
Algorithms for Mining the Evolution of Conserved
Relational States in Dynamic Networks

Rezwan Ahmed, George Karypis
Department of Computer Science & Engineering

University of Minnesota
Minneapolis, MN 55455

Email: {ahmed,karypis}@cs.umn.edu

Abstract—Dynamic networks have recently being recognized
as a powerful abstraction to model and represent the temporal
changes and dynamic aspects of the data underlying many
complex systems. Significant insights regarding the stable rela-
tional patterns among the entities can be gained by analyzing
temporal evolution of the complex entity relations. This can help
identify the transitions from one conserved state to the next and
may provide evidence to the existence of external factors that
are responsible for changing the stable relational patterns in
these networks. This paper presents a new data mining method
that analyzes the time-persistent relations or states between
the entities of the dynamic networks and captures all maximal
non-redundant evolution paths of the stable relational states.
Experimental results based on multiple datasets from real world
applications show that the method is efficient and scalable.

Index Terms—Dynamic network; relational state; evolution;

I. INTRODUCTION

As the capacity to exchange and store information has
soared, so has the amount and diversity of available data.
To represent the relations between various entities in diverse
applications and to capture the temporal changes and dynamic
aspects of the underlying data, dynamic networks have been
used as generic model due to its flexibility and availability
of theoretical and applied tools for efficient analysis. Exam-
ples of some widely studied networks includes the friend-
networks of popular social networking sites like Facebook,
the Enron email network, co-authorship and citation networks,
and protein-protein interaction networks. Analysis of temporal
aspects of the entity relations in these networks can provide
significant insight about the conserved relational patterns and
their evolution over time.

Considerable effort has been made towards the development
of efficient methods to analyze and extract useful information
from static networks [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16]. On the other hand, the importance of dynamic
networks has been recognized only recently; thus, the set
of methods that are currently available for their analysis is
considerably less developed than for static networks. Never-
theless, in recent years a considerable body of research has
emerged on methods for finding patterns [17], clustering [18],
characterizing network evolution rules [19], detecting related
cliques [20], [21], and finding subgraph subsequences [22] in
dynamic networks. Although the existing techniques can detect
the frequent patterns in a dynamic network or track related

patterns over time, they are not designed to identify stable
relational patterns and do not focus on tracking the changes
of these conserved relational patterns over time.

Our contribution in this paper is two folds. Firstly, we
introduce a new class of patterns referred as the evolving
induced relational states that are designed to analyze the
time-persistent relations or states between the entities of the
dynamic networks. Secondly, we present an algorithm to
efficiently mine all maximal non-redundant evolution paths
of the stable relational states of a dynamic network. We
experimentally evaluate our algorithm using three real world
datasets. First, we evaluate the performance and scalabil-
ity of the algorithm on a large patent citation network by
varying different input parameters. Second, we investigate
some discovered evolving induced relational states from a
trade network, an email communication network, and a patent
citation network and provide a qualitative analysis of the
information captured in them.

II. DEFINITIONS AND NOTATION

A graph G = (V,E, L[E]) is composed of a set of nodes
V modeling the entities of the network, a set of edges E
modeling the relations between these entities, and a set of edge
labels L[E] modeling the type of the relations (|E| = |L[E]|).
The relations between entities can either have a direction
or not, leading to directed or undirected edges. An induced
subgraph G′ = (V ′, E′, L[E′]) of G = (V,E, L[E]) is a
graph such that V ′ ⊆ V , E′ ⊆ E and ∀(u, v) ∈ E such
that v ∈ V ′ and u ∈ V ′, (u, v) ∈ E′. For the rest of
the discussion, any references to an induced subgraph will
assume it is a connected induced subgraph. A dynamic network
N = 〈G1, G2, . . . , GT 〉 is modeled as a finite sequence of
graphs, where each Gt is a graph describing the state of the
system at a discrete time interval t. The term snapshot will be
used to refer to each of the graphs in the sequence. Snapshots
are assumed to contain the same set of nodes, which will
also be referred to as the nodes of N and denoted by V (N ).
When nodes appear or disappear over time, the set of nodes of
each snapshot is the union of all the nodes over all snapshots.
Also, the nodes across the different snapshots are numbered
consistently, so that the ith node of Gk (1 ≤ k ≤ T ) will
always correspond to the same ith node of N .
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Fig. 1. Examples of relational states.

Due to its dynamic nature, the edges in N can over time
appear, disappear, change label and/or direction. To capture the
sequence of snapshots for which an edge exists in a consistent
state, we define the span sequence of the edge as the sequence
of maximal-length time intervals in which an edge is present
in a consistent state. An edge (u, v) is in a consistent state over
a maximal time interval s :e if it is present in all snapshots
Gs, . . . , Ge with the same label and direction and it is different
in both Gs−1 and Ge+1 (assuming s > 1 and e < T ). The
span sequence of an edge will be described by a sequence of
time intervals of the form 〈s1 :e1, . . . , sl :el〉, where si ≤ ei

and ei ≤ si+1. In addition, we define the span sequence of
a vertex as the sequence of maximal-length time intervals in
which the vertex has at least one edge incident on it. The span
sequence of the vertex will be represented as a sequence of
time intervals in a similar fashion that of an edge.

A persistent dynamic network N φ is derived from a dy-
namic network N by removing all the edges from the snap-
shots of N that do not occur in a consistent state in at least
φ consecutive snapshots, where 1 ≤ φ ≤ T . It can be seen
that N φ can be derived from N by removing from the span
sequence of each edge all the intervals whose length is less
than φ.

An induced subgraph that involves the same set of vertices
and whose edges and their labels remain conserved across
a sequence of snapshots will be referred to as the induced
relational state (IRS). The IRS definition is illustrated in
Fig. 1. The three-vertex induced subgraph consisting of the
dark shaded nodes that are connected via the directed edges
corresponds to an induced relational state as it remains con-
served in the three consecutive snapshots. The key attribute
of an IRS is that the set of vertices and edges that compose
the induced subgraph must remain the same in the consecutive
snapshots. From this definition we see that an IRS corresponds
to a time-conserved pattern of relations among a fixed set of
entities (i.e., nodes) and as such can be thought as correspond-
ing to a stable relational pattern. An IRS Si will be denoted by
the tuple Si = (Vi, si :ei), where Vi is the set of vertices of the
induced subgraph that persists from snapshot Gsi to snapshot
Gei (si ≤ ei) and it does not persist in Gsi−1 and Gei+1

(assuming si > 1 and Ei < T ). We will refer to the time
interval si :ei as the span of Si, and to the set of consecutive
snapshots Gsi , . . . , Gei as its supporting set. By its definition,
the span of an IRS and the length of its supporting set are
maximal. Note that for the rest of the paper, any references to
subsequences of snapshots will be assumed to be consecutive.
The induced subgraph corresponding to an IRS Si will be
denoted as g(Si). A snapshot Gt supports an induced relational
state Si, if g(Si) is an induced subgraph of Gt.

III. EVOLVING INDUCED RELATIONAL STATE (EIRS)

An example of the type of evolving patterns in dynamic
networks that the work in this paper is designed to identify
is illustrated in Fig. 2. This figure shows a hypothetical
dynamic network consisting of 14 consecutive snapshots, each
modeling the annual relations among a set of entities. The
four consecutive snapshots for years 1990 through 1993 show
an induced relational state S1 that consists of nodes {a, b,
e, f}. This state was evolved to the induced relational state
S2 that occurs in years 1995–1999 that contains nodes {a, b,
d, e, h}. Finally, in years 2000–2003, the induced relational
state S2 was further evolved to the induced relational state S3

that contains the same set of nodes but has a different set of
relations. Note that even though the sets of nodes involved
in S1 and S2 are different, there is a high degree of overlap
between them. Moreover, the transition from S1 to S2 did not
happen in consecutive years, but there was a one year gap,
as the snapshot for 1994 does not contain either S1 or S2.
Such a sequence of induced relational states S1 ; S2 ; S3

represents an instance of what we refer to as an evolving
induced relational state (EIRS) and represents the types of
patterns that the work in this paper is designed to identify.

EIRSs identify entities whose relations transition through
a sequence of time-persistent relational patterns and as such
can provide evidence of the existence of external factors
responsible for these relational changes. For example, consider
a dynamic network that captures the trading patterns between
a set of entities. The nodes in this trading network model the
trading entities (e.g., countries, states, businesses, individuals)
and the directed edges model the transfer of goods and their
types from one entity to another. An EIRS in this trading
network can potentially identify how the trading patterns
change over time (e.g., addition/deletion of edges or inclusion
of new trading partners) signalling the existence of significant
economic, political, and environmental factors that drive such
changes (see §VI-C for some examples of such patterns in
a inter-country trading network). Similarly, in a dynamic net-
work that captures the annual citation structure of U.S. Patents
(or other scientific publications), EIRSs can identify how
stable knowledge transfer or knowledge sharing sub-networks
among different science areas have evolved and thus facilitate
the identification of transformative science developments that
changed the state of these sub-networks.

The formal definition of an EIRS is as follows.

Definition 1 (Evolving Induced Relational State) Given a dy-
namic network N containing T snapshots, a value φ (1 ≤ φ ≤
T ), and a value β (0 < β ≤ 1), an evolving induced relational
state of length m is a sequence of induced relational states
〈S1, S2, . . . , Sm〉 that satisfies the following constraints:

(i) the supporting set of each induced relational state Si

contains at least φ consecutive snapshots in the persis-
tent dynamic network N φ of N ,

(ii) for each 1 ≤ i < m, the first snapshot in Si+1’s sup-
porting set follows the last snapshot in Si’s supporting
set,



Fig. 2. An example of an evolving relational state.

(iii) for each 1 ≤ i < m, g(Si) is different from g(Si+1),
and

(iv) for each 1 ≤ i < m, |Vi ∩ Vi+1|/|Vi ∪ Vi+1| ≥ β.

The value φ, referred to as the support of the EIRS, is used
to capture the requirement that each induced relational state
occurs in a sufficiently large number of consecutive snapshots
and as such it represents a set of relations among the entities
involved that are stable. The value β, referred to as the inter-
state similarity, is used to enforce the minimum vertex-level
similarity between the selected relational states. This ensures
that the EIRS captures the relational transitions of a consistent
set of vertices but at the same time allows for the inclusion
of new vertices and/or the elimination of existing vertices,
if they are required to describe the new relational state. The
third constraint in the above definition is used to eliminate
EIRSs that contain consecutive IRSs with identical induced
subgraphs. This is motivated by our desire to find EIRSs that
capture changes in the time-persistent relations. However, the
above definition allows for the same induced subgraph to occur
multiple times in the same EIRS, as long as these occurrences
do not happen one after the other.

An important aspect of the definition of an EIRS is that
it is defined with respect to the persistent dynamic network
N φ of N and not N itself. This is because we are interested
in finding how the persistent relations among a set of entities
have changed over time and as such we first eliminate the set
of relations that appear for a short period of time.

Given the above definition, the work in this paper is de-
signed to develop efficient algorithms for solving the following
problem:

Problem 1 (Maximal Evolving Induced Relational State Mining)
Given a dynamic network N containing T snapshots, a user
defined support φ (1 ≤ φ ≤ T ), a inter-state similarity β
(0 < β ≤ 1), a minimum size of kmin and a maximum size
of kmax vertices per IRS, and a minimum EIRS length mmin,
find all EIRSs such that no EIRS is a subsequence of another
EIRS.

Since the set of maximal EIRSs contains within all non-
maximal EIRSs, the above problem will produce a succinct
set of results. Also, the minimum and maximum constraints
on the size of the IRSs involved is introduced to allow an

application to focus on IRSs of meaningful size, whereas the
minimum constraint on the EIRS length is introduced in order
to eliminate short paths.

IV. FINDING EVOLVING INDUCED RELATIONAL STATES

The algorithm that we developed for finding all maximal
EIRSs (Problem 1) follows a two-step approach. In the first
step, the dynamic network N is transformed into its persistent
dynamic networkN φ and a recursive enumeration algorithm is
used to identify all the IRSs S whose supporting set is at least
φ in N φ. The N to N φ transformation is done by removing
spans that are less than φ from each edge’s span sequence and
then removing the edges with empty span sequences. In the
second step, the set of IRSs are mined in order to identify their
maximal non-redundant sequences that satisfy the constraints
of EIRS’s definition.

A. Step 1: Mining of Induced Relational States

The algorithm that we developed to mine all induced
relational states is based on a recursive approach to enumerate
all (connected) induced subgraphs of a graph that satisfy
minimum and maximum size constraints. In the rest of this
section we first describe the recursive algorithm to enumerate
all induced subgraphs in a simple graph and then describe
how we modified this approach to mine the induced relational
states in a dynamic network. The enumeration algorithms was
inspired by the recursive algorithm to enumerate all spanning
trees [23]. Our discussion initially assumes that the graph
is undirected and the necessary modifications that apply for
directed graphs are described afterwards. Also, any references
to induced subgraphs assumes connected induced subgraphs.

1) Induced Subgraph Enumeration: Given a graph G =
(V,E, L[E]), let Gi = (Vi, Ei, L[Ei]) be an induced subgraph
of G (Vi can also be empty), Vf be a subset of vertices of
V satisfying Vi ∩ Vf = ∅, and let F (Vi, Vf ) be the set of
induced subgraphs of G that contain Vi and zero or more
vertices from Vf . Given these definitions, the complete set
of induced subgraphs of G is given by F (∅, V ) \ ∅. The set



F (Vi, Vf ) can be computed using the recurrence relation.

F (Vi, Vf ) =8>>>>>>><>>>>>>>:

Vi,
if sgadj(Vi, Vf ) = ∅
or Vf = ∅

F ({u}, Vf \ u) ∪ F (∅, Vf \ u),
where u ∈ Vf

if Vi = ∅ ∧ Vf 6= ∅

F (Vi ∪ {u}, Vf \ u) ∪ F (Vi, Vf \ u),
where u ∈ sgadj(Vi, Vf )

otherwise,

(1)
where sgadj(Vi, Vf ) (subgraph-adjacent) denotes the vertices
in Vf that are adjacent to at least one of the vertices in Vi.

To show that Equation 1 correctly generates the complete
set of induced subgraphs, is sufficient to consider the three
conditions of the recurrence relation. The first condition, which
corresponds to the initial condition of the recurrence relation,
covers the situations in which either (i) none of the vertices in
Vf are adjacent to any of the vertices in Vi and as such Vi is
the only induced subgraphs that can be generated, or (ii) Vf is
empty and as such Vi cannot be extended further. The second
condition, which covers the situation in which Vi is empty
and Vf is not empty, decomposes F (∅, Vf ) as the union of
two sets of induced subgraphs based on an arbitrarily selected
vertex u ∈ Vf . The first is the set of induced subgraphs that
contain vertex u (corresponding to F ({u}, Vf \ u)) and the
second is the set of induced subgraphs that do not contain
u (corresponding to F (∅, Vf \ u)). Since any of the induced
subgraphs in F (∅, Vf ) will either contain u or not contain
u, the above decomposition covers all possible cases and
it correctly generates F (∅, Vf ). Finally, the third condition,
which corresponds to the general case, decomposes F (Vi, Vf )
as the union of two sets of induced subgraphs based on an
arbitrarily selected vertex u ∈ Vf that is adjacent to at least
one vertex in Vi. The first is the set of induced subgraphs that
contain Vi and u (corresponding to F (Vi ∪ {u}, Vf \ u)) and
the second is the set of induced subgraphs that contain Vi but
not u (corresponding to F (Vi, Vf \u)). Similarly to the second
condition, this decomposition covers all the cases with respect
to u and it correctly generates F (Vi, Vf ). Also the requirement
that u ∈ sgadj(Vi, Vf ) ensures that this condition enumerates
only the connected induced subgraphs∗. Since each recursive
call in Equation 1 removes a vertex from Vf , the recurrence
relation will terminate due to the first condition. Finally, since
the three conditions in Equation 1 cover all possible cases, the
overall recurrence relation is correct.

In addition to correctness, it can be seen that the recurrence
relation of Equation 1 does not have any overlapping sub-
problems, and as such, each induced subgraph of F (Vi, Vf )
is generated only once, leading to an efficient approach for
generating F (Vi, Vf ). Constraints on the minimum and maxi-
mum size of the induced subgraphs can be easily incorporated
in Equation 1 by returning ∅ in the first condition when |Vi| is
less than the minimum size and not performing the recursive

∗Given a connected (induced) subgraph g, it can be grown by adding one
vertex at a time while still maintaining connectivity; e.g., a MST of g (which
exists due to its connectivity) can be used to guide the order by which vertices
are added.
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Fig. 3. Adding a vertex to an induced relational state.

exploration for other two cases.
2) Induced Relational State Enumeration: There are two

key challenges in extending the induced subgraph enumeration
approach of Equation 1 in order to enumerate the IRSs in a
dynamic network. First, the addition of a vertex to an IRS is
different from adding a vertex to an induced subgraph as it can
can result in multiple IRSs depending on the overlapping spans
between the vertex being added and the original IRS. Consider
an IRS Si = (Vi, si :ei), a set of vertices Vf such that Vi ∩
Vf = ∅, and a vertex v ∈ Vf that is adjacent to at least one of
the vertices in Vi. If v’s span sequence contains multiple spans
that have overlaps greater than or equal to φ with Si’s span,
then the inclusion of v leads to multiple IRSs, each supported
by different disjoint spans. Fig. 3 illustrates the vertex addition
process during an IRS expansion. Fig. 3(a) shows a simple
case of vertex addition where an IRS S1 = ({a, b, e}, 1:7) is
expanded by adding adjacent vertex c having a single span of
2:4. The resultant IRS is S2 = ({a, b, e, c}, 2:4) that contains
all the vertices and only the overlapping span of S1 and c.
Fig. 3(b) shows a more complex case where the vertex h that is
added to S1 has the span sequence of 〈1:3, 5:9〉. In this case,
the overlapping spans 1:3 and 5:7 form two separate IRSs
S3 = ({a, b, e, h}, 1:3) and S4 = ({a, b, e, h}, 5:7), each of
which needs to be considered for future expansions in order
to discover the complete set of IRSs.

Second, the concept of removing a vertex from Vf used in
Equation 1 to decompose the set of induced subgraphs needs
to be re-visited so that to account for the temporal nature
of dynamic networks. Failure to do so, will lead to an IRS
discovery algorithm that will not discover the complete set of
IRSs and the set of IRSs that it discovers will be different
based on the order that it chooses to add vertices in the
IRS under consideration. This is illustrated in the example
of Fig. 4. The IRS S1 = ({a, b}, 0:12) is expanded to
S2 = ({a, b, c}, 1:5) by adding the adjacent vertex c. In terms
of Equation 1, this corresponds to the third condition and leads
to the recursive calls of F ({a, b, c}, Vf\c) and F ({a, b}, Vf\c)
(i.e., expand S2 and expand S1). It is easy to see that the
set of IRSs that will be generated from these recursions will
not contain S4 = ({a, b, c, d}, 6:11), since it can only be
generated from S2 but its span does not overlap with S4’s
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Fig. 4. Updating span sequence of a vertex.

span. One the other hand, if S1 is initially expanded by adding
vertex d, resulting in the IRS S3 = ({a, b, d}, 6:11), then the
recursive calls of F ({a, b, d}, Vf \d) and F ({a, b}, Vf \d) will
generate S4 and S2, respectively. Thus, based on the order by
which vertices are selected and included in an IRS, some IRSs
may be missed. Moreover, different vertex inclusion orders can
potentially miss different IRSs.

To address both of these issues the algorithm that we
developed for enumerating the complete set of IRSs utilizes a
recursive decomposition approach that extends Equation 1 by
utilizing two key concepts. The first is the notion of the set
of vertex-span tuples that can be used to grow a given IRS.
Formally, given an IRS Si = (Vi, si :ei) and a set of vertices
Vf in N φ with Vi ∩ Vf = ∅, the irsadj(Si, Vf ) is the set of
vertex-span tuples of the form (u, suj :euj ) such that u ∈ Vf

and (Vi ∪ {u}, suj :euj ) is an IRS whose span is at least φ.
Note that irsadj(Si, Vf ) can contain multiple tuples for the
same vertex if that vertex can extend Si in multiple ways (each
having a different span and possibly an induced subgraph with
different sets of edges). The tuples in irsadj(Si, Vf ) represent
possible extensions of Si and since a vertex can occur multiple
times, it allows for the generation of IRS with the same set
of vertices but different spans (addressing the first challenge).

The second is the notion of vertex-span deletion, which is
used to eliminate the order dependency described earlier and
generate the complete set of IRSs. The key idea is when a tuple
(u, suj :euj ) is added into Si, instead of removing u from Vf ,
only remove the span suj :euj from u’s span sequence in Vf .
Vertex u will only be removed from Vf iff after the removal
of suj :euj its span sequence becomes empty or the remaining
spans have lengths that are smaller than φ. Formally, given
Vf , a vertex u ∈ Vf , and a vertex-span tuple (u, suj

:euj
), the

span-deletion operation, denoted by Vf |(u, suj :euj ), updates
the span sequence of u by removing the suj :euj span from
its span sequence, eliminating any of its spans that become
shorter than φ, and eliminating u if its updated span sequence
becomes empty. The span-deletion operation is the analogous
operation to vertex removal of Equation 1. To illustrate how
this operation can address the second challenge, consider again
the example of Fig. 4. Once c is added into S1, the span
that it used (i.e., 1:5) will be deleted from its span sequence,
resulting in a new span sequence containing 〈6:11〉. Now the

recursive call corresponding to F ({a, b}, Vf |(c, 1:5)) will be
able to identify S4.

Given the above definitions, the recursive approach for
enumerating the complete set of IRSs can now be formally
defined. Let Si = (Vi, si :ei) be an IRS, Vf a set of vertices
in N φ with their corresponding span-sequences in N φ such
that Vi ∩ Vf = ∅, and H(Si, Vf ) be the set of IRSs that (i)
contain Vi and zero or more vertices from Vf and (ii) their
span is a sub-span† of si :ei. Given the above, the complete
set of IRSs in N φ is given by H((∅, 1:T ), V (N φ)) \ ∅. The
recurrence relation for H(Si, Vf ) is:

H(Si, Vf ) =8>>>>>>>>>>>><>>>>>>>>>>>>:

Si,
if irsadj(Si, Vf ) = ∅
or Vf = ∅

H(({u}, su :eu), Vf |(u, su :eu))
∪ H((∅, 1:T ), Vf |(u, su :eu)),
where u ∈ Vf and su :eu is a span of u

if Vi = ∅ ∧ Vf 6= ∅

H((Vi ∪ {u}, su :eu), Vf |(u, su :eu))
∪ H(Si, Vf |(u, su :eu)),
where (u, su :eu) ∈ irsadj(Si, Vf )

otherwise.

(2)

The above recurrence relation shares the same overall struc-
ture with the corresponding recurrence relation for enumerat-
ing the induced subgraphs (Equation 1) and its correctness can
be shown in a way similar to that used for Equation 1. Due to
space limitations, we omit the complete proof of Equation 2,
and only focus on discussing the third condition, which repre-
sents the general case. This condition decomposes H(Si, Vf )
as the union of two sets of IRSs based on an arbitrarily selected
vertex-span tuple (u, su :eu) ∈ irsadj(Si, Vf ). Since the span
su :eu is a maximal overlapping span between u and Si, the
new IRS containing vertices (Vi∪{u} has the span of su :eu).
With respect to vertex-span tuple (u, su :eu), the set of IRSs in
H(Si, Vf ) can belong to one of the following three groups: (i)
the set of IRSs that contain u and have a span that is a sub-span
of su :eu; (ii) the set of IRSs that contain u and have a span
that is disjoint with su :eu, and (iii) the set of IRSs that do not
contain u. The H((Vi∪{u}, su :eu), Vf |(u, su :eu)) part of the
third condition generates (i), whereas the H(Si, Vf |(u, su :eu)
part generates (ii) and (iii). What is missing from the above
groups is the group corresponding to the set of IRSs that
contain u and have a span that partially overlaps with su :eu.
The claim is that this cannot happen. Consider an IRS
Sj = (Vj , sj :ej) ∈ H(Si, Vf ) that contain u and without
loss of generality, assume that su < sj < eu < ej . Since
we are dealing with induced subgraphs and stable topologies
(i.e., from the definition of an IRS), the connectivity of u
to the vertices in Vi remains the same during the span of
su :eu and also during the span of sj :ej , which means that
the connectivity of u to the vertices in Vi remains the same
during the entire span of su :ej . This is a contradiction, since
(u, su :eu) ∈ irsadj(Si, Vf ) and as such is a maximal length
span of stable relations due to the fact that (Vi ∪ {u}, su :eu)

†The sub-span of a span corresponds to a time interval that is either
identical to the span or is contained within it.



Algorithm 1 mdfs(u, t, d[], p)
1: /* u is the current node */
2: /* t is the current time */
3: /* d[] is the discovery array */
4: /* p is the current path */
5: d[u] = t++
6: push u into p
7: if adj(u) = ∅ and |p| > minimum EIRS-length then
8: record p
9: else

10: for each node v in (adj(u) sorted in increasing end-time order) do
11: if dt[v] < d[u] then
12: mdfs(v, t, d, p)
13: pop p

is an IRS and the span of an IRS is maximal. Thus, the two
cases of the third condition in Equation 2 cover all possible
cases and it correctly generate the complete set of IRSs.

Also, since each recursive call modifies at least the set Vf ,
none of the recursive calls lead to overlapping subproblems,
ensuring that each IRS is only generated once.

3) Handling Directed Edges: To handle directed edges, we
consider each direction of an edge separately, such that a
directed edge a → b is listed separately from a ← b. The
direction of an edge is stored as part of the label along with
the span sequence of that edge. The direction of an edge at a
certain span is coded as 0, 1 or 2 to represent a → b, a ← b
or a ↔ b. Note that the ordering of the vertices in an edge
(a, b) are stored in increasing vertex-number order (i.e, a < b).
Using the above representation of an edge, we determine the
direction of all the edges of an IRS during its span duration.

B. Step 2: Mining of Maximal Evolution Paths

The algorithm that we developed to identify the sequence
of IRSs that correspond to the maximal EIRSs is based on
a modified DFS traversal of a directed acyclic graph that
is referred to as the induced relational state graph and will
be denoted by GRS . GRS contains a node for each of the
discovered IRSs and a root node r. For each pair of IRSs
Si = (Vi, si :ei) and Sj = (Vj , sj :ej), GRS contains a
directed edge from the node corresponding to Si to the node
corresponding to Sj iff Vi 6= Vj , |Vi ∩ Vj |/|Vi ∪ Vj | ≥ β
and ei < sj (i.e., constraints (ii)–(iv) of Definition 1). The
modified DFS algorithm which we will refer to as mdfs, uses
only a discovery array d[] to record the discovery times of each
node, which are initially set to 0. The DFS traversal starts from
the root node and proceeds to visit the rest of the nodes. The
pseudocode is shown in Algorithm 1.

The mdfs algorithm also keeps track of the current path
from the root to the node that it is currently at. If that node
has no outgoing edges, then it outputs that path. The sequence
of the relational states corresponding to the nodes of that path
(the root node is excluded), represent an EIRS.

The key difference between mdfs and the standard DFS
algorithm is the method for selecting which node to visit next
(line 4). Given a node u, the mdfs algorithm selects among its
adjacent nodes the node v that has the earliest end-time and
d[v] < d[u]. The selection of the earliest end-time is done to

allow mdfs to find maximal paths first, where the selection of v
that satisfies d[v] < d[u] is done to eliminate forward edges but
still allow for the exploration of cross edges. The elimination
of forward edges is done so that to eliminate paths that are sub-
paths of previously identified longer paths (and as such will
lead to non-maximal EIRSs). The inclusion of cross-edges is
done so that to allow the mdfs algorithm to find the complete
set of maximal EIRSs. Due to space constraints, we do not
provide the formal proof that the set of paths generated by
mdfs(r, 0, d, ∅) represent the complete set of maximal EIRSs
that we are after. However, we hope that the discussion above
provides evidence as to the correctness of the claim.

The discussion so far assumes that GRS has been fully
materialized. However, this can be expensive as it requires
pairwise comparisons between a large number of IRSs in
order to determine if they satisfy the constraints (ii)–(iv) of
Definition 1. For this reason, our algorithm starts with the
mdfs traversal from the root and materializes the portions of
GRS that it needs during the traversal. This allows it to reduce
the rather expensive computations associated with some of the
constraints by not having to visit forward edges. Moreover it
utilizes the minimum EIRS length constraint to further prune
the parts of GRS that it needs to generate.

For a given node u, the mdfs algorithm needs the adjacent
node of u that has the earliest end-time. Let eu be the end-
time of node u. Since a node (i.e., an IRS) is required to
have at least a span of length φ, we start u’s adjacent node
search among the nodes in GRS that have the end-time of
ek = eu + φ. According to constraint (iv) of Definition 1,
a certain minimum threshold of similarity is desired between
two IRSs of an EIRS. Thus, it is sufficient to compare u with
only those nodes that have at least a common vertex with u.
We index the nodes of GRS based on the vertices so that
the similar nodes of u can be accessed by looking up all the
nodes that have at least one vertex in common with u. If a
node v is similar to u and d[v] < d[u], we add the node to
the adjacency list. If the search fails to detect any adjacent
node, we initiate another search looking for nodes that have
an end-time of ek + 1 and continue such incremental search
until an adjacent node of u is found or all possible end-times
have been explored.

V. RELATED WORK

Over the last ten years, considerable research effort has
been devoted to developing algorithms to find patterns in
static graphs and networks. This research has resulted in
the development of algorithms for finding different types
of patterns such as paths [24], [25], trees [6], [7], induced
subgraphs [8], arbitrarily connected subgraphs [26], [10], and
various types of cliques [27], [28], [29]. While most of these
methods have been developed for mining databases containing
relatively small graphs, algorithms have also been developed
to identify subgraphs with a large number of embeddings in a
single large graph (i.e., static network) [11].

Since dynamic networks have only recently emerged as
an important research area, the problem of formally defining



the conserved relational states and developing algorithms
for identifying their evolution patterns have not been well
studied. Desikan et. al. [30] analyzed the importance of mining
temporally evolving Web graphs, but did not provide any
algorithmic solution for detecting the stable patterns or their
evolution. Borgwardt et. al. [17], [31] introduced the notion of
the dynamic subgraph, which extends the traditional notion of
the subgraph to include the sequence of subgraphs that exist in
a consecutive sequence of snapshots and developed algorithms
to identify the set of dynamic subgraphs that occur frequently
in a dynamic network. Even though this work provides a
similar definition to the stable relational states, it uses a
heuristic based approach to detect the frequent patterns and it
does not capture the evolution of those patterns over time. Jin
et. al. [32] focused on the problem of finding recurrent patterns
in dynamic networks in which a time series is associated
with each node and introduced the notion of the trend motif,
which is a connected subgraph in which each node’s time
series exhibits a consistent trend over a time interval. Even
though the trend motif formulation is general, their work
focused only on developing algorithms for finding frequently
occurring trend motifs that show either an increasing or a
decreasing trend. Berlingerio et. al. [19] also provided an
algorithm to detect frequent subgraphs in time-evolving graphs
for deriving graph-evolution rules that satisfy a minimum
confidence constraint. Although these evolution rules are used
to characterize the changes in the overall evolving graph, it
does not determine the evolution of the conserved frequent
patterns. Robardet [21] represented the frequent patterns of
a graph as pseudo-cliques and proposed an algorithm that
first mines each graph snapshot of a dynamic graph for
local patterns and then combines these with patterns from
previous snapshot based on some constraints to form evolving
patterns. Inokuchi et. al. [33], [22] solved a similar problem of
finding frequent induced subgraph subsequences from graph
sequence data and capturing the changes of a subgraph over
the subsequence. However, their approach does not focus on
determining stable induced subgraphs and does not discover
the evolution patterns of the conserved relational states.

A related body of research has investigated the task of
identifying and tracking patterns in biological networks [34],
[35], [31] and evolving communities in social networks [36],
[37]. The problem of evolutionary clustering [18], [38] is to
find clusters in a dynamic network in the form of snapshots,
such that clusters at any given time groups similar entities
while also preserving the grouping of entities in past snap-
shots. Even though these methods provide valuable insights
on the evolution of dynamic networks, the nature of conserved
patterns and their evolution focused in this paper is different
from the general evolution addressed in other papers.

VI. EXPERIMENTAL DESIGN & RESULTS

A. Datasets

We evaluated our algorithm using datasets from a patent
citation network, a trade network and an email communication
network. The scalability of our algorithm was assessed on

TABLE I
DYNAMIC NETWORK DATASETS.

Dataset #Vertices Avg. #Edeges Span

Patent N2 84152 45465 34
Patent N3 84152 63633 34
Patent N4 84152 79358 34
Trade 192 23 53
Enron 130 88 30

#Vertices denotes the total number of vertices in the dynamic network. Avg. #Edeges
denotes the average number of edges per snapshot in the dynamic network. Span denotes
the total number of snapshots in the dynamic network.

the patent citation dataset (as it was the largest) whereas all
three datasets were used in the qualitative assessment of the
identified EIRSs.

a) Patents Citation Network: This is a citation network
derived from the United States Patent and Trademark office’s
(USPTO) bibliographic information for the patents granted
from 1976 to 2009. The nodes correspond to the primary art
areas associated with the patents based on USPTO’s classifica-
tion and the edges correspond to aggregated citations between
art areas. For example, if patent A of art area α cites patent B
of art area β in year x, then a directed edge is added from α
to β in the graph representing year x. Citations that produce
self references are removed. The classification of USPTO art
areas is hierarchical and forms a tree structure that can be
up to 16 levels deep. The patents are assigned the classes
corresponding to the leaf nodes of the tree. In our experiments,
in order to obtain art areas that contain a sufficiently large
number of patents, we rolled up the classification tree to the
third level, and all the patents underneath each third-level node
was assigned the class of that node. The snapshots of the
dynamic network that we created correspond to the citation
network of each year, leading to a dynamic network consisting
of 2009 − 1976 = 34 snapshots. Since the vertices at each
snapshot can potentially be connected to all other vertices, we
pre-processed each snapshot in order to derive a set of dynamic
networks that contain the most important set of outgoing edges
(i.e. references) from each node. This is done as follows. For
each vertex of each snapshot, we first choose the 20 most
frequent edges. The frequency of an edge (a, b) is defined as
the number of patent-to-patent references (P1, P2) such that
P1’s class is a and P2’s class is b. Then, for each edge (a, b)
we calculate its lift (i.e., w(a, b) = p(b|a)\p(b)) to use as its
weight. Based on these weights, we construct three dynamic
network datasets N2, N3 and N4 by selecting the highest
weighted 2, 3 and 4 edges for each vertex in each snapshot of
the network. The size and density of the networks is presented
in Tbl. I.

b) Trade Network: This is a trade network that mod-
els the yearly export and import relations of 192 countries
from 1948 to 2000 based on the Expanded Trade and GDP
Data [40]. The nodes model the trading countries and the
direct edges model the export or import activity between two
countries for a certain year. The snapshots of the dynamic
network that we created corresponds to the trade network
of each year, leading to a dynamic network consisting of
2000 − 1948 = 53 snapshots. If the export amount from



TABLE II
NETWORK DENSITY.

Dataset #IRS #EIRS ETime PTime TotalTime

N2 56725 2495 5 0 13
N3 1864660 45448 287 160 458
N4 16696859 103335 3226 16662 19901

The number of vertices in an IRS is 4 to 8, the maximum allowed vertex difference
between two successive IRSs is 1, and φ is 4. Run times are in seconds. #IRS denotes
the number of discovered IRSs. #EIRS denotes the number of discovered EIRSs. Etime
denotes the amount of time spent to enumerate IRSs. PTime denotes the amount of
time spent for path enumeration. TotalTime denotes the total amount of time spent to
determine all EIRSs in the network.

country A to country B in a given year is more than 10%
of the total export amount of A and total import amount of B
for that year, a directed edge A → B is added to that year’s
trade graph.

c) Email Communication Network: This is a commu-
nication network that models the email traffic between em-
ployees of the ENRON company [41]. The nodes model the
employees who are labeled by their rank and a node id to
uniquely identify two nodes with same label (i.e. multiple
employees with the same rank). The directed edges model
the communications between the employees. To represent the
dataset as a dynamic network, the entire time span was divided
into 30 equal-size intervals. If an email was sent from node a
to node b at a certain time interval, a directed edge a → b
is added to the graph representing that time interval. This
representation contains 130 nodes and about 90 edges per
snapshot.

B. Performance Results

We evaluated the performance and scalability of our algo-
rithm for mining the maximal EIRSs using the N2, N3, and
N4 datasets from the patent citation network. Our evaluation
is designed to assess how the density of the networks and
the various parameters associated with the EIRS definition
impacts the performance of the algorithm. All experiments are
conducted on a Linux cluster with 6-core Intel Xeon X7542
“Westmere” processors at 2.66 GHz.

Note that in order to better assess how the interstate sim-
ilarity component in the definition of the EIRS impacts the
performance of the algorithm in all the experiments presented
in this section, instead of using |Vi ∩ Vj |/|Vi ∪ Vj | as a mea-
sure of inter-state similarity (constraint (iv) of Definition 1),
we used the number of different vertices between Vi and
Vj as a measure of distance. This allows us to explicitly
increase/decrease the complexity of the mining problem by
changing the number of different vertices that is allowed
between successive IRSs.

1) Network Density: The performance of the algorithm for
the three datasets is shown in Tbl. II. The datasets N2, N3
and N4 contain the same number of vertices 84152, but their
density in terms of the number of edges present in the network
increases by ∼1.4 times from N2 to N3 and by ∼1.2 times
from N3 to N4. The results in Tbl. II show that as the graph
density increases the number of EIRSs found increases (i.e. the
number of EIRSs increased from 2495 in N2 to 45448 in N3 to
103335 in N4). At the same time, the total runtime to discover

TABLE III
INTER-STATE SIMILARITY.

ISDiff kmin kmax #IRS #EIRS ETime PTime TotalTime

1 5 8 3037440 315 343 51 407
2 5 8 3037440 86731 342 116 472
3 5 8 3037440 75592341 346 409 768
1 6 8 2962777 2 338 46 398
2 6 8 2962777 5289 338 93 444
3 6 8 2962777 9781632 337 223 574

Dataset N4 is used for this experiment and φ = 5. ISDiff denotes the inter-state distance
capturing the maximum allowed vertex difference between two IRSs. kmin denotes the
minimum number of vertices allowed in an IRS. kmax denotes the maximum number
of vertices allowed in an IRS. Rest of the column labels are described in Tbl. II

TABLE IV
MINIMUM SPAN (φ) STUDY.

φ QEdges #IRS #EIRS ETime PTime TotalTime

5 5521 190491 112 21 1 34
4 9515 744053 18788 105 33 148
3 21726 5761948 1190067 1289 4729 6028

Dataset N3 is used for this experiment, the number of vertices in an IRS is 5 to 7,
and the maximum allowed vertex difference between two linked IRSs is 1. QEdges
denotes the number of edges in Nφ, and rest of the column labels are described in
Tbl. II

the EIRSs increases from 13 seconds to process N2 to 458
seconds for N3 and 19901 seconds for N4. Even though the
IRS enumeration step is mostly the time consuming process,
as the number of IRS increases the time needed to traverse
the IRS graph and discover the EIRSs starts to increase. For
N4, about 84% of the total runtime was spent discovering
the maximal paths. For sparse graphs, IRS enumeration time
dominates the computation. For denser graphs, the direction
graph building requires the most amount of computing.

2) Inter-state Distance: Tbl. III shows the performance of
the algorithm for different values of the maximum allowed
number of different vertices.

The number of different vertices is varied from 1 to 3 for
two different sets of IRSs (i.e., a set of IRSs with 5 to 8
vertices and other set of IRSs with 6 to 8 vertices).

We observed that the number of discovered EIRSs increases
as the maximum allowed vertex difference increases (i.e. the
similarity threshold decreases). For the 5−8 set, the increase in
the maximum allowed vertex difference from 1 to 3 causes an
increase in discovered EIRSs from 315 to 75592341. However,
as we increase the maximum allowed vertex difference, the
EIRSs will start containing unrelated IRSs in their path, since
the similarity threshold between the IRSs are lower, which
may represent less interesting EIRS. The decrease in similarity
threshold also increases the total runtime, the path enumeration
step takes longer to process more edges between IRSs.

3) Minimum Span: The performance of the algorithm for
different values of minimum span (φ) is shown in Tbl. IV.
The value of φ represents the minimum length requirement
for an induced relational state to be in consistent state and for
this experiments is in terms of years.

From these results, we observed that as the value of φ
decreases, the number of discovered EIRSs and the runtime
increases. The value of φ controls the number of edges that
can qualify to be part of the N φ and the lower the value of
φ is the more number of edges will qualify. In this case, we



TABLE V
IRS SIZE STUDY.

kmin kmax #IRS #EIRS ETime PTime TotalTime

5 5 212267 60 25 4 40
5 6 1039741 21059 108 41 158
5 7 4265612 46609 493 642 1144
5 8 16639693 57583 3221 15617 18852

Dataset N4 is used for this experiment, the maximum allowed vertex difference
between two linked IRSs is 1 and φ=4. The column labels are described in Tbl. II

see that the number of qualified edges increase from 5521 to
21726 for φ=5 and φ=3. As the number of qualified edges in
N φ increase, the number of IRSs increases and resulting in
discovering higher number of EIRSs. Similarly, the runtime
increase as the value of φ decreases from 34 seconds to 6028
seconds for φ=5 and φ=3, since the algorithm needs to process
more number of IRSs to find relations and their evolution
paths. This parameter is an important factor in finding EIRSs
in different datasets, since the conserved state of a pattern is
likely to be different depending on the type of the data.

4) IRS Size: We analyzed the performance of the algorithm
for different sizes IRSs in Tbl. V. The size of an IRS is
represented as the minimum and maximum number of vertices
allowed in an IRS. For example, the size of 5-8 means that an
IRS can contain minimum of 5 vertices and maximum of 8
vertices. We observe that as the size increases, the number of
discovered EIRSs increases. Since larger range in size allows
more number of IRSs to be detected, the chance of finding
higher number of EIRSs is increases. In this experiment, the
number of IRSs and EIRSs found for size 5 is 212267 and
60. When the size was increased to 5-8, the number of IRSs
increased to 16639693 and in turn resulted with 57583 EIRSs.

C. Qualitative Analysis

In this section we present some of the EIRSs that were
discovered by our algorithm in order to illustrate the type of
information that can be extracted from the dynamic networks
by focusing on how stable relations changed over time.

The EIRSs that are presented correspond to some of the
EIRSs that show the highest change between the different IRS
involved. In particular, given an EIRS, we computed the ratio
of the total number of unique edges (i.e., relations) in all of its
constituent IRSs over the total number of edges in the same
IRSs. We refer to this quantity as the total drift. Note that
this is just one of the many ways that can be used to assign
a quantitative interestingness measure to an EIRS and other
measures can be derived by looking at the nodes, relational
inversions, cyclicality, etc.

In Fig. 5 we present an EIRS generated from the trade net-
work capturing trade relations between some of the European
countries over 30 years period and the chosen φ=3. The total
drift for this EIRS is 12/18 = 0.67. The EIRS mainly captures
trade relations between Belgium, Netherlands, Germany and
France. The other countries, such as Luxembourg, Italy and
United Kingdom participate for a partial period of time. Based
on the illustration, initially (during 1963 to 1967) Belgium
and Netherlands were strong trade partners as they exported
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Fig. 5. An EIRSs capturing a trade relation between EU countries. The nodes
in the figure are LUX=Luxembourg, BEL=Belgium, GFR=German Federal
Republic, NTH=Netherlands, ITA=Italy, and UKG=United Kingdom.
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Fig. 6. An EIRSs capturing a trade relation of USA. The nodes in
the figure are USA=United States of America, CAN=Canada, JPN=Japan,
TAW=Taiwan, SAU=Saudi Arabia, and MEX=Mexico.

and imported from each other. The period 1970-1973 shows
that the countries were heavily trading between each other.
By evaluating the historical events, political and economic
situation of that period, we could find the cause of higher trade
activity. The periods 1980-1982 and 1984-1991 captures how
France’s trade relations with Belgium and Germany became
one sided as France only imported from those countries. The
cause of such changes could be that France was exporting to
other countries or Belgium and Germany decided to import
from some other countries. In Fig. 6 we present another
EIRS generated from the trade network capturing a stable trade
relation of USA with other countries over 35 years period.
The total drift for this EIRS is 7/16 = 0.44. We notice
that USA and Canada have strong trade relations over a long
period of time. Even though the strong tie in trading seems
obvious due to the geographical co-location of the countries,
it is interesting that the algorithm could discover such relation
from the historical data. The EIRS also captures steady relation
between USA and Japan.

In Fig. 7 we present an EIRS generated from the email
communication network capturing email exchange patterns
among a group of employees over a period of time. The total
drift for this EIRS is 7/12 = 0.58. Although it is difficult to
understand the communication of the employees without the
message content, the direction of the communication can be
found in this EIRS. We see that VP[id:33] had always initiated
the conversation and was very active in email communication
to have stable relations over all the captured periods. It is
interesting to notice that VP[id:146] is not present in last
period (25-28). One can investigate and confirm whether
he/she was replaced or terminated and the cause for such
actions.

In Fig. 8 we present an EIRS generated from the patent
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Fig. 7. An EIRSs capturing Enron email traffic pattern.



Fig. 8. An EIRSs capturing patent class relations. The nodes in figure denote
patent classes and the legend captures the USPTO definition of the classes
C1 to C5.

citation network capturing the evolution of the relations be-
tween some patent classes over a 15 years period. The total
drift for this EIRS is 7/14 = 0.5. Based on the illustration,
the patent classes C2, C3 and C4 were citing C1 during 1995-
1999. We can interpret that as the patents of class C1 are
earlier inventions and later the patents of class C2, C3, and
C4 used the ideas found in the patents belonging to C1. Over
time the relations changed as class C5 appears in later years
and both C1 and C5 are citing each other. It is possible that
patents of class C5 represent a newer technology that cited
earlier patents of class C1 as reference and the newer patent
of class C1 are using C5 as reference. This captures a complex
relational dependence between entities in a dynamic network.
Moreover, we also observed that class C4 disappeared in the
period of 2005-2009. This could indicate that the technology
introduced in the products of class C4 is no longer used.

VII. CONCLUSION

In this paper we presented an algorithm for finding all max-
imal non-redundant evolution paths of the induced relational
states in a dynamic network. This can be used to discover
the transitions of the conserved relational states over time and
to better understand the cause of such changes in the stable
patterns in a dynamic network. Our experimental evaluation on
multiple real world datasets show that the algorithm is able to
discover interesting evolution paths from all datasets and can
scale well to large and dense dynamic networks.
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