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Abstract

Background: The onset of antibiotics production in Streptomyces species is co-ordinated with differentiation
events. An understanding of the genetic circuits that regulate these coupled biological phenomena is essential to
discover and engineer the pharmacologically important natural products made by these species. The availability of
genomic tools and access to a large warehouse of transcriptome data for the model organism, Streptomyces
coelicolor, provides incentive to decipher the intricacies of the regulatory cascades and develop biologically
meaningful hypotheses.

Results: In this study, more than 500 samples of genome-wide temporal transcriptome data, comprising wild-type
and more than 25 regulatory gene mutants of Streptomyces coelicolor probed across multiple stress and medium
conditions, were investigated. Information based on transcript and functional similarity was used to update a
previously-predicted whole-genome operon map and further applied to predict transcriptional networks
constituting modules enriched in diverse functions such as secondary metabolism, and sigma factor. The predicted
network displays a scale-free architecture with a small-world property observed in many biological networks. The
networks were further investigated to identify functionally-relevant modules that exhibit functional coherence and
a consensus motif in the promoter elements indicative of DNA-binding elements.

Conclusions: Despite the enormous experimental as well as computational challenges, a systems approach for
integrating diverse genome-scale datasets to elucidate complex regulatory networks is beginning to emerge. We
present an integrated analysis of transcriptome data and genomic features to refine a whole-genome operon map
and to construct regulatory networks at the cistron level in Streptomyces coelicolor. The functionally-relevant
modules identified in this study pose as potential targets for further studies and verification.

Background
Streptomycetes are soil-living organisms with a complex
life cycle that includes formation of aerial mycelia and
spores. Members of this genus have large genomes and
the capability of producing multiple secondary metabo-
lites, many of which have uses as antibiotics, anti-tumor
agents, and immunosuppressants [1]. The genome of
Streptomyces coelicolor, the model organism for this
high G+C genus, contains 7825 genes. The genome con-
tains more than 20 secondary metabolite clusters and
965 genes encoding proteins predicted to have a regula-
tory role [2].

With more genes than lower eukaryotes and an unu-
sually high number of regulators, deciphering the regu-
latory network of Streptomyces coelicolor remains a
challenge. Regulation is a dynamic process, in which
overlapping signaling cascades integrate into complex
networks, linking diverse aspects of growth, morphology,
and secondary metabolite production. In addition, in the
case of bacteria, genes can be co-transcribed as polycis-
trons, and it is at this level of cistrons that regulation
occurs, rather than at the level of individual genes.
Single knock-out/disruption mutations have been

extensively used in this organism to try to decipher the
mechanisms regulating secondary metabolite produc-
tion and their link to morphological changes. The
study of these mutants has made multiple advances
over the years, including the characterization of the
regulators of gene clusters specific to synthesis of
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antibiotics. These approaches have also revealed that
cross-regulation among disparate pathways occur [3],
and is thus desirable to explore regulation at a genome
scale. Transcriptome profiles across a diverse set of
conditions can be used to systematically determine
regulatory interactions [4].
In this study we used functional similarity, conserva-

tion of gene order, intergenic distance, and gene expres-
sion similarity as features for refining our previously
published operon predictions [5]. Gene expression data
at the cistron level was then used to predict networks
centered on 692 regulatory cistrons.
Among the algorithms to reconstruct whole genome

regulatory networks, the information-theoretic
approaches have gained support in the bioinformatics
community. These approaches rely on the estimation of
mutual information (MI) from expression data between
pairs of genes, or cistrons, to estimate candidate interac-
tions. MI is a correlation measure that can detect non-
linear correlations that other measurements like Eucli-
dean distance or Pearson correlation cannot identify.
Among the state-of-the-art information-theoretic
approaches are relevance networks [6], ARACNE [7,8],
CLR [4], and MRNET [9]. Benchmark studies [10,11]
comparing the accuracy of the methods have not
resulted in a clear winner over all, as the performance
of the algorithms is affected by the type of network, and
the mutual information estimator, among others. In this
work we inferred whole-genome regulatory networks
with ARACNE [7]. ARACNE removes indirect interac-
tions by using the data process inequality (DPI), a prop-
erty of MI [8,12]. ARACNE has been used to identify
putative transcriptional targets of the cancer related
genes MYC and KLF6 [13], and to reconstruct breast,
colorectal, and glial normal and cancerous tissue gene
coexpression networks [14].

Methods
Microarray data compilation and processing
The transcriptome data used in this analysis was
obtained from in-house generated data and the public
repository databases Stanford Microarray Database,
Gene Expression Omnibus (GEO), and Array Express.
In addition to data used previously [5] for operon pre-
diction, 326 transcriptome data were used. The addi-
tional data consists of 105 hybridizations performed on
Affymetrix diS_div712a GeneChips [15]; 55 cDNA:
cDNA hybridizations [16-20]; and 166 cDNA:gDNA
hybridizations [21-24] and GEO [25] accession numbers
GSE21807, GSE21808, GSE21811, GSE22398, and
GSE22399. The data was divided into three datasets,
according to the platform used: dataset 1 for cDNA:
gDNA, dataset 2 for cDNA:cDNA, and dataset 3 for

Affymetrix chips. Eight transcriptome data (cDNA:
cDNA) were removed before further analysis as more
than 30% of the genes in those samples were flagged
absent.
Prior to analysis using ARACNE, data for genes with

low expression dynamics or with a large number of
absent flags was removed. It was desirable that the
expression data of a gene exhibit good expression
dynamics in at least one of the datasets. Thus, a criter-
ion was established that a gene must be flagged absent
in less than 20% of the samples and its expression data
must have a standard deviation greater than the 25%
percentile of the population. This criterion must be met
in at least one of the two datasets (dataset 1 or dataset
2). In addition, the expression data of the gene must
satisfy a minimum passing criterion in the other dataset
- flagged absent in less than 50% of the samples. Also, a
probeset corresponding to that gene must be present on
the Affymetrix diS_div712a GeneChip to ensure that
Affymetrix gene expression data for that gene was avail-
able. The following Boolean logical criterion was used
for gene selection:
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where,
a = Fraction of absent flags in dataset 1
b = Standard deviation in dataset 1 (25th percentile of

the standard deviations is 0.50)
c = Fraction of absent flags in dataset 2
d = Standard deviation in dataset 2 (25th percentile of

the standard deviations is 0.43)
e = Presence of a probeset for that gene on Affymetrix

diS_div712a GeneChip
In all, transcript profiles of 6225 genes, corresponding

to 4399 cistrons, were used. The k-nearest neighbor
method [26] was used to estimate any missing values, as
ARACNE requires a complete expression matrix. For
each of the three datasets the expression data for each
gene was z-standardized to an average of 0 and a stan-
dard deviation of 1.

Features used in operon prediction
Functional similarity was estimated based on the protein
classification scheme available at the Welcome Trust
Sanger Institute [27] and on Gene Ontology (GO)
terms. In the case of the protein classification scheme,
functional similarity was determined for adjacent genes
if both genes were assigned to one of the 140 protein
classes. A score of 1 was assigned when both genes
belonged to the same functional class and -1 when they
belonged to different classes.
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Functional similarity based on GO terms was based on
biological process and molecular function, two of the
three organizing principles of Gene Ontology, and
assessed with two metrics: the Czekanowski-Dice score
[28] and the information theoretic metric available in
the R package GoSim [29]. The Czekanowski-Dice score
was calculated using the formula:

Czekanowski Dice score=−
+
2c

a b
, (2)

where a and b are the number of GO terms associated
with each gene, and c is the number of GO terms com-
mon to both genes.
Conservation of gene order was estimated by the

number of bacterial genomes in which the orthologs of
a pair of adjacent genes are present in the same order.
The number of orthologs was obtained from OperonDB
[30,31] and it is included in additional file 1. Intergenic
distance was calculated from data downloaded from
StrepDB [32]. Pearson correlation (r), calculated
between pairs of adjacent genes, was used as gene
expression similarity measure.

Supervised classification for operon prediction
Supervised classification models for the prediction of
operons were obtained using SVMlight [33]. Classifiers
were assessed by a 10-fold cross-validation scheme.
Recall, false positive rate and area under receiver operat-
ing characteristic (ROC) curves were used to assess the
performance of classifiers as previously described [5].
Positive and negative classes were defined as known

operon pairs (KOP) and non-operon pairs (NOP),
respectively, as described previously [5]. The positive
training set consisted of 425 KOPs. Of these KOPs, 149
were used in our previous study [5]. An additional 266
gene pairs were experimentally verified to be co-tran-
scribed in the same study. Also, eleven pairs were iden-
tified from six recently reported operons: nikABCDE
[34], devAB [35], nrdABS and nrdRJ [36], znuACB [37],
and rpmG3-rpmJ2 [38]. This last pair, rpmG3-rpmJ2
had also been verified in our previous study [5]. The
negative training set consisted of 131 NOPs. Of these
NOPs, 119 gene pairs were retained from our previous
study comprising 122 NOPs. The three pairs that were
removed were verified to be co-transcribed in the pre-
vious report. Twelve additional NOPs were obtained
from the six recently reported operons mentioned
above. The list of positive and negative training sets is
given in additional file 2.

Transcriptional network prediction using ARACNE
Transcriptional networks were predicted on the whole
genome using ARACNE [7,8]. The input to ARACNE

consisted of a matrix containing the gene expression
data at the cistron level and a list of regulators. The
gene expression matrix consisted of 4399 rows, corre-
sponding to cistrons, and 524 columns, corresponding
to microarrays. A p-value of 1.0 × 10-9 was used as
threshold for mutual information. A DPI tolerance of
0.05 was used as criteria to remove possible indirect
interactions. Predicted networks were visualized in
Cytoscape [39] within ARACNE.

Network modules with functional enrichment and
consensus sequences
Fisher’s exact test was used to identify network modules
in which a significant fraction of genes are involved in
the same biological pathway or function, as defined by
the protein classification scheme [27] and GO terms.
Those network modules with a p-value less than 1.0 ×
10-4 were considered significantly enriched. The R pack-
age qvalue [40] was used to calculate the corresponding
q-values using the bootstrap option [41]. All network
modules reported as significantly enriched were signifi-
cant at an FDR = 0.01.
The upstream regions (300 bp) of the cistrons belong-

ing to the same network module were examined for the
presence of consensus sequences using MEME version
3.5.7 [42,43]. The zero order background Markov model
used in MEME (A: 0.153; C: 0.351; G: 0.347; and T:
0.149) was determined by calculating the fraction of
each base in the upstream region of all 5346 predicted
cistrons. To reduce the probability that the reported
motifs are not statistically significant, motifs were deter-
mined for the same sequences but after randomly shuf-
fling the sequence letters. To make this criterion
stricter, this was repeated five times. An E-valuethreshold
was set for each network module as the minimum of
five E-values determined when the upstream cistron
sequences were randomly shuffled. A consensus
sequence was considered present in a network if the E-
value was less than the E-valuethreshold. Consensus
sequence images were generated with WebLogo [44].

Results
Operon prediction refinement
Building upon the whole genome operon map developed
previously [5] we employed additional features for
operon prediction: functional similarity of adjacent
genes, and conservation of gene order. The training set
used in this work consisted of literature reported oper-
ons, and 266 experimentally verified pairs predicted
from our previous work. The positive training set thus
consisted of 425 known operon pairs (KOPs), while the
negative training set consisted of 131 non-operon pairs
(NOPs). The compiled transcriptome dataset comprised
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a total of 524 cell samples, substantially larger than the
206 samples used in the previous predictions.
Features for operon prediction
Genes which are part of an operon are often involved in
the same biological function or pathway. Functional
similarity was assessed for the positive and negative
training sets based on a protein classification scheme
available at the Welcome Trust Sanger Institute [27]
and on Gene Ontology (GO) terms. Functional similar-
ity assessment requires that both genes in a pair have a
category assigned, thus not all KOPs and NOPs could
be tested for functional similarity. Functional similarity
based on the protein classification scheme revealed that
a high percentage of KOPs (72%) corresponded to pairs
in which both genes belonged to the same protein class,
whereas for NOPs the percentage was low (10%). Func-
tional similarity based on GO was calculated using the
Czekanowski-Dice score (see Methods) and an informa-
tion theoretic metric available in the R package GoSim
[29]. A Czekanowski-Dice score greater than 0.6 was
calculated for 33% of the KOPs, but for none of the
NOPs. Based on the information theoretic metric, adja-
cent genes in 79% of the KOPs have functional similar-
ity greater than 0.6, while only 37% of the NOPs have a
similarity greater than 0.6. All these functional similarity
metrics indicate that adjacent genes in the same operon
have a high-likelihood of being involved in the same
biological function. Therefore, these similarity metrics
can be used for operon prediction.
Genes in the same operon are often conserved across

multiple genomes. Conservation of gene order has been
previously used for operon prediction in prokaryotes
[31]. The number of bacterial genomes in which the
orthologs of adjacent Streptomyces coelicolor genes are
present in the same order was thus used as a feature for
operon prediction. Also, KOPs have shorter intergenic
distance compared to NOPs, and therefore, this feature
was also used for operon predictions.
Genes which are part of an operon and are co-tran-

scribed have similar expression profiles. Pearson correla-
tion (r) was used as measure of gene expression
similarity between the transcript profiles of pairs of adja-
cent genes. A correlation r > 0.7 was observed for 35%
of the adjacent gene pairs in the KOPs. In contrast only
2% of the adjacent gene pairs in the NOPs had a corre-
lation r > 0.7. The sharp discrimination between the
two classes strongly indicates the importance of tran-
scriptome data for predicting operons.
Classifiers to differentiate KOPs and NOPs
Binary support vector machine (SVM) classifiers were
constructed for differentiating KOPs and NOPs using
the individual features described in the previous section.
A classifier combining all the features was also con-
structed. The performance of the constructed classifiers

was compared by using a 10-fold cross-validation
scheme and receiver operating characteristic (ROC)
curves (Figure 1). Table 1 shows a comparison of the
area under ROC curves (AUC) for all the classifiers. The
null hypothesis was tested by comparing the AUC of ten
ROC graphs for each classifier by one-tailed paired t-
test. The best single feature classifier is that based on
gene expression similarity with an AUC of 0.87, which
is better than the intergenic distance-based classifier (p-
value = 2.8 × 10-2, paired t-test). The radial SVM model
based on all the features, which has an AUC of 0.97,
outperforms all the classifiers based on single features,
including the gene expression similarity classifier (p-
value = 1.6 × 10-4, paired t-test).
Whole genome identification of transcription units
The operon status of same-strand pairs in the genome
was predicted using the SVM classifier based on all the
features. The SVM model assigns a score to each same-
strand gene pair. A positive score indicates that the
adjacent genes are predicted to be co-transcribed. Adja-
cent gene pairs with positive score were grouped into
operons. A total of 5346 transcription units were pre-
dicted (additional file 3). Among these, 1389 transcrip-
tion units are polycistronic, containing two or more
genes.

Whole genome regulatory network prediction using
ARACNE
Gene expression regulation occurs in prokaryotes at the
level of cistrons instead of individual genes. The pre-
dicted cistrons were used as the basis to infer regulatory
networks using ARACNE (Algorithm for the Recon-
struction of Accurate Cellular Networks) [7,8]. The
interactions predicted with ARACNE were of the type
“cistron A regulates target cistron B”. Cistrons contain-
ing at least one gene encoding a regulatory protein were
categorized as “cistron A”. The regulatory proteins
belong to families such as sigma factors, transcription
factors, DNA-binding proteins, two-component systems,
defined-family regulators, and repressors. ARACNE was
used to compare the expression of every combination of
two cistrons to identify the pairs with statistically signifi-
cant and high mutual information. ARACNE infers reg-
ulatory interactions when pairs exhibit a high degree of
expression dependency or correlation. Indirect interac-
tions are eliminated by using the data processing
inequality (DPI).
ARACNE predicts interactions based on a matrix of

expression values and a list of regulators. To generate
the matrix of expression values the profiles of all 7825
genes from the 524 transcriptome samples were exam-
ined and those with low dynamic expression profiles
were removed. In all, the expression profiles of 6225
genes, corresponding to 4399 cistrons, were used for
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network prediction. The expression values for cistrons
were obtained by averaging the expression values of
adjacent genes in the same predicted cistron over 524
transcriptome samples. Of the 4399 cistrons, 692 con-
tain at least one gene encoding a putative regulator.
These 692 cistrons constituted the input list of regula-
tors to ARACNE.
Using a p-value of 1.0 × 10-9 as the threshold for

mutual information (MI) and a data processing inequal-
ity (DPI) tolerance of 0.05, a total of 7170 interactions
between 3527 cistrons were identified by ARACNE. For
each of the 692 cistrons encoding one or more regula-
tory proteins, a “network module” was predicted. A net-
work module is comprised of cistrons predicted to be

transcriptionally controlled by the regulatory protein,
also referred to as the “hub” of the module. The com-
plete predicted network containing 692 interconnected
network modules is shown in Figure 2. Each node repre-
sents one cistron and edges between two nodes repre-
sent a potential interaction. The detailed resulting
matrix for the complete network is given on additional
file 4, in which the MI scores between interacting cis-
trons are given. The global connectivity properties of
the network can be described by a power-law relation-
ship given by p = 46.6 × k -2.71 where, p is the probabil-
ity that a regulatory node has k interactions. This is
indicative of a scale-free network structure. A small
fraction of the regulatory nodes are highly connected

Table 1 Comparison of the AUC of different classifiers.

No. Feature(s) Average AUC p-value Null hypothesis

I Functional similarity

a. Protein classification scheme-based 0.72

b. Czekanowski-Dice score 0.65

c. Information theoretic metric 0.65

II Conservation of gene order 0.68

III Intergenic distance 0.80

IV Gene expression similarity 0.87 2.8 × 10-2 AUCIV - AUCIII = 0

V All features 0.97 1.6 × 10-4 AUCV - AUCIV = 0

Figure 1 Comparison of different SVM classifiers by 10-fold cross-validation and ROC graphs. False positive rate is the percentage of
NOPs misclassified as operon pairs. Recall is the percentage of KOPs correctly classified as operon pairs. Error bars indicate ± 1 standard
deviation (n = 10).
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Figure 2 Predicted transcriptional regulatory network for S. coelicolor. Each node corresponds to a cistron and every edge represents a
regulatory interaction between two nodes. The entire network comprises 3527 nodes and 7170 edges.
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and they account for a large number of interactions.
Each of the top four hubs (SCO0588, SCO3063,
SCO3986, and SCO5454-SCO5455) interacts with more
than 50 cistrons. Interestingly, three (SCO0588,
SCO3986, and SCO5454-SCO5455) of these four hubs
encode two-component systems that regulate gene
expression by sensing environmental cues.
This result is highly encouraging, as the mode of

action of two-component systems involves phosphoryla-
tion and not only interactions at transcript level. Never-
theless some interactions can be inferred from transcript
levels. For two-component systems such interaction
could be the effect of autoregulation, as has been

reported in Streptomyces (AbsA [45]) and other organ-
isms (TrcRS [46], SenX3-RegX3 [47], PrrAB [48]).

Supporting evidence for predicted network modules
Network modules containing known edges
The predicted interactions include known interactions
that have been reported in previous studies, giving cre-
dence to this prediction. Among the known interactions
retrieved are those between cdaR [49,50], actII-ORF4
[51] and their corresponding putative clusters (CDA and
actinorhodin, respectively). The multilevel regulatory
mechanism involving RedZ activating redD [52], in turn
activating the RED biosynthetic cluster was also

Figure 3 Some network modules with known edges. a) cdaR and the CDA cluster; b) actII-ORF4 and the ACT cluster; c) redD and redZ, and
redZ and the RED cluster. Green edge lines indicate known interactions. Node shapes and colors are as indicated in Figure 2.
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retrieved in our results. The network modules contain-
ing these interactions are shown in Figure 3. Known
interactions involving two-component systems were also
predicted, for example the two-component system
AbsA1-AbsA2 acting on the CDA cluster [53], and
VanRS acting on vanKHAX [54]. Another known inter-
action retrieved in our predictions is that between ramR
and ramCSAB [55], which are required for production
of aerial hyphae. The network modules containing these
interactions are shown in Figure 4.
Identification of consensus sequences
Operons which are part of the same regulon (i.e., oper-
ons activated or repressed by a common regulatory pro-
tein), often have a consensus sequence in their
upstream region. Consensus sequences have been used
not only for regulon prediction, but for operon predic-
tion [56]. For each network module, the upstream
regions (300 bp) of the cistrons in that module were

examined for the presence of consensus sequences
using MEME [42,43]. Consensus sequences in 414 net-
work modules were identified. In 84 of those network
modules, the consensus sequence appeared in the
upstream region of all the network module elements.
Additional file 5 lists the consensus sequences found in
each network module.
Network modules containing known consensus sequences
Several previous reports on Streptomyces coelicolor have
identified the upstream consensus binding site of regula-
tory proteins. The consensus sequences discovered in
this study were compared with previously reported bind-
ing sites. Overlaps between discovered consensus
sequences and previously reported binding sites
strengthen the evidence for the validity of our predicted
network modules. Some of the commonalities between
the sequences discovered in this study and those pre-
viously reported, are presented next. We also report the

Figure 4 Additional network modules with known edges. a) The two-component system (TCS) operon absA1A2 and the CDA cluster; b) The
TCS operon vanRS and the vancomycin resistance operon vanKHAX; c) ramR and ramCSAB. Green edge lines indicate known interactions. Node
shapes and colors are as indicated in Figure 2.
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presence of these consensus sequences in additional net-
work module members.
An ARG box has been reported in the upstream

region of the Streptomyces clavuligerus genes argG and
argC [57]. A consensus sequence was discovered in the
upstream region of some elements of network module
151, centered on argRDBJC. The consensus sequence
was identified not only on argG and argC, but also on
argH and SCO1086. The previously reported ARG box
is shown aligned with the consensus sequence found for
network module 151(also shown) in Figure 5.
An ScbR binding motif has been reported in the inter-

genic region of scbA-scbR, and the upstream region of
kasO [58]. The reconstructed network module 544 cen-
tered on kasO contains eight interactions, including
interactions with scbA and scbR. A consensus sequence
was found in the upstream region of all nine elements
of this network module. The previously reported ScbR
binding consensus sequence is shown aligned with the
consensus sequence found for network module 544
(also shown) in Figure 6. Also in the figure are partial
gene expression profiles for the network module mem-
bers along 100 microarray samples (number of microar-
rays limited for plotting purposes only). The strong
correlation between the regulatory hub (kasO) and the
eight module elements is evident.

Additional commonalities between consensus
sequences in other network modules and previously
reported motifs were found. For example, the sigU-
dependent promoter sequence TGA[AG]C[AG][N16-17]
CGTA [59] is similar to the consensus sequence identi-
fied in the sigU-centered network module 240. An over-
lap was also detected for CIRCE (Controlling Inverted
Repeat of Chaperone Expression) [60], known to be pre-
sent in the upstream region of groEL2, and the consen-
sus sequence discovered in all the upstream regions of
the groEL2 containing network module 239. These net-
work modules and the discovered consensus sequence
aligned to previously reported motifs are shown in
Figure 7.
Identification of biologically enriched network modules
A functional module is a group of components and their
interactions that can be attributed a specific biological
function [61]. We investigated which network modules
represented functionally coherent modules. Fisher’s
exact test was used to identify the network modules in
which a significantly larger number of members were
associated with a protein class or a GO term than
would be associated by chance. The protein classifica-
tion used was that at the Welcome Trust Sanger Insti-
tute [27]. At a p-value threshold of 1.0 × 10-4, 146
network modules were enriched in 33 different protein

Figure 5 Arginine related network module. Network module 151 centered on argRDBJC. The discovered consensus sequence (top) is shown
aligned to the previously described ARG box (bottom). Node shapes and colors are as indicated in Figure 2.
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classes. Twenty-five network modules were enriched in
the secondary metabolism protein class. Additionally, 16
network modules were enriched in the polyketide
synthase protein class. For the classification using GO
terms, at a p-value threshold of 1.0 × 10-4, 115 network
modules were enriched in 67 GO terms. The term that
appeared as enriched in the most number of network
modules (13) was NADH dehydrogenase (ubiquinone)
activity. The complete list of 188 unique enriched net-
work modules can be found in additional file 6.

Functionally coherent network modules including a
consensus sequence
Functionally coherent network modules that also con-
tain a consensus sequence are highly probable to indi-
cate true interactions. Thus, in the above functionally
coherent modules, those containing a consensus
sequence were identified. A total of 20 network modules
contain a consensus sequence in the upstream region of
all of its members and present biological enrichment
(additional file 7). Of those network modules, 8 were

Figure 6 TIPK related network module. a) Network module 544 centered on kasO. The discovered consensus sequence (top) is shown aligned
to the previously described ScbR binding motif (bottom). b) Partial expression profile along 100 microarrays for the 9 cistrons belonging to
network 544 (Number of microarrays limited for plotting purposes). Green edge lines indicate known interactions. Node shapes and colors are as
indicated in Figure 2.
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identified as enriched in both a protein class and a GO
term (Table 2).
Among the network modules with a consensus sequence
in all of their members and biological enrichment in
both a protein class and a GO term are network mod-
ules 56, 49, and 431. Network module 56 (Figure 8a) is
the network module with the highest number of con-
nections (53). Network module 49 (Figure 8b) is cen-
tered on a putative MarR family transcriptional
regulator. A third of the 24 cistrons of network module
49 contain regulatory genes, including some that can
coordinate cellular responses to external signals (e. g.,
MarR regulator, two-component system, and extracyto-
plasmic function sigma factors). It is possible that net-
work module 49 is involved in responding to an
environmental change that is currently unknown. Net-
work module 431 (Figure 8c) is centered on a putative

deoR family transcriptional regulator. More than one
third of the 20 cistrons in network module 431 include
regulatory genes, like the morphology-related bldN. This
network includes conservon cvnABCDE9, a probable
membrane-associated complex which may connect to
the bld cascade [62]. Network module 431 could thus
be involved in detecting nutritional limitation and the
transition from substrate to aerial mycelia. Other net-
work modules that present a consensus sequence in all
their members and enrichment in a protein class and a
Gene Ontology term appear in additional file 8.

Discussion
In this study, we integrate large scale transcriptome data
with genomic features to predict operons in the antibio-
tic producer Streptomyces coelicolor. The transcriptome
data, at the cistron level, was then used to infer the

Figure 7 Additional network modules with known consensus sequences. a) Network module 240 centered on sigU. The discovered
consensus sequence (top) is shown aligned to the previously described sigU binding motif (bottom); b) Network module 239. The discovered
consensus sequence (top) is shown aligned to CIRCE (middle) and the upstream region of groeL2 (bottom). Green edge lines indicate known
interactions. Node shapes and colors are as indicated in Figure 2.
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whole genome regulatory network of this organism. The
network modules, centered on cistrons containing genes
encoding regulatory proteins, contain potential interac-
tions between genes encoding regulatory proteins and
their targets. Some of the interactions in the network
modules correspond to experimentally known interac-
tions. In addition, the network modules were analyzed
for functional enrichment and the presence of consensus
sequences. Some of the consensus sequences overlap
previously described binding sequences and motifs.

Improved operon prediction by using an expanded
transcriptome set
The inclusion of additional predictive features and the
expansion of the training set and the transcriptome
dataset resulted in an improvement in the operon pre-
dictability of the classifiers developed in this work. The
performance of the classifier based on gene expression
similarity, as determined by area under ROC graph,
improved from 0.81 in the previous work to 0.87 in this
study. Even though the classifiers based on functional
similarity performed poorly, most likely due to the lack
of GO term assignment for many genes, they contribu-
ted to improve the performance of the classifier includ-
ing all features. The area under ROC graph increased
from 0.91 in the previous work to 0.97 in this study.
Comparison of our current operon predictions to our
previous predictions indicated a good agreement
between the two sets. Of the 4965 same strand pairs,
4439 (89.4%) retained the same prediction. Of the 526

differences, 422 correspond to adjacent genes predicted
to be co-transcribed in the current prediction, but not
in the previous one. Only 104 differences corresponded
to adjacent genes not predicted as co-transcribed in the
current work and predicted as co-transcribed in the pre-
vious work. Most of these pairs had a low expression
correlation in the expanded dataset.
The training set for the current predictions consisted of

425 KOPs and 131 NOPs. The KOPs consist of litera-
ture-reported operons as well as those experimentally
verified in our previous study [5]. Thus, the training set
contains more than three-fold higher KOPs compared to
NOPs creating the possibility of an imbalance between
the positive and the negative training sets in the operon
model. However, as noted above, with an 89.4% overlap,
there is a high degree of consistency between the predic-
tion of the previously-reported model and the current
predictions. The previous predictions employed a more
balanced training set (149 KOPs and 122 NOPs) and the
prediction results were experimentally verified. Thus, the
consistency between the two predictive models gives cre-
dence to the results of the current predictions.

Reverse engineering transcriptional network prediction
An advantage of the algorithm employed in this study
(ARACNE) is that unlike clustering algorithms (such as
k-means, or self-organizing maps) where cistrons or
genes are assigned to mutually exclusive groups, a cis-
tron can participate in multiple network modules, thus
linking them and allowing a cistron to engage in

Table 2 Network modules enriched and with consensus sequences

Network Regulator Protein class enriched GO terms enriched

20 SCO0233 Secondary metabolism ATPase activity, coupled to transmembrane movement of substances

45 SCO0453 Transport/binding proteins Hydrolase activity, hydrolyzing O-glycosyl compounds

Transporter activity

Transport

49 SCO0487 Sigma factor DNA binding

Transcription initiation

Sigma factor activity

56 SCO0588 Anaerobic respiration Electron transporter activity

Electron transport Mitochondrial electron transport, NADH to ubiquinone

Fatty acid and phosphatidic acid biosynthesis NADH dehydrogenase (ubiquinone) activity

Nitrate reductase activity

Nitrate reductase complex

431 SCO4920 Sigma factor Transcription initiation

Sigma factor activity

544 SCO6280 Secondary metabolism Ligase activity

Cofactor binding

636 SCO7325 Adaptations, atypical conditions Structural molecule activity

691 SCO7808 Cobalamin Methyltransferase activity

Biosynthetic process
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different biological functions. ARACNE identified a
Streptomyces coelicolor transcriptional network with
scale-free connectivity distribution. Scale-free architec-
ture has been noted in other networks derived from
transcriptional interactions [7], metabolic reactions [63],
and protein-protein interactions [64].

Additional considerations for regulatory predictions
An implicit assumption of most reverse engineering
approaches based on microarray data is that all the

network components are fully observed. However gene
interactions are not static and additional layers of gene
regulation exist. Although on a global level, mRNA
abundance correlates with the protein levels of the cor-
responding genes, discrepancies between mRNA and
protein profiles have been noted for several genes in
Streptomyces coelicolor [65]. Moreover, due to post-
translational modifications (e.g., phosphorylation of
two-component systems), the active protein levels can-
not be reliably estimated from transcript levels. These

Figure 8 Network modules enriched and with a consensus sequence in all their members. Network modules are enriched in both a
protein class and a GO term. a) Network module 56 centered on SCO0588, b) Network module 49 centered on SCO0487, c) Network module
431 centered on SCO4920. Node shapes and colors are as indicated in Figure 2.
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uncertainties introduce hidden variables which are not
observed in transcriptomic studies. Due to this limita-
tion of partial observability, it may be impossible to
identify all the direct interactions and eliminate those
interactions that arise due to indirect statistical depen-
dencies [66]. It is conceivable that many of these regula-
tory predictions can be substantiated and improved by
combining gene expression data with other genomic
data sources such as functional annotation, associations
discovered by text-mining biomedical literature, and
protein-protein interactions. In addition, approaches
that detect dependencies between genes at different
time delays are starting to emerge, see for example [67].

Combination of network modules with annotation and
consensus sequence presence
A vast majority of the 7170 interactions predicted in this
study are novel and not yet experimentally verified.
Because the network prediction was based only on tran-
scriptome data at the cistron level, other interaction
types involving proteins and even protein modifications
would most likely not be captured with this methodol-
ogy. It is encouraging though that known protein-DNA
interactions were obtained in several network modules.
Techniques such as EMSA, ChIP-chip and even ChIP-
Seq can be used to experimentally verify these predic-
tions. However, genome-scale experimental data for pro-
tein-DNA interactions in Streptomyces coelicolor is at
the moment almost non existing. Prioritization of these
predicted inferences will undoubtedly assist any future
attempts to further analyze or verify these interactions.
In this study a total of twenty network modules (addi-
tional file 7) presented functional enrichment and the
presence of a consensus sequence in all of its members.
These modules represent promising candidates for
further analysis and experimental verification.

Network module overlap with coherent clusters from an
independent study
In a recent study by Nieselt et al. [68] the metabolic
switch of Streptomyces coelicolor was studied by cluster-
ing of temporal transcriptome profiles, which resulted in
several biologically coherent clusters, dominated by a few
large operons. The eight clusters discussed in that study
were compared to our predicted network modules and a
considerable overlap was identified in all of them. This
overlap includes the clusters associated with synthesis
and regulation of the cryptic type I polyketide, and the
RED and ACT antibiotics, which have several genes in
common with the biologically-relevant networks identi-
fied in this study. Additionally, the ribosomal gene cluster
from Nieselt et al. includes 46 genes, 23 of which appear
in our network module 570, which is enriched in the pro-
tein class “Ribosomal proteins - synthesis, modification”

and the GO cellular component “Ribosome”. Similarly,
the nitrogen metabolism cluster from Nieselt et al.
includes five genes, three of which appear in our network
modules 213 and 488. The network module 213 is
enriched in the GO terms “nitrate reductase activity” and
“nitrate reductase complex” whereas the network module
488 is enriched in the GO term “nitrogen compound
metabolic process”, which indicates that both networks
may be involved in nitrogen metabolism. Some of the
genes up regulated by phosphate depletion also appear in
our network modules 370 and 371, which are centered
on phoU and phoRP, respectively. Thus, the overlaps
between the predicted network modules and the coher-
ent gene clusters from an independent study further indi-
cates the importance of combining global and temporal
gene expression datasets with physiological information
such as gene functions and consensus sequences.

Conclusions
Here, we implement a systematic approach for mining
large volumes of transcriptome data to predict the tran-
scription regulatory network of Streptomyces coelicolor.
The network comprises more than 7000 direct associa-
tions between putative transcription factors and more
than 3500 predicted cistrons in Streptomyces coelicolor.
The network displays a scale-free architecture with a
small-world property observed in several biological net-
works in bacteria as well as higher organisms. A sub-
stantial percentage of these interactions comprise
network modules with coherency of biological function.
Further attempts to integrate diverse genomic dataset
will seek to improve the sensitivity and specificity of
these network predictions. Such integrative efforts sub-
stantiated with experimental validation present a highly
promising systems approach for elucidating the regula-
tory determinants of secondary metabolism.

Additional material

Additional file 1: Conserved pairs. Column 1 and 2 contain the pair of
genes, column 3 the probability, and column 4 the number of genomes
in which the pair is conserved.

Additional file 2: Training set. Column 1 and 2 contain the pair of
genes, and column 3 its status as KOP or NOP.

Additional file 3: Operon predictions. Column 1 contains genes, and
column 2 contains the operon into which the gene was predicted.

Additional file 4: Network predictions. Rows represent network
elements, columns indicate network modules and the cistron containing
the regulatory gene. Numbers are MI values, higher MI values indicate
higher correlation.

Additional file 5: Summary of the consensus sequences found in
the networks. For each network the values E-valuethreshold and E-value
are given. The number of motifs detected and if applicable its consensus
sequence are given, together with the total number of elements in the
module and the number of elements in which the consensus sequence
was detected.
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Additional file 6: Enriched networks. Worksheet 1 contains the list of
network modules enriched according to the protein classification
scheme, and worksheet 2 those enriched according to GO terms. For
each of the enriched network modules the p-value, q-value and the
enriched class or term is given. All network modules are significant at an
FDR = 0.01.

Additional file 7: Details of the 20 network modules enriched in
both a protein class and a GO term. The number of cistrons in the
network module and the consensus sequence detected in all its
members is given.

Additional file 8: Additional network modules enriched and with
consensus sequence. Network modules 20, 45, 636, and 691 enriched
in a protein class and a GO term and containing a consensus sequence
in all of its members (see Table 2 and additional file 7).
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