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a b s t r a c t

Modern manufacturing facilities for bioproducts are highly automated with advanced process monitoring
and data archiving systems. The time dynamics of hundreds of process parameters and outcome variables
over a large number of production runs are archived in the data warehouse. This vast amount of data
is a vital resource to comprehend the complex characteristics of bioprocesses and enhance production
robustness. Cell culture process data from 108 ‘trains’ comprising production as well as inoculum bioreac-
tors from Genentech’s manufacturing facility were investigated. Each run constitutes over one-hundred
on-line and off-line temporal parameters. A kernel-based approach combined with a maximum margin-
based support vector regression algorithm was used to integrate all the process parameters and develop
predictive models for a key cell culture performance parameter. The model was also used to identify and
ioprocess
ell culture
anufacturing

rank process parameters according to their relevance in predicting process outcome. Evaluation of cell
culture stage-specific models indicates that production performance can be reliably predicted days prior
to harvest. Strong associations between several temporal parameters at various manufacturing stages and
final process outcome were uncovered. This model-based data mining represents an important step for-
ward in establishing a process data-driven knowledge discovery in bioprocesses. Implementation of this
methodology on the manufacturing floor can facilitate a real-time decision making process and thereby

f larg
improve the robustness o

. Introduction

In the past decade, we have witnessed an explosion of data
n almost every aspect of life. Increasingly such data are well
rganized and annotated in data warehouses affording the oppor-
unities for mining for knowledge discovery. In many industrial
ectors, including finance, retails and services, the data-driven
pproach has been widely used for discerning the trend of cus-
omer or market behavior (Usama and Ramasamy, 1996). Mining
ata warehouse has also attracted much attention in biotechnolog-
cal sector partly because of the rapid expansion of genomics and
ther -omics based data. Recent increase in biologics manufactur-
ng capacity also present an area of data mining that is yet to be
xplored.

∗ Corresponding author. Tel.: +1 61 2 626 7630; fax: +1 61 2 626 7246.
E-mail address: acre@cems.umn.edu (W.-S. Hu).

1 Present address: Genentech, Inc., 1 Antibody Way, Oceanside, CA 92056, United
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e scale bioprocesses.
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Over two dozen new biologics have been licensed for therapeu-
tic applications in the past few years (Aggarwal, 2009). This was
accompanied by an expansion of manufacturing facilities around
the world. These modern manufacturing facilities are highly auto-
mated in their operation and data acquisition. Hundreds of process
parameters are routinely acquired and archived electronically, not
only at the production scale, but also throughout cell expansion in
the inoculum ‘train’. Invariably fluctuations in process productivity
and product quality occur in those production facilities. Such fluc-
tuations or variations may exist in the same plant over time, or in
plants at different locations for the same product. Understanding
the root of such variations and enhancing process robustness will
have major economic implications for the product. Mining biopro-
cess data to identify parameters which may be related to process
fluctuations holds much potential for enhancing the productivity

and process consistency.

Several studies in the past have employed a variety of tech-
niques to explore bioprocess data. Principal component analysis
(PCA), partial least-squares (PLS) and unsupervised clustering have
been proposed to analyze and monitor bioprocesses (Bachinger

http://www.sciencedirect.com/science/journal/01681656
http://www.elsevier.com/locate/jbiotec
mailto:acre@cems.umn.edu
dx.doi.org/10.1016/j.jbiotec.2010.04.005
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t al., 2000a; Kamimura et al., 2000; Kirdar et al., 2007). A deci-
ion tree-based classification approach was proposed to identify
he process trends that best differentiate runs with high and low
roductivity (Bakshi and Stephanopoulos, 1994; Stephanopoulos et
l., 1997). Artificial neural network (ANN) is also a popularly used
ool to model the non-linear interactions in temporal process data
Bachinger et al., 2000b; Coleman and Block, 2006; Coleman et al.,
003; Glassey et al., 1994a,b; Huang et al., 2002; Vlassides et al.,
001).

Despite previous attempts, mining vast volumes of production-
cale process data and on-line implementation of such schemes
emain arduous. Bioprocess datasets are unique in their het-
rogeneity; the frequency of measurement varies widely among
n-line and off-line parameters. Also, the types of data include
oth discrete (e.g. valve settings as ON/OFF) and continuous val-
es (for a recent review, see (Charaniya et al., 2008)). In addition
o temporal measurements of viability, viable cell densities, con-
umption and production rates of key nutrients and metabolites, a
lethora of process-associated parameters are commonly recorded.
hese include not only temporal records of physical parameters,
uch as temperature, dissolved oxygen concentration, aeration rate
nd reactor mass, but also those involved in process control loops
or physical parameters, such as a battery of valves for gas flow,
ase addition and nutrient feeding. Additionally, the records of raw
aterials with respect to source, lots, quantity as well as the times-

amps for preparation and material addition are maintained. The
omplexities associated with the enormity and the unique charac-
eristics of bioprocess data present substantial challenges as well
s opportunities for process data mining.

In a recent report, we outlined a systematic procedure for ana-
yzing bioprocess data (Charaniya et al., 2008). Bioprocess datasets
ften require a preprocessing step involving transformation, nor-
alization, and computation of missing values. A dimensionality

eduction step is often used subsequently to identify a subset of
rocess features that are more informative for data mining. The
ata mining step involves application of descriptive (e.g., frequent
attern discovery, clustering) and predictive (e.g. classification,
egression) pattern recognition methods to discover significant
rends in process data. These models allow one to comprehend how
ifferent process parameters and their interactions affect process
utcome. The identified trends or models can be interpreted by
rocess experts to gain further insights for process improvement.

Support vector machines (SVM) are a class of predictive machine
earning algorithms motivated by the Vapnik–Chervonenkis theory
hat laid the foundations of the principle of structural risk mini-

ization (SRM) (Vapnik, 1998a,b). Originally formulated for binary
lassification, SVM models identify a linear decision boundary that
eparates objects (e.g. process runs) from the two distinct classes
ith maximum distance (called margin). Here, each object is char-

cterized by a set of features, (e.g. process features extracted from
he process data of a run). Also, non-linear SVM models can be
onstructed by using kernel transformation functions (Muller et
l., 2001). Due to their good generalizability (i.e., predicting the
lass/outcome of objects not used for model construction) and scal-
bility with respect to the dimensionality of the feature space, SVMs
ave gained immense popularity as a pattern classification tool in
everal data-intensive fields such as computational biology (Ben-
ur et al., 2008).

In this study, we analyzed a vast volume of on-line as well as off-
ine cell culture process data acquired during production runs at the
enentech’s recombinant protein manufacturing facility at Vacav-
lle, CA. Process data from 108 runs were scrutinized to investigate
he variation in process outcome and to identify the distinguishing
haracteristics of high productivity processes. After data prepro-
essing, we employed a kernel-based SVM learning technique to
stablish an adaptable data mining framework. This framework
Fig. 1. Histogram of the normalized pre-harvest titer of 108 production runs.

integrates off-line and on-line temporal process data to construct
support vector regression models that can predict process outcome
and identify critical parameters that shed insights on process pro-
ductivity.

2. Methods

2.1. Data preprocessing

The culture bioreactors from which the data were analyzed in
this study were located at Genentech’s Vacaville facility comprising
scales ranging from 20 L to 12,000 L. The recombinant mammalian
cells were expanded from the cell bank to the 20 L scale and then
step-wise scaled up at 80 L, 400 L, and 2000 L. A recombinant Chi-
nese Hamster ovary (CHO) cells producing immunoglobulin G were
cultivated for approximately 75 h in the bioreactors at each scale
before they were inoculated in the production scale (12,000 L)
bioreactors where they were cultured for approximately 11 days. In
this study, process data obtained from 108 runs was analyzed. Each
run comprises cell culture process data from 80 L, 400 L, 2000 L, and
12,000 L scale bioreactors.

For every run, the antibody concentration (called titer) was mea-
sured at the end of the cell culture process and normalized to an
average titer of 1.0. The normalized titer of the 108 runs distributes
over a range (Fig. 1).

2.1.1. On-line parameters
The manufacturing facility is equipped with automated con-

trol and data logging systems whereby acquired process data are
recorded and archived on-line electronically. Over 130 parameters
were acquired on-line at each of the three inoculum scales and the
production scale bioreactors. The on-line parameters include con-
trol parameters and control action parameters. The former category
includes parameters such as dissolved oxygen (DO), pH, and vessel
temperature that are controlled at specific levels (e.g., vessel tem-
perature at 37 ◦C), whereas the latter category includes parameters
such as controller responses, the sparge rates of air and oxygen to
control DO, and the rates of base addition and carbon dioxide sparge
to control pH. Other important parameters such as vessel volume
and overlay gas flow rates are also acquired on-line. The volumet-
ric oxygen uptake rate (OUR) is estimated approximately every 4 h,
whereas all other on-line parameters are acquired almost contin-

uously (once every few seconds) over the entire duration of the
run that lasts several days. In addition to these parameters whose
values are continuous, there are ‘discrete’ parameters such as the
state of different valves, which is often binary (OFF/ON state). These
valves control different ports for addition of inoculum, media, base,
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the cells were sustained in the 20 L seed bioreactor. In addition to
these parameters, different raw material lots of hydrolysate used
in the cell culture medium at the production scale were also exam-
ined.

Table 1
Summary of process parameters at different bioreactor scales.

Off-line parameters On-line parameters

Physical and state parameters Controlled parameters
Dissolved carbon dioxide Dissolved oxygen (primary probe)
Dissolved oxygen Dissolved oxygen (secondary probe)
pH (off-line) Vessel temperature

Chemical parameters pH (on-line)
Lactic acid concentration Jacket temperature
Glucose concentration Control action parameters
Sodium ion concentration Dissolved oxygen (DO) controller output
Ammonium ion concentration Air sparge rate
Osmolality Air sparge set point

Physiological parameters Total air sparged
Viable cell density Oxygen sparge rate
Viability Total oxygen sparged
Packed cell volume pH controller output
Integral of packed cell volumea Total base added

Other parameters CO2 sparge rate
Cell bank Total CO2 sparged
Cell ampoule Total gas sparged
Cell age Others
Hydrolysate material lota Oxygen uptake rate
ig. 2. Preprocessing of cell culture process data. (a) On-line parameters were prep
emporal profiles of carbon dioxide sparge rate (left panel) and DO controller outpu
preprocessed. (b) Off-line parameters were preprocessed using a linear interpolat
nd medium osmolality (right panel) from a 12,000 L fed-batch culture. (�) Measur

ntifoam, and gas sparging among others. At least 40 parameters
elated to states of different valves are recorded at each of the four
ioreactor scales.

On-line data were preprocessed using a moving window aver-
ge method. A time window of 100 min was selected. At every
ime point, a parameter value was approximated as the average
f all the measurements for the parameter within the time win-
ow. For instance, the processed value at time t is the average
f measurements at time t, t + 1, t + 2, . . ., t + 99 min. The raw and
he preprocessed temporal profiles of CO2 sparge rate and DO con-
roller output at the 12,000 L scale of one run are shown in Fig. 2a
s examples. The preprocessed profile delineates the temporal pat-
erns of these parameters without the disturbances at the local
imescales.

.1.2. Off-line parameters
A number of parameters related to nutrient consumption and

etabolite production are measured off-line by periodic with-
rawal of samples from the bioreactors (Table 1). The parameters

nclude physical and state parameters, chemical parameters, and
hysiological parameters. A total of 12 parameters at the produc-
ion scale and 11 parameters at each of the three inoculum scales
ere measured periodically. Due to the differences in sampling fre-

uencies of the off-line parameters, all off-line measurements were
reprocessed using a linear interpolation method. Fig. 2b shows the
emporal profiles of glucose concentration and medium osmolality
n the production bioreactor for one run. The aggregation of off-
ine and on-line data from the inoculum train and the production
ioreactor exceeds more than one million data points for a single
roduction run.
.1.3. Other parameters
Three parameters related to cell characteristics were also

elected for comparative analysis. These are cell bank, cell ampoule,
nd cell age. Different working cell banks (WCBs) were used dur-
ed using a moving window average method (see Section 2). The panels display the
ht panel) from a 12,000 L fed-batch culture. ( ) Measured, (
heme. The panels show the temporal profiles of glucose concentration (left panel)
) interpolated.

ing the course of the 108 runs. Each WCB comprises multiple cell
ampoules, each of which is thawed and undergoes multiple pas-
sages to initiate several process runs. Thus, each process run is
associated with a cell ampoule from a WCB. An additional parame-
ter is the cell age which is related to the time period during which
Reactor weight
Overlay flowrate
Exhaust valve pressure
Backpressure

a Only at 12,000 L scale.
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.2. Estimation of similarity between runs

A crucial aspect of our approach is to compare the ‘likeness’
f any two runs based on the process parameter profiles. In a
ecent report, we proposed a two-step method to compute the
imilarity between two runs (say run 1 and run 2) (Charaniya et
l., 2008). In the first step, individual parameters (e.g. osmolality
rofile, hydrolysate material lots, etc) from run 1 are compared
ith the corresponding parameters in run 2, and a similarity score

s computed for each parameter. In the second step, all individ-
al parameter-wise similarity scores are integrated to estimate the
verall similarity between the two runs.

.2.1. Similarity between runs for individual parameters
The temporal profile of a process parameter (p) was compared

etween any two runs (denoted by i and j) using the Euclidean
istance metric (dp

ij
).

p
ij

=
∥∥pi − pj

∥∥ =

√√√√ l∑
k=1

(pik − pjk)2, (1)

here pik corresponds to the measured value of the parameter at
ime point k in run i.

For n different runs, the parameter profiles (p1, p2, ..., pn) were
ompared in a pairwise manner. The resulting Euclidean distances
ere scaled between 0 and 5, where 0 corresponds to the highest

imilarity, and 5 corresponds to the lowest similarity between two
rofiles. The Euclidean distance metric (dp

ij
) was translated into a

imilarity metric (sp
ij
) using an exponential transformation; i.e.

p
ij

= exp(−dp
ij
). (2)

The similarity metric ranges between 0.01 (exp(−5)) for dissim-
lar profiles and 1.00 (exp(0)) for identical profiles. All the pairwise
stimates of the similarity of a parameter profile across different
uns comprise a similarity matrix for that parameter. The similarity
atrix is symmetric, and positive semidefinite (i.e., all the eigen-

alues of the matrix are non-negative), thus satisfying the Mercer’s
heorem. The similarity matrix is, therefore, a valid Mercer kernel.

Cell ampoule and cell bank used for different runs were com-
ared using a binary metric, i.e., the similarity score is 1 if the runs
sed the same cell source and 0 otherwise. Cell age between two
uns was compared by estimating the absolute value of the differ-
nce in age (in days) between the two runs. This difference, after
eing scaled between 0 and 5, was translated into a similarity met-
ic using an exponential transformation (Eq. (2)). Lastly, 12 different
ydrolysate material lots were used in the culture medium at the
roduction scale for the 108 runs. For each run, a 12-dimensional
ector was created where each dimension represents the fractional
mount of a particular lot used in that run. The runs were thereafter
ompared in a pairwise manner using the Pearson’s correlation
oefficient and the similarity values were scaled between 0 and
.

.2.2. Overall similarity between different runs
The likeness between two runs (i and j) was computed by a

eighted linear combination of the similarity between individual
arameters. For example, for three parameters (p, q, r) measured in
uns i and j, the overall similarity is estimated as:
ij = wpsp
ij

+ wqsq
ij

+ wrsr
ij, (3)

here wp, wq, wr are the weighting factors for parameters p, q, and
respectively.
hnology 147 (2010) 186–197 189

2.3. Estimation of parameter weight

A weight was assigned to every parameter by comparing the
similarity of that parameter profile between any two runs with
the difference in the outcome of these two runs. Final titer was
used as a measure of process outcome. For every parameter, all
possible combinations of two runs were compared. The difference
in their final titers was correlated to the similarity between the
temporal profiles of the parameter using the Spearman’s rank cor-
relation coefficient (rho). The weights for individual parameters
were obtained by scaling rho such that the sum of all the weights
is equal to one.

2.4. Estimation of parameter interdependency

All the pairwise similarity scores from the similarity matrix of
a parameter were re-arranged as a one-dimensional vector of sim-
ilarity scores. Thus, each parameter is represented by a similarity
vector that comprises the similarity scores between its profiles in all
possible pairwise combinations of runs. These similarity score vec-
tors for all parameters were pairwise compared using the absolute
value of the Pearson’s correlation coefficient. All the parameters
were clustered using a hierarchical clustering scheme in which the
inter-cluster similarity was calculated as the weighted average of
the Pearson’s correlation between all pairs of parameters from the
two clusters (weighted average linkage, or WPGMA). The result-
ing dendrograms were pruned at a Pearson’s correlation threshold
of 0.6 to obtain several clusters of parameters. For each multi-
parameter cluster, the parameter with the highest similarity to the
cluster centroid was selected to represent that cluster.

2.5. Supervised machine learning

2.5.1. Support vector regression (SVR)
Support vector regression implements the support vector algo-

rithm for estimating a regression function for the outcome variable
(denoted as y). A set of n training runs can be denoted as (xi, yi) ∀ i =
1, 2, ..., n, where xi ∈Rd is the space of all input parameters, and yi

is the outcome of the ith run. A support vector regression (SVR)
model seeks to identify a regression function f (x) = w · x + b that
minimizes the difference (i.e., the error) between the true process
outcome (yi) and the model-predicted outcome (f(xi)). A v-SVR algo-
rithm was employed to estimate the regression function (Scholkopf
et al., 2000). For each run (xi, yi), an error |yi − f (xi)| of up to ε is
considered acceptable. Differences exceeding ε are penalized by a
slack variable (�i or �′

i
) and an a priori chosen cost function (C). The

parameters (w,b) of the regression function are obtained by solving
a constrained optimization problem:

min
w,b

{
1
2

‖w‖2 + C

(
�ε + 1

n

n∑
i=1

(�i + �′
i)

)}
, (5)

subject to the following inequality constraints (∀i = 1, 2, ..., n)

(wxi + b) − yi ≤ ε + �i.
yi − (wxi + b) ≤ ε + �′

i
�i, �′

i
≥ 0 ; ε ≥ 0

(6)

The v-SVR algorithm seeks to minimize the error ε. The param-

eter v is a non-negative constant that determines the balance
between the complexity of the model and the extent of the error
ε. LIBSVM (Chang and Lin, 2001), an implementation of v-SVR in C,
was used for training and validation of the SVR models. The default
value of v = 0.5 was used.
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Fig. 3. Flow diagram of the proposed methodology for kn

.5.2. Model training and evaluation
v-SVR models were trained using a dataset of 108 runs (n = 108).

upervised learning can, however, result in overfitting of the model.
n overfitted model can successfully predict the final titer of the

raining runs, but the generalization error of the model is high
i.e.,its ability to predict the final titer of test runs, which were
ot used for model training, is poor). A 10-fold cross-validation
pproach was used to assess the generalizability of the model
Fig. 3). The training dataset was divided into ten groups. In each
teration, nine of the ten groups comprise the training set, and
arameter weights were evaluated based on the training set only.
he parameter weights and profile similarities were used to con-
truct an SVR model based on the training runs. The model was then
sed to predict the final titer of the runs in the 10th test group.

The above procedure was reiterated ten times. In each iteration,
different group was used for testing. Parameter weights were

stimated and an SVR model was constructed from the training
uns. Model performance was assessed by comparing the model-
redicted titers and the actual titers of the test runs using the
earson’s correlation coefficient and the root mean square error
RMSE). RMSE is a measure of the average error in predicting the
nal titer of a run:

MSE =

√√√√ n∑
i=1

(yi − f (xi))
2, (7)

here yi and f(xi) are the actual and the model-predicted titers of
un i, respectively.

. Results

.1. Selection and preprocessing of bioprocess data

The parameters acquired on-line have different levels of rel-
vance to the process outcome. They also vary in their richness

n information pertinent to process characteristics. A preliminary
urvey was performed using process data from 30 runs to identify
subset of on-line parameters for further analysis. This subset of
arameters consists of 21 on-line parameters at the 12,000 L scale,
nd 20 parameters at each of the three inoculum scales (80 L, 400 L
ge discovery in manufacturing cell culture process data.

and 2000 L). In order to reduce noise at local timescales and also
dampen the effect of the local discontinuities observed due to peri-
odic interventions, all the on-line parameters were preprocessed
using a moving window average method. Off-line parameters were
also preprocessed by linear interpolation (see Section 2).

The resulting preprocessed data comprises a total of 126 tempo-
ral parameters: 33 (21 on-line, 12 off-line) at the 12,000 L scale, and
31 (20 on-line, 11 off-line) parameters at each of the three inocu-
lum scales. The preprocessed parameter profiles were compared to
estimate the similarities and differences in their temporal patterns
across different runs. In addition to these temporal parameters,
three parameters related to cell source (cell bank, cell ampoule and
cell age) and the hydrolysate material lots used at the production
scale bioreactors were also compared across different runs.

3.2. Kernel transformation and comparison of process runs

3.2.1. Parameter profile-based comparison of process runs
A Euclidean distance metric was used for comparison of time-

dependent parameters. The Euclidean distance was converted to a
similarity score by an exponential kernel transformation (see Sec-
tion 2). This similarity comparison was repeated for all pairwise
combinations of runs. For example, the osmolality profile from the
12,000 L scale of every process run was compared with the osmo-
lality profiles at the 12,000 L scale of each of the other 107 runs in a
pair-wise manner. The results comprise a 108 × 108 kernel similar-
ity matrix for osmolality. Similarly, kernel similarity matrices were
generated for all the parameters at the four different bioreactor
scales.

In addition, a temporal alignment was performed for each off-
line parameter across all pairwise combinations of process runs.
Parameter profiles for a pair of runs were allowed to shift within a
window of ±10 h such that the Euclidean distance between them
is minimized. Kernel similarity matrices were re-calculated and
compared to the corresponding matrices obtained without any

time shift. An average Pearson’s correlation of 0.88 was observed
between the similarity matrices obtained before and after time
alignment indicating that there is no significant temporal shift
between the runs. Therefore, kernel similarity matrices obtained
without any time alignment were used for subsequent analysis.
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Fig. 4. A differential weighting scheme for process parameters. The kernel similarity matrices for four process parameters acquired at the 12,000 L scale are shown. The
parameters are (a) sodium ion concentration, (b) medium osmolality, (c) dissolved carbon dioxide (pCO2 ), (d) Dissolved oxygen (pO2 ). Each element (i,j) of a parameter kernel
matrix represents the similarity (sij) between the temporal profiles of that parameter between two runs (run i and run j). The similarity score ranges from 0.01 (blue) for
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issimilar profiles to 1 (red) for identical profiles. Note that the matrix is symmetri
rder of the normalized final titer—run 1 has the minimum titer and run 108 has
ncreasing titer difference between runs is observable as a red-to-blue gradient. The
or each of the four parameters. (For interpretation of the references to color in this

The integration of similarity matrices of different parameters
nvolves aggregation of those parameter-wise similarity scores into
n overall estimate of the likeness of two process runs. Here, we
dopted a scheme of weighted combination of these parameter-
ise similarity scores such that critical process parameters have

reater contribution to the overall similarity between two runs.

.2.2. Productivity-based approach for parameter weighting
The scheme for assigning the weights of different parameters to

etermine the similarity between a pair of runs can significantly
ffect the analysis. A simple, yet proficient approach was used to
ssign higher weights to the process parameters that correlate with
he outcome variable (i.e., product titer). This can be illustrated
ith an example of four process runs (runs 1, 2, 3, and 4) with

he normalized final product titers of 0.8, 0.9, 1.0, and 1.1, respec-
ively. The temporal profile of a parameter in run 1 is pair-wise
ompared with the parameter profiles in the other three runs. Con-
ider a case where all the three similarity scores are 0.9 (on a 0–1
cale). In this case, the parameter has a comparable profile across
ll the four runs. This indicates that the parameter does not provide
uch information for deciphering the differences in the outcome

f the four runs. In contrast, consider a case where the three sim-
larity scores (between runs 1–2, 1–3, and 1–4) are 0.9, 0.6, and
.4, respectively. Here, the increasing titer-difference between runs

–2, 1–3, and 1–4 correlates with the decreasing similarity between
he parameter profiles. The trend of the similarity scores for a given
arameter among different pairs of runs can be quantified using the
pearman’s rank correlation (rho), a non-linear measure for assess-
ng the correlation between two variables. In the above example,
sij = sji , and all diagonal values are 1, i.e., sii = 1. The runs are arranged in increasing
aximum titer. A correlation between decreasing parameter profile similarity and

er in parenthesis is the absolute value of the Spearman’s rank correlation coefficient
e legend, the reader is referred to the web version of the article.)

the rho between titer-differences (0.1, 0.2, and 0.3) and similarity
scores (0.9, 0.6, and 0.4) for the parameter is −1.0, indicating that
the parameter profile can discriminate between runs with different
titers.

For each parameter, the trend between the similarity score
(between every pair of runs) and the titer-difference (between the
two runs) was assessed by the rho metric across all pairs of runs.
Fig. 4 shows the similarity matrices for four process parameters
acquired at the 12,000 L scale. The 108 runs are arranged in an
increasing order of the final titer, such that run 1 has the lowest titer
and run 108 has the highest titer. Every element of a parameter’s
similarity matrix represents the similarity score of the temporal
profiles of that parameter between two runs. As one moves away
from the diagonal, the titer-difference between the runs increases.
For parameters such as sodium ion concentration and medium
osmolality, elements at farther distances from the diagonal also
exhibit lower similarity scores. Such a trend is not seen for dis-
solved oxygen (pO2 ) (Fig. 4). Thus, the rho metric, which quantifies
this trend, is a measure of the degree of importance of every param-
eter. We assigned weighting factors proportional to rho such that
parameters with high negative rho have greater weights.

3.2.3. Integration of all process parameters
The weighted sum of similarity scores of all parameters is taken
as the overall similarity between any two runs. The overall similar-
ity was estimated for every pair of runs to obtain a ‘fused’ kernel
matrix. Using the comparative information in this kernel matrix,
we constructed models to predict the final outcome of different
runs.
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Fig. 5. Evaluation of SVR model performance. Top panel: The process data from the
inoculum bioreactor scales (80 L, 400 L and 2000 L) and the production bioreactor
scale (12,000 L) was divided into eight datasets in order to analyze process data in a
stage-wise cumulative manner. The timescale of each dataset is shown in the process
timeline. For each dataset, a 10-fold cross-validation procedure was used to assess
the performance of the SVR models. Bottom panel: Root mean square error (ε) of the
SVR models constructed using (�). All parameters: A weighted combination of all
process parameters was used for SVR model construction; ( ) Top 10 parameters:
During each iteration of cross-validation, the top 10 parameters were selected from
the training dataset based on the parameter weighting factors (rho). SVR model was
constructed from the top 10 parameters and the performance was evaluated on the
test dataset; (�) Representative parameters: Hierarchical clustering was performed
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o compare parameters (based on their similarity matrices) to identify correlated
arameters (Fig. 7 and Section 2). The parameter closest to the cluster centroid was

dentified to represent each cluster of parameters. SVR models were constructed by
weighted combination of the representative parameters.

.3. Predictive data mining using support vector regression

.3.1. Process datasets
SVR was used to construct models for predicting process out-

ome, the final product titer. Several SVR models were formulated
o investigate the progression of the production trains by gradually
ncrementing the dimensionality of the process dataset (Fig. 5a, top
anel). Thus, the first dataset comprises 20 on-line and 11 off-line
rocess parameters from the 80 L inoculum bioreactors only. Addi-
ionally, the three cell source-related parameters were included in
his dataset. A fused kernel matrix was obtained by computing the
verall similarity for every pair of runs based on the first dataset
lone. Using this kernel matrix, an SVR model was constructed to
redict the final titer of the run. Note that the final titer was deter-
ined upon the completion of the 12,000 L run or approximately

7 days from the end of the 80 L run. Thus, SVR models based on
he first dataset employs data measured very early in the inoculum
rain to predict the final process outcome.

The second dataset combines process data from the 80 L and
00 L inoculum bioreactors and the third dataset cumulates data
rom all the three inoculum scales. Similarly, the subsequent four
atasets (datasets 4, 5, 6, and 7) incorporate process data up to
ay 3, day 5, day 7, and day 9 of the 12,000 L bioreactors, respec-
ively. Lastly, the eighth dataset integrates all the process data from
he four scales. This cumulative organization of process data allows
omparison of the predictability of the SVR models at various stages
f the production train. In addition, the stage-wise comparison is
dvantageous for identifying critical process parameters at each
roduction stage.
.3.2. SVR models for predicting process outcome
As described in Section 2, a 10-fold cross-validation scheme was

sed to evaluate and compare the SVR models constructed for all
he eight datasets described above. A two-step grid search with
hnology 147 (2010) 186–197

10-fold cross-validation was also performed to obtain the optimal
cost functions. A coarse grid comprising values of 10−6, 10−3, 0.01,
0.05, 0.1, 0.5, 1, 10, 100, and 106 was used in the first step, which
identified the optimal region between 0.1 and 1. A finer search
was subsequently performed in the region from 0.1 to 1 to obtain
the optimal value of the cost function as 0.1, which was used in
constructing all the SVR models.

Random predictors were also used to assess the significance of
the SVR models. Based on 10000 simulations of randomized titer
prediction, the Pearson’s correlation (between actual and predicted
titer) is expectedly zero and the root mean square error (RMSE) is
0.176. In contrast, the SVR models based solely on process data from
the 80 L inoculum bioreactors (dataset 1) has significantly high pre-
dictability with the Pearson’s correlation (r) and the RMSE (ε) of
0.619 and 0.093, respectively (Figs. 5 and 6). This indicates that,
more than two weeks before process completion, the final titer can
be predicted with noticeably better accuracy compared to a random
predictor. Incorporation of process data from the 400 L inoculum
bioreactors (dataset 2) results in a marginal increase in predictabil-
ity of the SVR models with the evaluation metrics, r and ε, of 0.624
and 0.093, respectively (Fig. 5). Similarly, inclusion of data from
the 2000 L inoculum bioreactors (dataset 3) did not result in any
improvement in predictability (r = 0.609, ε = 0.096).

A marked improvement in model predictability is observed
when process data from the first three days of the 12,000 L
production scale bioreactors is included (dataset 4). The evalu-
ation metrics, r and ε, improve to 0.734 and 0.085, respectively
(Figs. 5 and 6). This trend of increasing predictability is conspicu-
ous for datasets 5–8 where process data from additional days of
the 12,000 L bioreactors is added sequentially. Thus, by the 7th day
post-inoculation of the 12,000 L bioreactors (dataset 6), the final
titer can be predicted with very high accuracy (r = 0.909, ε = 0.055)
(Figs. 5 and 6). Lastly, the SVR model for dataset 7 has the best per-
formance (r = 0.952, ε = 0.038), evincing that the final titer can be
predicted very accurately by day 9 in the 12,000 L bioreactors.

The contribution of every process parameter in these SVR mod-
els is determined by a differential weighting scheme (described
earlier). However, regardless of the degree of significance, all the
process parameters contribute to model formulation, resulting in a
high dimensionality. The detrimental effects of this ‘curse of dimen-
sionality’ on data mining methods are well-known (Beyer et al.,
1999). To alleviate this effect, the differential weighting scheme
was used to reduce data dimensionality by pre-selecting a subset
of top-weighting process parameters. SVR models were thereafter
formulated using only this subset of parameters. For each of the
eight process datasets, the top 10 process parameters were selected
by the weighting scheme and SVR models were constructed by
combining the kernel similarity matrices of the selected parameters
only. Caution was exercised to avoid ‘selection bias’ by performing
the top 10 parameter selection only on the training runs (without
the inclusion of the test runs) (Ambroise and McLachlan, 2002). For
datasets 1–3, SVR models based on the top 10 parameters exhibit
a reduction in the RMSE (and an increase in the Pearson’s corre-
lation), indicating that outcome predictability is enhanced (Fig. 5).
For example, in dataset 2, which includes process data from the 80 L
and 400 L inoculum bioreactors, the RMSE is reduced by 9% from
0.093 for the SVR model with all parameters to 0.085 for the SVR
model with the top 10 parameters. Also, the Pearson’s correlation
between the actual titer and the model-predicted titer increased
from 0.624 to 0.693. However, for the subsequent datasets (4–8),
differential selection of the top 10 parameters results in no signifi-

cant change (datasets 6–8) or a decrease in predictability (datasets
4 and 5). Nonetheless, it is noteworthy that during the initial stages
of the run in the inoculum train, a gain in predictability can be
achieved by pruning the number of process parameters, thereby
reducing the dimensionality of the dataset.



S. Charaniya et al. / Journal of Biotechnology 147 (2010) 186–197 193

F n. (a) A
s etwe
p

3
p

h
p
b
a
c
p
p
r
a
d
r
p
t
o
o
w
r
p
o
F
c
c

i
u
p
c
p
f
m
1

ig. 6. SVR model performance at different bioreactor stages of the production trai
cale. (d) Up to day 9 at the 12,000 L scale. The Pearson’s correlation coefficient (r) b
anel.

.4. Dimensionality reduction using similarity matrix-based
arameter comparison

The consistent co-occurrence of several process parameters
ighly correlated with the final titer across different stages of the
roduction phase (12,000 L) suggested a possible interdependency
etween them. Several process parameters are likely to be mutu-
lly related. For example, an increase in lactate production is often
orrelated to increased glucose consumption. Using individual
arameter similarity matrices, the correlations between different
rocess parameters were examined. A hierarchical clustering algo-
ithm was used to group the correlated process parameters into
small number of clusters. Clustering was performed indepen-

ently for each of the eight datasets (see Section 2). The clustering
esult for all process parameters in dataset 7 (up to day 9 at the
roduction scale) is shown (Fig. 7). Osmolality, sodium ion concen-
ration, total base added, lactic acid concentration and pH controller
utput are grouped into one cluster, indicating that the profiles
f these parameters are correlated. Several parameters associated
ith different sparge rates, such as oxygen sparge rate, air sparge

ate, and total gas sparged, also form a cluster. The key features
rovided by the correlated parameters within a cluster can be
btained by choosing a representative parameter from that cluster.
or instance, total base added, which has the highest similarity to its
luster centroid, was chosen to represent all the parameters in that
luster.

Hierarchical clustering resulted in a smaller subset of relatively
ndependent process parameters. SVR models were constructed
sing these parameter subsets and their predictability was com-
ared with all-parameter models. For all datasets, SVR models

onstructed using parameter subsets exhibit performance com-
arable to the models with all parameters (Fig. 5). For example,
or dataset 7, the 92-parameter subset model has the evaluation

etrics, r and ε, as 0.946 and 0.041, respectively, compared to the
30-parmeter model (r = 0.952 and ε = 0.038). Thus, despite a 29%
t the 80 L scale. (b) Up to day 3 at the 12,000 L scale. (c) Up to day 7 at the 12,000 L
en the actual (normalized) titers and the model-predicted titers are shown in each

reduction in the number of parameters, the representative param-
eter subsets retain the essential process features resulting in SVR
models with high predictability.

3.5. Stage-specific identification of critical process parameters

3.5.1. Weight-based assessment of process parameters
The Spearman’s rank correlation (rho) used to assign the weight

is indicative of the importance of each parameter in distinguishing
between high and low titer runs. Recall that a parameter with a
negative rho (and therefore a higher weight) correlates with devi-
ations in process outcome. Among the 130 parameters, 97 (75%)
have a rho less than 0.1. Further, among these 97 parameters, more
than 69% have a rho less than 0.025, indicating negligible correla-
tion with the final titer. Thirty-three parameters have a rho greater
than 0.1, among which only ten have a strong correlation (rho > 0.5),
highlighting that less than 8% of all process parameters are strongly
correlated with the final titer.

The rho metric for process parameters at the 12,000 L scale
for datasets 4, 5, 6, 7, and 8 were examined. Only those param-
eters with rho > 0.1 in at least one of the five datasets are shown
(Fig. 8). A subset of parameters comprising reactor weight, on-line
pH, oxygen sparge rate, DO controller output, and viability exhibit
a strong increase in rho at day 9 (dataset 6) compared to the pre-
vious days (day 3, 5, and 7). Osmolality and reactor weight (i.e.,
load cell weight) profiles at the 12,000 L scale for all 108 runs are
shown in Fig. 9a. It is evident that during the first 160 h, the pro-
files for these two parameters are similar between the high and
low titer runs. A conspicuous difference between the two classes
(high and low runs) emerges after 160 h. For the runs with low

titer, there is a discernible increase in medium osmolality and
an increase in reactor weight which corresponds to the increas-
ing base and glucose addition for runs with low titer. Thus, the
model is successful in discerning the temporal effects of the process
parameters.
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ig. 7. Dendrogram obtained from hierarchical clustering with weighted average lin
cale. Parameters representing each cluster formed at a correlation cut-off value of

.5.2. Association between early stage process parameters and
rocess outcome

The parameters which are indicative of process outcome in the
arly stages of a process run can potentially be used as an early
arning system for abnormality. The concentrations of lactic acid

nd sodium ion, total base added, and pH controller output have
igh weighting factors at the early stages, i.e., day 3 (dataset 4) and
ay 5 (dataset 5) (Fig. 8). The profiles for lactic acid concentration
nd total base added in the first five days are shown in Fig. 9b. A
reater accumulation of lactic acid is observable in runs with low

iter, which correlates with the greater amount of base added as
pH control response. The early differences at the 12,000 L scale

etween high- and low-titer runs prompted us to investigate the
rocess data from the inoculum train to identify cues for the depar-

ig. 8. Relative importance of process parameters at five different stages (up to day
, day 5, day 7, day 9 and all days) of the production phase (12,000 L). The Spear-
an’s correlation coefficient (rho) for relatively important process parameters (with
negative rho greater than 0.1 in at least one stage) are shown. For each parameter,

ho is an average of the ten estimates during 10-fold model cross-validation (see Fig.
and Section 2).
WPGMA) of process parameters based on their similarity up to day 9 at the 12,000 L
e in bold.

tures in process outcome. The Spearman’s correlation coefficients
(rho) of process parameters at the 80 L, 400 L, and 2000 L scales were
examined. Unlike the observations at the 12,000 L scale, nearly 90%
of the parameters at each inoculum scale have rho less than 0.1,
indicating that these parameters are not strongly correlated to the
final titer. An exception is the lactic acid profile at the 2000 L and
400 L scales (Fig. 10a). The concentration of lactic acid is higher
in the runs with low final titer. The higher lactic acid concentra-
tions are especially noticeable for the five lowest titer runs. At the
80 L scale, viable cell density and viability also exhibit deviations
between high- and low-titer runs (Fig. 10b). These observations are
striking in that they suggest that the history of the inoculum may
play an important role in determining the final process outcome.

4. Discussion

Systematic analysis of large warehouses of manufacturing-scale
bioprocess data presents substantial challenges and opportunities
to increase process understanding. We describe a framework for
systematically interrogating large volumes of process data to iden-
tify the hidden characteristics that may be associated with process
outcome. A support vector algorithm was employed in this study
to construct predictive models for process outcome using parame-
ters measured and archived at the inoculum and production scale
bioreactors. Since productivity is a continuous value and not a
discrete or binary class, a regression method based on the sup-
port vector algorithm was implemented. Support vector machines
have been widely used for multivariate data mining due to their
strong mathematical foundations, high accuracy and scalability
on high-dimensional datasets (Ben-Hur et al., 2008). Further, the
kernel-based approach employed here for comparing process runs
is readily compatible with the optimization framework of support

vector machine. This approach can deal with a large number of
parameters without compromising their temporal dynamics. This
also allows combination of heterogeneous parameter types such as
on-line and off-line temporal parameter profiles, as well as single-
point parameters. The notion of constructing models by integrating
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ig. 9. Selected critical process parameters at different stages of the production scal
eight (right panel) are shown. (b) Process data up to day 5. The profiles for lactic a

f rho for each parameter is displayed in each panel. A red-to-blue gradient is used
ed; runs with higher titer are colored in blue). (For interpretation of the references

iverse data types has been used in several bioinformatics appli-

ations, such as predicting protein–protein interactions (Jansen et
l., 2003) and predicting gene functions (Troyanskaya et al., 2003).

In integrating the similarity matrices, it is important that each
rocess parameter is weighted according to its relative contribution

ig. 10. Critical process parameters measured at the inoculum scales (80 L, 400 L, and 20
00 L (right panel) scales are shown. (b) The profiles at the 80 L scale of viable cell dens
arameter is displayed in each panel. A red-to-blue gradient is used to label runs in asc
gure legend, the reader is referred to the web version of the article.)
00 L). (a) Process data for all days. The profiles of osmolality (left panel) and reactor
ncentration (left panel) and total base added (right panel) are shown. The negative
el runs in ascending order of the final titer (i.e., runs with low titer are colored in

lor in this figure legend, the reader is referred to the web version of the article.)

in distinguishing the process outcome. Using the Spearman’s cor-

relation coefficient, a weighting scheme was employed to assess
the outcome predictability of each process parameter. Since the
Spearman’s rank correlation (rho) reflects each parameter’s relative
contribution to process outcome, it is well-suited for determi-

00 L). (a) The profiles of lactic acid concentration at the 2000 L (left panel) and the
ity (left panel) and viability (right panel) are shown. The negative of rho for each
ending order of the final titer. (For interpretation of the references to color in this
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ation of critical process parameters whose atypical behavior is
ikely to influence process outcome. These critical parameters can
rovide additional criteria for evaluating the overall performance
f a process run in addition to the prescribed process outcome,
n our case, the end-point titer. In this study, process data was
rganized in a sequential manner, which allows us to determine
ritical parameters at different stages of a run. Prominent among
he parameters at the inoculum stage are lactate, viability, and
iable cell density, all of which have rho > 0.1 at the 400 L scale.
t the 12,000 L scale, lactic acid and base addition profiles as
arly as at day 3 are indicative of the final titer. Also, parame-
ers such as pH, osmolality, DO controller output, viability, and
eactor weight have high rho at late stages of the production biore-
ctor. Many of these critical parameters are mutually correlated as
dentified in this study. Dimensionality reduction was achieved by
bbreviating the correlated parameters by a single representative
arameter. Models constructed using a smaller subset of relatively

ndependent parameters resulted in high predictabilities, which
ere comparable to the all-parameter models. This further sug-

ests that the dominant correlations within process parameters can
e highlighted by a smaller subset of parameters. Among the cor-
elated parameters, lactic acid, sodium, osmolality, pH controller
utput and base addition profiles are significantly correlated at late
tages of production, highlighting that higher lactate production
nd consequently higher base consumption, osmolality and lower
iabilities are observed during the late stages of runs with lower
nal titer.

The adverse effects of lactic acid accumulation on viability
nd recombinant protein productivity of mammalian cells are
ell-known. Accumulation of higher levels of lactic acid is an

mpediment to achieving high cell densities, and therefore, high
roduct titers. Thus, lactic acid concentration being one of the
ritical factors is not surprising. What was unexpected was that
ifferences between the lactic acid profiles of high and low-titer
uns emerge at very early stages of a train of cultures in differ-
nt reactors. Employing process data of cell expansion stage in the
noculum train and the first three days of the final production stage,
ur model predicts process outcome with good accuracy (Fig. 5).
ven employing only inoculum train data, the outcome can be pre-
icted, albeit with lower accuracy. This finding strongly suggests
hat key events affecting process outcome occur before day 3 in the
roduction-scale bioreactor.

Critical process parameters identified in this study are corre-
ated to productivity. However, the underlying causes of these
orrelations are unclear. Different lactate levels at early stages of
ulture may be a result of differences in inoculated cells from inocu-
um train, or different culture conditions (i.e., parameter profiles)
t the early stage after inoculation. The former implies that the
istory of cells exerts an effect on metabolism which is reflected

n lactate production and eventually the productivity. The later
uggests that the profile of some parameter(s) causes metabolic
erturbations, resulting in higher lactate production. The causal
arameter may be, or may not be, one of those already measured. A
loser scrutiny of the early stage data may provide further clues on
he potential causes of the deviations in cell culture performance.
urthermore, incorporation of additional data, either by increas-
ng the number of process parameters examined for each run, or
ncreasing the total number of runs in the dataset can increase

odel predictability, especially at early stages of the run in the
noculum train. A preliminary study performed based on the on-
ine and off-line process data from a subset of 30 runs was unable

o predict cell culture performance at early stages of the inocu-
um train with good accuracy. However, for the same dataset of
0 runs, the prediction accuracy was high when data from all the
tages of the run (including inoculum train and production) was
ncluded.
hnology 147 (2010) 186–197

The potential parameters causing process outcome variations
should be experimentally verified. Carrying out such experiments
in manufacturing scale reactors is extremely costly, let alone exper-
imenting on the entire production train. Nevertheless the result of
this analysis can provide crucial information for further investiga-
tion.

5. Concluding remarks

Many life-saving therapeutics today are commercially produced
in state-of-the-art manufacturing facilities with automated control
systems for measuring and archiving a plethora of process param-
eters. The historical archives of these datasets present vast data
mining opportunities to unearth and better understand the hidden
correlations between process inputs and outputs such as product
quality and yields. This study describes a multivariate data mining
technique that combines more than one-hundred time-dependent
off-line, on-line, as well as single point parameters across different
production stages to predict a key process output—the run pro-
ductivity. Overall, this study demonstrates the power of mining
process data in revealing hidden correlations between process out-
come and process parameters. The generated insights will certainly
lead to hypotheses for further investigations and potentially lead
to intervention strategies to render the process more robust.
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