that of A’s. Additionally, we report strong scaling for parallel
methods, in which multi-threaded execution times are compared
with the 1-threaded execution of the same method.

As a way to compare the amount of time threads spend waiting
for other threads to finish execution, we measure load imbalance,
as suggested by DeRose et al. [20] as,

% imbalance =
tmax − tmean

tmax
×

p
p− 1

,

where p is the number of processing elements (threads) and tmax
and tmean are the maximum and mean thread times in the parallel
block, respectively.

5.4. Execution environment

Our method and all baselines are implemented in C and com-
piled using gcc 5.1 with the -O3 optimization setting enabled. We
used the OpenMP framework for implementing shared-memory
parallel methods. Each method was executed on its own node in a
cluster of Linux servers. Due to hardware availability restrictions,
the ϵ-NNG and k-NNG sets of experiments (our methods and all
related baselines for each) were executed on two different clus-
ters. For the ϵ-NNG experiments, each server was a dual-socket
machine, equipped with 64 GB RAM and two twelve-core 2.5 GHz
Intel Xeon E5-2680v3 (Haswell) processors. Each core is equipped
with 32 kB L1 cache and 256 kB of L2 cache, and the 12 cores on
each socket share 30 MB of L3 cache. For the k-NNG experiments,
each server was a dual-socket machine, equipped with 64 GB RAM
and two eight-core 2.6 GHz Intel Xeon E5-2670 (Sandy Bridge)
processors. Each core is equipped with 32 kB L1 cache and 256 kB
of L2 cache, and the 8 cores on each socket share 20MB of L3 cache.
Both servers were running CentOS 6.9 (Final).

For each ϵ-NNG method, we varied the similarity threshold ϵ
between 0.3 and 0.9, in increments of 0.1. For pL2AP, we fixed η at
25k objects and varied ζ between250k and4M in 250k increments.
We set the masked hash-table size parameter h to 213.

We executed each k-NNG method for

k ∈ {10, 25, 50, 75, 100, 200, 300, 400, 500}

and tuned parameters for each method to achieve balanced high
recall and efficient execution. For all L2Knng based methods, we
set the parameter δ = 0.0001. For all experiments, we set the
pL2Knng parameter θ = 100k. We used the latest version of
the NN-Descent4 library available at the time of our experiments
(v.1.4), and set ρ = 1, and indexing K = µ (the candidate list size
µ ≥ k). For all stochastic methods, we executed a minimum of 3
tries for each set of parameter values and we report averages of all
tries.

6. Results & discussion

We will first present our ϵ-NNG construction experiment re-
sults, followed by those for the k-NNG construction experiments
and a short discussion.

6.1. PL2AP results

We now present our pL2AP experiment results, along two
directions. First, we study the effectiveness of our method with

4 http://www.kgraph.org/releases/kgraph-1.4-x86_64.tar.gz.

http://www.kgraph.org/releases/kgraph-1.4-x86%5F64.tar.gz
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Fig. 9. Percent of potential candidate pairs (cand rate), and percent of potential dot-products (scan rate) comparison between pL2AP and pAPT, for ϵ between 0.3 and 0.9.

regards to filtering unpromising object pairs. We compare prun-
ing effectiveness in pL2AP with that in pAPT, identify how early
candidates are pruned, and measure cache locality improvements
in our method. We also study the effect input parameters have on
the performance of our method. Second, we study the efficiency of
pL2AP in solving the APSS problem. We identify the best pruning
choices in pL2AP, compare its execution time with that of other
parallel methods and the best known serial method for solving the
problem, study the strong scaling characteristics of our method,
and measure how balanced the loads of different threads are dur-
ing execution.

6.1.1. Effectiveness study
Pruning effectiveness comparison with pAPT. Our method, pL2AP,
and the shared memory parallel baseline pAPT, follow the same
strategy in solving the APSS problem. They build a partial inverted
index that is used to identify, for each query object, a list of
candidates the query should be compared with. While comparing
query objects with candidates, they prune as many un-promising
pairs as possible, and in the end fully compute the dot-product
of a small subset of the candidate list, which is a superset of the
correct set of neighbors. While their serial computation strategy
is the same, the two methods rely on different theoretic similarity
upper bounds to decide which values in the query object should be
indexed, whether an object should become a candidate, and when
a candidate should be pruned.

Indexing fewer values can speed up index traversal and thus
lead to performance improvements. In addition, it will lead to
shorter candidate lists being generated. Considering fewer candi-
dates, as well as more aggressive pruning, can lead to fewer dot-
products being computed in full and to better performance. Fig. 9
shows the percent of potential candidate pairs (cand rate), and
percent of potential dot-products (scan rate) for pL2AP and pAPT,
for ϵ between 0.3 and 0.9, for the three datasets. As compared
to pAPT, our method considers fewer candidates, and evaluates
fewer complete dot-products, especially at high similarity values;
pL2AP is able to prune a much higher number of candidates than
pAPT in all datasets, highlighting the improved pruning effective-
ness in our method. The size of the un-pruned set of candidates
in pL2AP was between 1.002×–2.179× the size of the set of
correct neighbors. Interestingly, pruning was more aggressive in
the Wikipedia datasets, where the un-pruned set ranged between

1.002×–1.055× the size of the set of correct neighbors, than in
the RCV1 dataset, where its range was 1.460×–2.179×. This may
be due to the fact that RCV1 has a much more compact feature
space,which allows formore features in commonbetween random
objects.

Pruning effectiveness in pL2AP. Our method works by pruning the
majority of the candidates that are not correct neighbors. Once an
object becomes a candidate, it can be pruned by the l2cg bound
while accumulating values traversing the inverted index in the
candidate generation stage (cg in figures), when checking the ps,
dps1 and dps2 prefix similarity estimate bounds at the onset of
the candidate verification stage (ses in figures), or by the l2cv
bound while accumulating values traversing the forward index in
the candidate verification stage (cv in figures). Earlier pruning of
candidates means less time spent accumulating dot-products in
vain and will lead to improved performance. In an experiment in
whichwe used consistent parameters for all datasets (h = 213, η =
25k, and ζ = 1M), we counted the number of candidates pruned
in each stage of the algorithm.We report these values in Fig. 10, for
all datasets and ϵ values, along with the number of candidates that
were not pruned and had their dot-products computed in full (dps
in figures).

Results show that pL2AP prunes the majority of objects soon
after they become candidates, in the candidate generation stage
(cg). Most of the remaining objects are pruned by the ses bounds,
which are checked once, at the beginning of the candidate verifica-
tion stage, and by additional pruning in the candidate verification
stage (cv). At ϵ = 0.3, for example, only 0.02%–0.90% of candidates
survived all pruning across our datasets.

A large number of objects never become candidates in pL2AP,
as a result of either the ℓ2-normbased candidate acceptance bound
in the candidate generation stage of the algorithm, or due to the
prefix-filtering based index reduction. On average across all ϵ

values, 11.6%–32.0% of all potential candidates actually became
candidates for our datasets. Of those, most are pruned quickly,
in the first stage of our method. As a way to gauge how quickly
candidates are pruned, we measured the number of executed
multiply-adds versus the number of possible multiply-adds (per-
cent of accumulated non-zeros) in the similarity computation of
each pruned candidate. In Fig. 11, we report the mean percent
accumulated non-zeros for our three datasets. In each experiment,
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Fig. 10. Pruning effectiveness in pL2AP. Each bar shows the number of candidates pruned during candidate generation (cg), at the onset of candidate verification (ses),
during candidate verification (cv), and the number of candidates whose similarity was computed in full (dps), for ϵ ranging between 0.3 and 0.9.

Fig. 11. Mean percent accumulated non-zeros before pruning in pL2AP.

Fig. 12. Speedup of 1-threaded pL2AP over L2AP.

we used consistent parameters for all datasets (1 thread, h = 213,
η = 25k, and ζ = 1M).

The results show that, for all of the datasets and most ϵ values,
before pruning unsuitable candidates, pL2AP accumulates less
than 4% of the common non-zeros. In the case of RCV1, which may
not use as many rare terms as Wikipedia, and a high similarity
threshold (ϵ = 0.9), the algorithm checks on average about 20%
of the vector non-zeros before pruning candidates.

Cache locality improvements in pL2AP. While pL2AP performs the
same pruning as L2AP, it scans each query object multiple times to
compare against objects in multiple constructed inverted indexes.

Fig. 13. Percent of instructions resulting in LLC misses when executing pL2APrr
and pL2AP with ζ between 0.5M and 4M non-zeros on the RCV1 and WWW200
datasets.

The smaller inverted indexes and the mask-based hash table used
during the search help avoid cache thrashing, improving efficiency
by reducing time wasted waiting for data transfers from memory
to cache. To measure the serial effect of this improvement, we
compared the 1-threaded execution of pL2AP against the serial
L2AP algorithm. We used η = 25k objects and ζ = 1M non-zeros
for this test. Fig. 12 shows speedup results for each of the three
datasets we tested, for ϵ between 0.3 and 0.9. The results show an
improvement over L2AP for datasets with long inverted lists.

The small inverted index in pL2AP is shared by all threads
in executing concurrent searches. As another way to quantify
cache locality improvements, we compared the percent of cache
misses when executing pL2AP and pL2APrr with 24 threads. Both
algorithms perform the same pruning, but pL2APrr builds a single
inverted index anddoes not consider cache locality in its execution.
We used the perf Linux utility to count the number of instructions,
cache references, and cache misses (perf stat -v -B -e
instructions,cache-references,cache-misses) in the
shared last-level cache (LLC) of the Xeon processors. Fig. 13 shows
our results when executing pL2AP with ζ between 0.5M and 4M
non-zeros and pL2APrr, on the RCV1 and WW200 datasets, for
ϵ = 0.3. We show the size of the inverted index that pL2APrr
builds below its bar in the graph. The figure shows the percent of
LLC misses as opposed to total number of instructions executed
by the CPU. We observed similar results for most other datasets
and ϵ values. In general, pL2AP improves cache locality, resulting
in much fewer cache misses than the pL2APrr variant. The results
show that small inverted indexes (ζ ≤ 1.5M) fit better in cache
and lead to fewer cache misses in general. While 1.2%–1.6% of the
pL2APrr instructions result in cache misses, less than 0.05% of the
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Fig. 14. Relative execution times for different h, η, and ζ parameter choices, given ϵ = 0.3 (top) and ϵ = 0.9 (bottom).

pL2AP instructions do so for ζ = 1.5M. Moreover, pL2AP cache
misses represent 1.5%–4.1% of the cache references, as opposed to
24%–32% for pL2APrr.

Parameter sensitivity. Our method, pL2AP, is controlled by three
parameters. The size of the mask-based hash table, h, is dependent
on the dimensionality of the feature space. Choosing a small h
value for a dataset with large dimensionality will likely cause
many hash table collisions and slow down execution. Similarly,
the ζ parameter dictates the number of non-zeros that should
be included in each inverted index, which dynamically decides
the size of each cache tile. Choosing a small ζ value will lead to
many inverted indexes being created which may lead to slow-
downs due to repeated traversals of the query objects. On the other
hand, choosing a ζ value that is too large will diminish the cache
locality benefits of our tiling strategy. To ascertain the sensitivity
of pL2AP to these parameter choices, we tested different values of
each parameter while keeping the other two unchanged.

In the first experiment, we set ζ to 1M non-zeros and η to 25k
and varied h between 25 and 215. Results of these experiments over
our three datasets are shown on the left side of Fig. 14, as execution
times relative to the h = 213 parameter choice for each dataset. Our
method is not very sensitive to this parameter in general.

The middle section of Fig. 14 shows execution times for each
dataset, given h = 213 and ζ = 1M, for η between 1k and
50k, relative to the execution time for η = 25k. We found that
choosing the size of each bulk synchronous block, η, does not affect
performance in pL2AP, as long as the η value is not too small. We
found any values above 5k to be adequate for all datasets.

Finally, we tested the sensitivity of the ζ parameter, for values
between 0.25M and 3.0M, given η = 25k and h = 213, and
show times relative to the ζ = 1M execution in the right section
of Fig. 14. While the ζ choice will be dependent on the cache
configuration of the target system, our experiments showed that
pL2AP performed well for most datasets given ζ set to at least 1M
non-zeros.

6.1.2. Efficiency study
Effect of pruning choices on efficiency. Pruning is an effectivemech-
anism for reducing the number of similarity computations that
must be executed to solve the APSS problem. However, bounds
checking incurs additional costs which may not outweigh their

Table 5
Tested pL2AP pruning strategies.

Strategy Bounds checked Index update

base {idx, rs, ps, l2cg, l2cv, dps1} No
sz base+ {sz} No
dp base+ {dps2} No
szdp base+ {sz, dps2} No
szdpupd base+ {sz, dps2} Yes

benefit. Previous experiments in [3] proved the effectiveness of our
ℓ2-norm based bounds in each stage of the search framework, and
showed the sz and dps2 bounds had little effect in general over
the search efficiency. As a way to quantify this effect when exe-
cuting with multiple concurrent threads, we tested pL2AP in four
configuration scenarios, listed in Table 5. The ‘‘base’’ configuration
did not effect any pruning based on the sz or dps2 bounds. The
‘‘sz’’ and ‘‘dp’’ configurations enabled pruning based on the sz and
dps2 bounds, respectively, and the ‘‘szdp’’ configuration enabled
pruning based on both the sz and dps2 bounds. When checking
the sz bound, pAPT removes values associated with short vectors
from the beginning of inverted lists, which can potentially improve
efficiency. We added this capability to pL2AP and tested it in the
configuration ‘‘szdpupd’’, which enables all pruning strategies and
also performs index updates. Using the same input parameters for
all datasets (nt = 24, h = 213, η = 25k and ζ = 1M), we recorded
search execution times under each scenario.

Table 6 reports the results of our experiment. For each ϵ value,
times in all configuration scenarios were normalized by that of
the sz scenario, and we report the mean, standard deviation (std),
minimum and maximum of experiment results across all ϵ values.
The best performing results are highlighted in bold. The sz and dp
configurations showed little improvement over the base one, at
times leading to slower execution times. Checking the sz bound
was beneficial in most cases and had better performance than
checking the dps2 bound in general. The combined scenario szdp
did not perform better than the sz scenario on average. The results
in the remainder of this work assume the sz configuration.

In general, the index update strategy did not improve perfor-
mance. For some datasets, its execution was 1.22×–1.40× slower
than that of the szdp configuration, which effected the same prun-
ingwithout updating the index. Theworse efficiency is likely due to
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Fig. 15. Execution times of parallel methods and the best serial alternative, at varying threshold values ϵ.

Table 6
Performance of different pruning choice configurations in pL2AP.

Versus Mean Stdv Min Max

WW200

nbase 0.9933 0.0163 0.9719 1.0240
dp6 1.0034 0.0112 0.9948 1.0296
sz 1.0000 0.0000 1.0000 1.0000
szdp 1.0152 0.0119 1.0047 1.0369
szdpupd 1.0661 0.0481 1.0139 1.1586

WW500

nbase 0.9980 0.0109 0.9894 1.0234
dp6 1.0115 0.0178 0.9975 1.0540
sz 1.0000 0.0000 1.0000 1.0000
szdp 1.0249 0.0212 1.0097 1.0744
szdpupd 1.0442 0.0354 1.0145 1.1241

RCV1

nbase 1.0017 0.0051 0.9909 1.0086
dp6 1.0090 0.0061 1.0027 1.0215
sz 1.0000 0.0000 1.0000 1.0000
szdp 1.0104 0.0055 1.0029 1.0212
szdpupd 1.0240 0.0137 1.0108 1.0515

Execution times for each configuration were normalized by respective execution
times of the sz configuration. We present the mean, standard deviation (std),
minimum and maximum of experiment results across all ϵ values, given h = 213 ,
η = 25K and ζ = 1M input parameters. The best mean performance is highlighted
with bold.

loss of cache locality having to interrupt traversing inverted lists to
update their start pointer, as well as copying the list of pointers for
each thread, which in pL2AP occurs for each constructed inverted
index.

Comparison with serial methods. We compared the execution time
of all parallel methods, executed with 24 threads, with the best
serial execution time achieved by any of the serial algorithms.
Fig. 15 and Table 7 show the results of this experiment. In all
cases, pL2AP had the best execution time of all parallel methods,
achieving serial speedups of 12×–34× for our three datasets. Com-
pared to previously published parallel baselines, pL2AP executed
7×–238× faster. While pL2APrr uses the same type of pruning as
pL2AP, it traverses the entire inverted index during each query
and, as a result, cannot perform as well. Instead, by using tiling
and other optimizations that promote cache locality, pL2AP is
able to achieve very good speedup for datasets with long inverted
index lists. At high similarity thresholds, however, pL2AP is able
to prune candidates quickly and does not need to traverse many
candidate and query vector features, rendering our cache locality
optimizations less effective.

As expected, the pIdxJoin algorithm, which does not perform
any pruning, was very slow in comparison to the other paral-
lel methods. It performed very poorly, much slower even than

Table 7
ϵ-NNG construction efficiency comparison.

Method ϵ = 0.3 0.5 0.7 0.9

WW200

serial 24923.36 7942.84 2173.20 371.19
pIdxJoin 8746.13 8824.70 8795.95 8797.46
pAPT 9766.05 8195.22 6901.25 5857.95
pL2APrr 2329.08 686.88 222.51 47.65
pL2AP 801.98 267.44 85.86 25.29

WW500

serial 2782.03 979.62 363.78 84.16
pIdxJoin 1279.46 1149.38 1276.69 1273.83
pAPT 1056.98 1076.20 997.40 918.88
pL2APrr 127.49 52.28 24.95 11.24
pL2AP 97.41 37.93 16.74 6.85

RCV1

serial 6122.15 1877.35 410.25 49.82
pIdxJoin 985.89 976.48 972.89 973.98
pAPT 1338.23 916.89 627.58 433.42
pL2APrr 462.48 161.32 39.76 6.48
pL2AP 180.79 56.74 14.51 3.30

Values represent execution times, measured in seconds. All methods except serial
were executed with 24 threads. The serial values represent the best execution time
of any serial method, which in all cases was achieved by L2AP.

L2AP, the fastest serial method, potentially due to the high data
dimensionality. The pAPT method of Awekar and Samatova was
also slow in our experiments. It was not able to prune as many
candidates as pL2AP in general, and ended up performing many
more unnecessary similarity computations.

Strong scaling. Fig. 16 shows the strong scaling results from our
experiments. The amount of work pL2AP does when processing
each query increases as the threshold ϵ decreases. At high values
of ϵ, many of the objects never become candidates for a query due
to the idx and rs bounds in ourmethod, andpL2AP is able to quickly
dismiss candidates. For example, the size of the candidate listwhen
ϵ = 0.9 is 0.5%–4.0% of the candidate list size when ϵ = 0.3.
As a result, the cache locality improvements in pL2AP are not as
beneficial, resulting in less pronounced scaling at ϵ = 0.9. On the
other hand, pL2AP shows linear scaling at ϵ = 0.3.

It is interesting to note thatpAPT andpL2APrr both scale poorly
above twelve threads. This may be an indication of thrashing,
which is causing threads to waste time waiting for cache lines to
be fetched from main memory.

Load balance. In order to test the effectiveness of the dynamic
task partitioning approach in pL2AP, we measured the amount of
time each thread spent searching for neighbors. Fig. 17 shows the
percent load imbalance averaged over all ϵ values, in experiments
with consistent parameters (nt = 24, h = 213, η = 25k, and
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Fig. 16. Strong scaling of parallel methods at ϵ = 0.3 (top) and ϵ = 0.9 (bottom).

Fig. 17. Load imbalance in pL2AP.

ζ = 1M). Ourmethod shows little imbalance between the threads,
much less than 1% for our datasets.

6.2. PL2Knng

Our k-NNG construction experiment results are organized
along two directions. First, we present results from evaluating
the accuracy and efficiency of our parallel approximate method,
pL2Knng-a, compared against two state-of-the-art approximate
baselines. Second, we present results from evaluating our exact
method, pL2Knng. We measure serial efficiency improvements
compared to the original L2Knng algorithm, study our method’s
sensitivity to parameter choices, compare the efficiency and strong
scaling characteristics of pL2Knng with parallel and approximate
baselines, and study load imbalance in our method.

6.2.1. Approximate k-NNG construction
Effectiveness comparison. As a way to compare the effective-
ness of the approximate methods, we executed each for µ ∈

{1k, . . . , 10k}, whereµ is the size of the candidate list eachmethod
considers. Fig. 18 shows the results for two datasets, RCV1 and
WW500, and two k values, k ∈ {50, 100}. The best results in
each quadrant of the figure are those in the lower right corner,
representing high recall achieved in a short amount of time. We

Fig. 18. k-NNG construction effectiveness.

compared pL2Knng-a under two neighborhood update scenarios,
γ ∈ {0, 3}, denoted by the subscript in the method name. Ignoring
neighborhood enhancement in pL2Knng-a (γ = 0) leads to
moderate recall faster than any other method. Executing even a
few enhancement rounds (γ = 3) leads to almost perfect recall in
pL2Knng-a in less time than either pGF or NN-Descent .

Efficiency comparison. In a different experiment, we compared
minimum execution times required for each method to achieve
high recall (at least 95%), for k ranging from10 to 500.We executed
each method under a wide range of parameters to find its best
execution time for each k value. Fig. 19 shows the execution times
(left) and speedups over the best serial approximatemethod (right)
for each of the methods. Our method, pL2Knng-a, outperformed
the best baseline by 1.5×–21.7×. NN-Descent performed well on
the RCV1 dataset, but was not competitive for theWikipedia based
datasets, likely due to high average number of non-zeros present
in each vector in those datasets and the high number of similarity
comparisons themethod performs. NN-Descent was unable to find
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Fig. 19. Approximate k-NNG construction efficiency.

Table 8
Efficiency improvement in L2Knng.

Dataset Method k = 10 25 50 75 100

WW200 L2Knng-a 1.10 1.26 1.18 1.21 1.15
WW200 L2Knng 1.63 1.68 1.71 1.70 1.70
WW500 L2Knng-a 1.31 1.27 1.35 1.26 1.31
WW500 L2Knng 1.49 1.60 1.62 1.73 1.69
RCV1 L2Knng-a 1.09 1.15 1.18 1.23 1.39
RCV1 L2Knng 1.46 1.50 1.49 1.54 1.44

a k-NNG with high enough recall for k ∈ {10, 25} for the WW200
dataset, probably due to its random choice of initial neighbors.
Given its heuristic choice for initial neighbors, pGF performedwell
for small k values, but its execution time quickly increased with k
due to the iterative local joins that the method performs.

6.2.2. Exact k-NNG construction
Serial improvement comparison. In order to gauge the efficiency
improvements to our method that we described in Section 3.2,
we compared the serial execution of our updated L2Knng
variants against the original ones described in [4], for k ∈

{10, 25, 50, 75, 100}. We executed all methods with γ = 1 and
tuned µ to achieve 95% recall for all approximate methods. Table 8
shows the results of this experiment, as speedup of the enhanced
L2Knng variants. Improvements over 1.5× are presented in bold.
While our updates lead to modest improvements for approximate
graph construction, they contribute to achieving 1.44×–1.73×
speedup in the case of the exact version of L2Knng.

Parameter sensitivity. Efficiency in the execution of our parallel
method can be affected by our two parameters, the block syn-
chronous query set size η and the inverted index block size ζ . To
gauge the effects of these parameters on our algorithm execution,
we tested pL2Knng on the RCV1 dataset in all combinations of k ∈

Table 9
Parameter sensitivity analysis in pL2Knng.

k = 10 k = 100 k = 500

η ζ cmp η ζ cmp η ζ cmp

10k 0.5M 0.98 10k 0.5M 0.99 10k 0.5M 1.15
10k 1M 1.03 10k 1M 1.02 10k 1M 1.18
10k 5M 1.60 10k 5M 1.43 10k 5M 1.42
10k 10M 1.80 10k 10M 1.54 10k 10M 1.49
25k 0.5M 0.95 25k 0.5M 0.98 25k 0.5M 1.14
25k 1M 1.00 25k 1M 1.00 25k 1M 1.00
25k 5M 1.57 25k 5M 1.41 25k 5M 1.41
25k 10M 1.77 25k 10M 1.51 25k 10M 1.49

{10, 100, 500}, η ∈ {10K , 25K }, and ζ ∈ {0.5M, 1M, 5M, 10M}.
For all experiments, we chose γ = 1, and µ = 2k. We present
the results of this experiment in Table 9, as slowdown values
compared to the η = 25K , ζ = 1M execution for each k value.
The difference in performance shown in the cmp column for each
k value is generally small, less than 1.5x slowdown in most cases,
showing that our method is not greatly affected by bad choices in
these parameters.

Efficiency comparison. Fig. 20 shows the efficiency comparison
between pL2Knng and our efficient exact baseline, pKIdxJoin.
The left side of the figure shows execution times for the meth-
ods, while the right side shows speedups of the methods over
the best serial method at each k value. Our method significantly
outperforms pKIdxJoin, especially for small k values. Table 10
shows the execution times for all exact and approximate methods,
where parameters for approximatemethodswere tuned to achieve
a minimum of 95% recall. Note that exact methods have 100%
recall. Our exact method, pL2Knng, is more efficient than both
approximate baselines for the Wikipedia datasets, and only 2.2x
slower for the highest k value in the RCV1 dataset. On the other
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Fig. 20. Exact k-NNG construction efficiency.

Fig. 21. Strong scaling of exact k-NNG construction methods.
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Table 10
k-NNG construction efficiency comparison.

Method k = 10 50 100 300 500

WW200

pKIdxJoin 14562.36 14614.19 14428.61 14632.32 15451.55
pL2Knng 1264.42 1999.10 2348.14 3120.61 3613.19
pGF 1291.51 2088.37 3043.09 10052.79 19528.90
NN-Descent N/A 23800.08 15711.01 12807.02 17054.50
pL2Knng-a 59.51 157.12 253.31 604.02 962.25

WW500

pKIdxJoin 1768.80 1669.78 1781.14 1793.87 1835.50
pL2Knng 199.34 318.33 387.88 528.91 604.73
pGF 217.58 337.73 470.03 1227.60 2538.85
NN-Descent 3727.96 1891.65 1645.84 1943.84 1934.60
pL2Knng-a 13.16 33.18 61.82 158.42 252.87

RCV1

pKIdxJoin 1766.15 1774.28 1768.21 1862.52 2078.30
pL2Knng 137.22 231.52 301.52 468.87 581.71
pGF 191.71 866.42 2211.11 5894.57 11145.61
NN-Descent 254.74 271.19 261.50 265.89 268.37
pL2Knng-a 25.59 29.20 46.63 121.54 183.62

hand, our approximate method, pL2Knng-a, greatly outperforms
both exact and approximate baselines.

Strong scaling. Fig. 21 shows the strong scaling characteristics of
the exact methods we compared, for k ∈ {10, 100}. Our method
scales linearly up to 16 threads, outperforming pKIdxJoin in all
experiments. While pKIdxJoin also uses cache tiling, it shows
decreasedperformance for highnumbers of threads. The individual
thread work unit in pKIdxJoin consists of finding the k-nearest
neighbors in an index block andmerging that list of neighborswith
best already found k-nearest neighbors. The strategy of maintain-
ing the k-nearest neighbors in heap data structures, combinedwith
the cooperative neighborhood update strategy in pL2Knng, shows
superior performance which is maintained even as the number of
threads in increased.

Load balance. As an alternate way to characterize the parallel
performance of pL2Knng, we measured the load imbalance in the
different sections of our method: initial graph construction (IG),
graph enhancement (GE), candidate generation (CG), and candi-
date verification (CV). Table 11 shows the time and percent of
imbalance in our experiments, for k ∈ {10, 100, 500}. Our method
spends themajority of its time in the filtering sections (CG and CV),
which display very good load balance in general, less than 1% on
average. The approximate construction of the graph shows slightly
worse imbalance in the IG stage, up to 12.71%. The IC stage of the
method accounted for 6%–24% of the overall execution time in our
experiments.

6.3. Discussion

The experiments in Section 6 show that both pL2AP and
pL2Knng greatly outperform state-of-the-art baselines and scale
linearly when increasing the number of processing units. For the
ϵ-NNG construction problem, the threshold ϵ plays a big role in
performance. For ϵ = 0.9, pL2AP was able to build the neigh-
borhood graph for the 804,414 documents in the RCV1 dataset in
3.30 s using 24 threads, compared to 433.42 s for the best parallel
alternative. The success of these methods is primarily due to the
aggressive pruning of the search space, eliminating the need to
compute similarities for many pairs of objects, and discontinuing
that computation for many others as soon as it is clear they will
not be nearest neighbors. The best filtering in pL2AP is based on
indexing a small subset of the object non-zeros, which in turn
allows ignoring many candidate objects that only have features in

commonwith the query in the non-indexed part of the vector. This
strategy works especially well for high similarity thresholds, but
looses some effectiveness as ϵ → 0, causing an increase in the
number of candidate objects. Most of those objects are eventually
pruned, yet some work must first be done to vet those candidates.
The k-NNG construction problem is actuallymore difficult from the
perspective of filtering. We have found that, even for small values
of k (e.g., 1 or 5), there are some objects whose most dissimilar
nearest neighbor has a very small similarity (< 0.01). In this
case, to ensure correctness, most of the object’s non-zeros will be
indexed and many dot-products will have to be computed for the
object due to the low filtering threshold.

7. Related work

Having been studied for over a decade, the APSS problem has
given rise to many serial solutions, some of which were described
in Section 3. In a previouswork [3], we gave an overviewof existing
methods and analyzed their pruning performance.

The size of data that need to be analyzed has increased
dramatically in recent years, from megabytes to gigabytes
(e.g., online shopping customer profiles) and terabytes (e.g., web
document collections, DNA sequencing data). Traditional NNGcon-
struction methods could not scale to sets of object this large.
Given the growing popularity of cloud computing, some of the
traditional NNS methods were ported to cloud programming
frameworks developed for dealing with big data (e.g., Hadoop,
Spark) [1,2,14,41,30,37,38,43,46]. Most of the solutions use the
MapReduce [19] framework and can be split into two categories.
Many rely on the framework’s built-in features to aggregate
(reduce) partial similarities of object pairs computed in map-
pers [10,18,24,32]. The computation efficiency can be greatly in-
creased by first generating an inverted index for the set of objects,
which can be done using one MapReduce task. The postings in
the inverted index lists can then be combined with features in the
object vectors or with other postings in the same list to generate
partial similarity scores.While somepruning strategies canbeused
to avoid generating some partial scores, thesemethods often suffer
from high communication costs which make then inefficient for
large datasets [2].

The second category ofMapReducemethods use amapper-only
scheme, with no reducers [1,2,43]. They partition the set of objects
into subsets (blocks) and use serial APSS methods to find pairwise
similarities of objects in block pairs. Certain block comparisons can
be eliminated by relying onblock-level filtering techniques, such as
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Table 11
Load imbalance in pL2Knng.

k Time (s) % imbalance

IG GE CG CV IG GE CG CV

RCV1

10 33.11 1.01 99.91 32.98 1.83 1.33 0.19 0.78
100 35.98 20.51 217.67 66.11 11.28 2.23 0.07 0.34
500 175.35 84.85 359.22 98.96 12.47 5.42 0.16 0.52

WW200

10 74.60 6.02 1176.66 125.56 0.73 0.30 0.12 0.60
100 158.57 144.79 1955.26 165.52 4.15 0.30 0.11 1.59
500 667.56 536.71 2711.16 194.48 12.71 0.98 0.14 1.67

WW500

10 11.96 2.15 175.49 10.46 0.21 0.09 0.14 1.06
100 39.87 35.81 301.42 12.91 2.71 0.11 0.22 1.70
500 171.55 142.41 422.11 18.82 9.41 0.49 0.15 1.57

computing the similarity of the objects made up of the maximum
values for features in the two blocks. When comparing two blocks,
Alabduljalil et al. proposed locally building a full inverted index
for one of the blocks and scanning through query objects in the
other block to compute their similarity. They found that filtering
candidates was detrimental to execution speed and suggested
removing this optimization, rendering their local search identical
to that performed in one tile by our naïve baseline, pIdxJoin.
Within this context, they examined distributed load balancing
strategies [43] and cache-conscious performance optimizations for
the local searches [1]. They provided a cost based analysis aimed at
finding sizes for comparison blocks that maximize cache locality.
Their analysis is based on a full inverted index and mean vector
and inverted list lengths, which can vary greatly in real datasets, as
evidenced by the high σ values in Table 4.

Existing shared memory cosine APSS solutions are limited to
the pAPT algorithmbyAwekar and Samatova, detailed in Section 4.
Jiang et al. [28] provided a parallel solution for the related problem
of string similarity joins with edit distance constraints.

There have been few k-NNG construction algorithms that are
designed to address cosine similarity. Park et al. [36] describe a
heuristic serial approximate method which prioritizes computing
similarities between objects with high weight features in com-
mon. In their shared memory parallel method NN-Descent , Dong
et al. [23] follow an iterative neighborhood improvement strat-
egy based on the intuition that similar objects may be found
among the neighbors of a query object’s neighbors. A number of
methods have been devised for the related problem of document
retrieval [12,21,22,39,42], yet our previous work [4] showed they
did not work well for the graph construction task.

8. Conclusions and future work

In this work, we presented pL2AP and pL2Knng, our shared
memory parallel solutions to the ϵ-NNG and k-NNG construction
problems. Our methods use several cache-tiling optimizations,
combined with fine-grained dynamically balanced parallel tasks,
to solve the problems up to two orders of magnitude faster than
state-of-the-art baselines. In the current work, we have focused on
tiles that fit in the last-level cache. It would be interesting to eval-
uate strategies for maximizing the reuse of the L1 and L2 caches
in similarity search. Additionally, while choosing a cache-tile size
for our methods is fairly straight-forward, we may investigate
designing cache-oblivious versions of themethods. Finally,weplan
to investigate distributed algorithms for efficiently constructing
cosine nearest neighbor graphs.
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