
Enriching Course-Specific Regression Models with
Content Features for Grade Prediction

Qian Hu
Department of Computer Science

George Mason University

Fairfax, VA, USA

Email: qhu3@gmu.edu

Agoritsa Polyzou
Department of Computer Science and Engineering

University of Minnesota

Minneapolis, MN, USA

Email: polyz001@umn.edu

George Karypis
Department of Computer Science and Engineering

University of Minnesota

Minneapolis, MN, USA

Email: karypis@umn.edu

Huzefa Rangwala
Department of Computer Science

George Mason University

Fairfax, VA, USA

Email: rangwala@cs.gmu.edu

Abstract—An enduring issue in higher education is student
retention and timely graduation. Early-warning and degree
planning systems have been identified as a key approach to tackle
this problem. Accurately predicting a student’s performance
can help recommend degree pathways for students and identify
students at-risk of dropping from their program of study.
Various approaches have been developed for predicting students’
next-term grades. Recently, course-specific approaches based on
linear regression and matrix factorization have been proposed.
To predict a student’s grade, course-specific approaches utilize
the student’s grades from courses taken prior to that course.
However, there are a lot of factors other than student’s historical
grades that influence his/her performance, such as the difficulty
of the courses, the quality and pedagogy of the instructor, the
academic level of the students when taking the courses and so
on. In this paper, we propose a course-specific regression model
enriched with features about students, courses and instructors.
Our proposed models were evaluated on datasets from two
large public universities for academic programs with varying
flexibility. The experimental results showed that incorporating
content features can boost the performance of the course-specific
model. For some degree programs with high flexibility, our
experiments showed that predicting the grades with informative
content features demonstrated better prediction accuracy.

I. INTRODUCTION

The past few years have seen the rise of technologies

that capture and leverage massive quantities of education-

related data to deliver and improve all levels of learning

and education in our society. The Department of Education

Report [1] specifically highlighted the current successes of

learning analytics and critical need for further research focused

on development of robust applications that lead to better

student outcomes, improved instructor pedagogy, enhanced

curriculum and higher graduation rates for all students ir-

respective of their backgrounds from kindergarten through

college. Currently, higher education institutions face a critical

challenge of retaining students and ensuring their successful

graduation [2]. Towards this end, several universities seek

to deploy accurate and effective degree planners that assist

students in choosing academic pathways towards a successful

and timely graduation; and early-warning systems that aid

academic advisors in identifying students who are at the risk

of failing or dropping out of a program for timely intervention.

In this paper we present approaches that analyze in a

systematic and careful manner, the large and diverse type of

education-related data collected at two large public Universi-

ties with the objective of assisting students to make informed

decisions about their future course selections. Specifically, we

develop methods that perform next-term grade prediction i.e.,

predict the grade for students in future courses that they have

not taken yet.

Course-specific models have been applied to predict stu-

dent’s next-term grades by using grades of prior courses,

which better addresses pertinent challenges associated with

the reliable estimation of the low-rank models [3]. However,

course-specific models that use the grades of prior courses can

only capture the information of student’s knowledge evolution.

Course-specific models also suffer from inaccurate prediction

if the degree program is flexible (i.e., has several electives).

In addition, there are some other factors that can influence

student’s grades, such as his/her academic level when taking

a certain course, instructor’s teaching quality and courses’ dif-

ficulty. To solve this problem we incorporate content features,

which can capture diverse information about students, courses

and instructors. Based on course-specific models, we present

a model which not only uses the grades of prior courses but

also different kinds of content features.

We evaluated our proposed method on a dataset from

George Mason University (GMU) collected from Fall 2009

to Spring 2016 and on a dataset from University of Minnesota

(UMN) collected from Fall 2003 to Spring 2014. The results

showed that our proposed method outperformed competing

methods to some degree. Another finding was that when

the prior-course information was sparse, the included content

features were more likely to help. However, as the availability
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of content features in the two universities is different, namely

in GMU we have more informative content features, for majors

with flexible degree programs in GMU, the course-specific

model with content features achieves the best performance; for

majors with flexible degree programs in UMN, the proposed

course-specific model with grades of prior courses and content

features performs better. This suggests that the availability

of the content features can influence the performance of the

proposed model.

The paper is organized as follows. Section 2 investigates the

related work in the area of student’s performance prediction.

Section 3 describes the notations we used in the paper. Sec-

tion 4 discusses our proposed method and other comparison

methods. Section 5 is about protocol. In Section 6, we present

our experimental results and analysis. The last section gives

some conclusions and future direction.

II. RELATED WORK

In recent years, data mining and machine learning tech-

niques have been applied to improve educational quality

including areas related to learning and content analytics [4],

[5], knowledge tracing [6], [7], learning material enhancement

[8] and early warning systems [9], [10]. A key problem in

this area is that of predicting student performance at course

activities, examinations, final grades or in terms of a student’s

GPA [11], [12], [13].

Various approaches have been developed in the context of

intelligent tutors that model and predict the success or failure

of a student in a specific task. Models such as regression

[14], [15], [16], HMMs and bagged decision trees [17],

collaborative filtering [18], matrix completion [19], [20], [21],

and tensor factorization [22], [23] have been applied to this

problem.

Based on the scope of this paper, we only review approaches

for next-term student grade prediction in detail.

Knowing student’s performance in advance can help in-

structors identify at-risk students early and advise them in

choosing appropriate courses that fit their current knowledge

state better. As such, several methods have been developed to

tackle the next-term prediction problem. Most of the methods

are inspired from recommender systems literature [24], [25],

such as matrix factorization [3] and collaborative filtering

[18], [26], [27]. Approaches based on standard classification

approaches such as random forests trees have also been applied

[28], [25]. A majority of the algorithms proposed are “one-

size-fits-all”, namely, trying to model all the students with

one model. To model students with different characteristics,

personalized grade prediction approaches have been proposed

[29], [30]. Using features mined from student interaction with

learning management systems, Elbadrawy et. al. proposed a

personalized mutli-regression model [31] for in-class grade

prediction. This was also extended to predict in-class as-

signment grades within the setting of Massive Open Online

Courses [32].

Recently course-specific models proposed by Polyzou et.
al. [3] achieved better prediction accuracy than existing ap-

proaches, assuming that students acquire knowledge in an

cumulative manner. Course-specific models are cumulative, in

the sense that to predict a student’s grade in a target course,

the students’ grades from courses taken prior to the target

course are utilized. Course-sepcific regression models cannot

correctly capture students’ knowledge state when the same

knowledge can be acquired by taking different subsets of

courses. To solve this problem, Morsy et. al. [33] developed

Cumulative Knowledge-based Regression Model (CKRM),

which represents the knowledge state of students in knowledge

component vectors. In educational environment, the student-

course enrollment patterns exhibit grouping structures which

leads to not missing at random grade data (NMAR). To handle

the NMAR characteristics of the grade data, Elbadrawy et.
al. [34] proposed domain-aware grade prediction algorithms.

Ren et. al. [35] proposed Matrix Factorization with Temporal

Course-wise Influence (MFTI) algorithm which can capture

the course-wise influence between courses.

However, one of the drawbacks of course-specific models

is that they show poor performance if the degree program

is flexible [3]. In addition, the grades of the prior courses

cannot completely capture all the factors that affect students’

performance. In this paper, based on course-specific models,

we proposed a hybrid model to predict students’ next-term

performance by taking some informative factors into consid-

eration.

III. PROBLEM FORMULATION AND NOTATION

Formally, we assume that we have records of n students

and m courses, comprising a n × m sparse grade matrix

G, where gs,c ∈ [0 − 4] is the grade a student s earned in

course c. The objective of next-term grade prediction problem

is to estimate the grade ĝs,c, a student s will achieve in

course c in the next term. Besides the grade matrix G, we

have information that can be associated with the student (e.g.,

academic level, previous GPA, major) and course offering

(e.g., discipline, course level, prior courses frequently taken,

instructor, etc) that can be combined to extract a feature vector

per dyad. We denote this feature vector as x of p dimensions.

As a convention, bold uppercase letters are used to represent

matrices (e.g., X) and bold lowercase letters represents vectors

(e.g., x).

IV. METHODS

A. Course-Specific Regression with Prior Courses

Polyzou et.al. [3] motivate the use of course-specific re-

gression models that leverage the sequential structure of un-

dergraduate degree programs. These regression models assume

that the performance of a student in a future course is strongly

correlated with past performance on a subset of courses

related to the degree program taken earlier. Specifically, this

regression model estimates the grades for a future class as a

sparse linear combination of grades obtained on prior courses.

For a course c the grades that students obtained on courses

taken prior to c are extracted from the grade matrix G, and

denoted by Gpr
c . Each row of this matrix corresponds to

505



students that have taken the course c. Assume that nc students

have taken the course c so far and mc represents the union set

of courses taken by students prior to c, then the dimensions

of Gpr
c is nc ×mc. g:,c is the vector representing the grades

that students obtained for course c. We learn the parameters of

this Course-Specific Regression (CSR) model by solving the

least square regression problem enforcing �1 and �2 norms.

The optimization problem is given below:

min ||�wc0 + Gpr
c wpr

c − g:,c||22︸ ︷︷ ︸
loss

+λ1||wpr
c ||22︸ ︷︷ ︸

�2

+λ2||wpr
c ||1︸ ︷︷ ︸

�1

(1)

where � is a vector of ones of dimension nc, wpr
c ∈ Rmc

denotes the weight vectors associated with each course c and

wc,0 is the bias term. The �1 norm promotes sparsity and �2
norm prevents overfitting.

Having learned the weight vectors and bias terms, the grade

estimate for a student s enrolling in course c is given by:

ĝs,c = wc0 + xTs,cwpr
c (2)

where xs,c ∈ R
m
c is a feature vector representing the grades

on prior courses that the student has taken so far. We denote

this Course-Specific Regression model with Prior Courses as

CSRPC.

In this approach, prior to estimating the model using

equation 1, we row-centered each row of matrix Gpr
c and

g:,c, which is done by subtracting the GPA of corresponding

students from the non-zero entries in each row of Gpr
c and g:,c

[3]. We found that row-centering gives better performance by

mitigating the negative influence of missing grades from prior

courses.

B. Course-Specific Regression with Content Features

The CSRPC model described above is able to provide accu-

rate estimates of student performance in a course provided that

the students taking that course has commonly taken sufficient

number of prior courses. We seek to extract key features

associated with students and courses and incorporate them

within the prediction formulation. Based on course-specific

idea, instead of training one global model for all the courses

as done in existing work [25], we propose to train independent

course-specific regression models with content features. We

refer to this model by CSRCF. In terms of formulation, the

proposed CSRCF is similar to CSRPC except that the feature

vector is a composite of student, course and instructor-related

features as described below.

We denote the weight vector learned by this formulation

as wf
c and the feature vectors xs,c ∈ R

p where p is the total

number of features. The predicted grade estimate is then given

by:

ĝs,c = wc0 + xTs,cwf
c (3)

The CSRCF model is estimated in a similar manner as CSRPC

and given by:

min ||�wc0 + Xf
c wf

c − g:,c||22︸ ︷︷ ︸
loss

+λ1||wf
c ||22︸ ︷︷ ︸

�2

+λ2||wf
c ||1︸ ︷︷ ︸

�1

(4)

where Xf
c is a matrix of stacked feature vectors from the

different students who have taken the course c in the past. Each

row of this matrix is a feature vector for a student enrolled in

the course c.

Content features for GMU
1) Student Features. Student-related features include their

demographic data, such as their age, race, gender, high

school GPA and so on. For each term, we have the

GPA of the student from the previous term and the

accumulative GPA as of last term. As students might take

courses from other departments which has less influence

than those from their own departments, we can extract

GPA of courses only from their own departments. When

taking a course, different students might come from

different academic level, therefore, it might be beneficial

to incorporate their academic level into the model.

2) Course Features. The features relating to a course include

its discipline, the credit hours and course level (e.g. 100,

200, 300, 400-level). As the difficulty of a course can

influence the performance of the students, we include

the course difficulty information into the model. We use

the GPA of the course from last term to represent the

difficulty of the course.

3) Instructor Features. As the factors from instructors can

also influence the performance of the students, we extract

content features about the instructors which include rank,

tenure status and the GPA of the courses he has taught.

Content features for UMN
1) Student Features. Same as in GMU apart from the features

related to demographic data. Considering a specific term

for which a student has taken a course, we extracted their

GPA of the previous term, the accumulative GPA as of

last term, the GPA over only courses from their own

departments, as well as, the students’ academic level.

2) Course Features. Same as the ones extracted for GMU.

3) Instructor Features. No instructor features are available.

We one-hot-encoded categorical features in Xf
c and stan-

dardized the continuous features.

C. Hybrid Model
We also combine the feature vectors Xf

c and Gpr
c obtained

from the student-course content and prior grades and learn

weight vectors per course, respectively. We refer to this hybrid

model as CSRHY and learn a course-specific regression model

as discussed above.

D. Baseline Methods
In the experiments, we compare the proposed methods with

the following baseline approaches.

1) BiasOnly (BO): BiasOnly method only takes into consid-

eration student’s bias, course’s bias and global bias which

are estimated using Equation 5.

ĝs,c = b0 + bs + bc (5)

where b0, bs and bc are the global bias, student bias and

course bias respectively.
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2) Matrix Factorization (MF): The use of MF for grade

prediction is based on the assumption that the students

and courses’ knowledge space can be jointly represented

in low-dimensional latent feature space [3]. Each compo-

nent in the latent feature space corresponds to knowledge

components. The grade of student s in a future course c
is estimated as:

ĝs,c = b0 + bs + bc + pTs qc (6)

where b0, bs and bc are the global bias, student bias and

course bias respectively and ps, qc are the latent vectors

representing student s and course c.
3) Course-specific Matrix Factorization (CSMF): CSMF is

similar to MF except that the grade matrix Gc for CSMF

only includes the grades of students taking the course and

their grades of courses taken prior to the course we are

going to predict [3].

V. EXPERIMENTAL PROTOCOL

A. Dataset description and preprocessing

We evaluated our proposed methods on two datasets ob-

tained from George Mason University (GMU) and University

of Minnesota (UMN), for the following four departments: (i)

Computer Science (CS), (ii) Electrical and Computer Engi-

neering (ECE), (iii) Biology (BIOL) and Psychology (PSYC).

We will indicate the departments from GMU with the suffix

“ A” and from UMN with the suffix “ B”. The two universities

from two separate states in the United States have different

characteristics. For GMU, there are around 33,000 students,

the acceptance rate is 69%, the six-year graduation rate is

66.8%, there are about 140 programs that students can select.

For UMN, the total enrollment is about 51,000, acceptance

rate is 45%, the six-year graduation rate is 75%, there are

around 260 programs. Both universities exhibit diversity. In

GMU, 44.7% of students are White, 18.5% Asian, 12%

Hispanic/Latino, 10% African American. In UMN, 69.1% of

the students are White, 11.3% Asian, 5.2% African American,

3.4% Latino.

The data was collected from Fall 2009 to Spring 2016 at

GMU and from Fall 2003 to Spring 2014 at UMN. According

to the University Catalogs [36] [37], we kept the courses that

were required by the degree program and electives within the

same major. The statistics of the four majors are shown in

Table I.

For UMN that has very flexible degree programs, we also

consider courses outside of the department that were taken

by at least 50% of the students. We consider those as unstated

prerequisites. Moreover, we removed any course that was taken

by less than 10% of the students, in order to reduce the size of

the universal of courses, i.e., the possible courses that a student

might take. We consider that these courses are not offered on

a regular basis and their availability is limited.

For both datasets, we removed any courses whose grades

were pass/fail. If a course was taken more than once by a

student, only the last grade was kept. We removed the students

who took less than half of the prior courses (less than one third

of the prior courses for UMN). For course c whose prior-

course grade matrix is Gpr
c , if the number of rows of Gpr

c

is smaller than the number of columns, we remove course c
from training and testing dataset. In addition to that, if the

number of testing instances of a course is smaller than 5, we

also remove it.

To form the test and training dataset, we use the data

extracted from last term (i.e., Spring 2016 at GMU and Spring

2014 at UMN) as test dataset and all the data before then as

training. The training dataset was split into 80/20, of which

80% was training data, 20% was validation data.

As the flexibility of a degree program can influence the

course-specific models’ performance, the flexibility associated

with each department is computed according to [33]. The

major’s flexibility is the average course flexibility over all

courses belonging to that major, weighted by the number of

pairs of students in that offering. We computed the flexibility

of a course c as one minus the average Jaccard coefficient of

the courses that were taken by the students that took c prior

to taking this course. The flexibility of a course will be low

if the students have taken very similar prior courses and high

otherwise.

To compute the flexibility of a major, assume there are N
courses in that major; the prior-course grade matrices for these

courses are denoted as Gpr
i , i = 1 . . . N , each of which has

Si, i = 1 . . . N students. From matrix Gpr
i , we can extract

an indicator matrix Ipri , in which 1 means the corresponding

course is taken, 0 means not. Ri,a means the ath row of matrix

Ipri .

Fi = 1− 1(
Si

2

)
Si∑
a=1

Si∑
b=a+1

Jaccard(ri,a, ri,b) (7)

F =

N∑
i=1

Si

S
Fi (8)

where Jaccard is the Jaccard coefficient, S is the total number

of students in that major, Fi is the flexibility of course i and

F is the flexibility of the major.

B. Evaluation Metrics

To assess the performance of the models, we used three

kinds of metrics, namely mean absolute error (MAE), root

mean squared error (RMSE) and tick error. MAE and RMSE

are computed by pooling together all the grades across all the

courses.

MAE and RMSE are averaged errors between the predicted

grades and the actual grades. To gain a better insight into

the quality of the predictions, we also report the tick error

as done in [3], [33]. The grading system used in GMU has

11 letter grades (A+, A, A-, B+, B, B-, C+, C, C-, D, F)

which correspond to (4, 4, 3.67, 3.33, 3, 2.67, 2.33, 2, 1.67,

1, 0). UMN uses the same grading, with the addition of D+,

corresponding to 1.33, and excluding A+. We refer to the

difference between two successive letter grades as a tick. The

performance of a model is assessed based on how many ticks

away the predicted grade is from the actual grade. We first
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TABLE I: Data Statistics and Characteristics for GMU and UMN.

Major #Students #Courses Universal of courses #Grades Grades Mn Grades StD Flexibility

CS A 988 18 53 21,880 3.05 0.82 0.283

ECE A 396 16 69 16,170 3.09 0.77 0.272

BIOL A 1629 19 42 20,602 3.02 0.84 0.339

PSYC A 1114 20 60 14,851 3.26 0.74 0.429

CS B 708 24 39 78,882 3.15 0.71 0.493

ECE B 551 16 44 86,478 3.12 0.72 0.430

BIOL B 997 11 31 57,966 3.12 0.74 0.603

PSYC B 1380 18 37 77,896 3.07 0.82 0.809

#Students is the number of major students.
#Courses is the number of courses for which we predict the grades.
Universal of courses is the total number of prior courses, i.e., the required and elective courses in the corresponding
major according to university catalog.
#Grades is the total number of grades in prior-course grade matrices and the grades we predict.
Grades Mn and Grades StD are the mean and standard deviation of grades, respectively.
Flexibility is the flexibility of a major.

TABLE II: MAE of different methods (↓ is better).

Method
MAE

CS A ECE A BIOL A PSYC A CS B ECE B BIOL B PSYC B

BO 0.7359 0.7285 0.5853 0.5882 0.4697 0.4356 0.4516 0.4648

MF 0.8150 0.8447 0.6169 0.5648 0.4859 0.4309 0.4452 0.4940

CSMF 0.7609 0.7015 0.5579 0.5240 0.4776 0.4433 0.4410 0.4695

CSRPC 0.6805 0.6739 0.5372 0.4933 0.4520 0.4346 0.4394 0.4932

CSRCF 0.7183 0.6775 0.4769 0.4743 0.4670 0.4395 0.4488 0.4588

CSRHY 0.6693 0.6630 0.5057 0.4859 0.4622 0.4219 0.4328 0.4526

TABLE III: RMSE of different methods (↓ is better).

Method
RMSE

CS A ECE A BIOL A PSYC A CS B ECE B BIOL B PSYC B

BO 0.9622 0.9748 0.7794 0.7829 0.6534 0.5359 0.5855 0.6180

MF 1.0879 1.1104 0.8173 0.8035 0.6773 0.5408 0.5922 0.6574

CSMF 1.0126 0.9623 0.8045 0.7372 0.6685 0.5472 0.5763 0.6318

CSRPC 0.9288 0.9699 0.7943 0.7348 0.6613 0.5447 0.5679 0.6351

CSRCF 0.9539 0.9680 0.7205 0.6732 0.6543 0.5457 0.5825 0.6064

CSRHY 0.9199 0.9542 0.7679 0.7283 0.6607 0.5298 0.5659 0.5946

converted the predicted grades into their closest letter grades

and then computed the percentages of each of the x ticks [3],

[33].

VI. RESULTS AND DISCUSSION

Tables II and III show the comparative performance of dif-

ferent methods on four different departments by using metrics

MAE and RMSE. Generally, in most cases course-specific

models outperform non-course-specific models, which means

focusing on a course-specific subset of data can result in better

performance. In GMU, for departments with less flexibility

such as Computer Science and Electrical Engineering, we

observe that the hybrid model has the best performance.

Thus incorporating content features into course-specific model

further improves its performance; the model with only grades

of prior courses performs better than model with only content

features. For departments with high flexibility such as Biology

and Psychology, the model with only content features shows

the best performance, which suggests that if a department has

a flexible degree program, content features might be more

informative than the grades of prior courses.

The corresponding departments in UMN are more flexible

than GMU. The performance of CSRPC and CSRCF is very

comparable, or even better (for the Psychology Department).

Their combination, CSRHY, is the best performing method

in terms of MAE and RMSE, even if the content features

included in UMN are less informative. An exception is the

Computer Science Department, which seams to have very

hard-to-predict courses, as it has the highest RMSE. For CS B,

CSRPC is performing the best in terms of MAE, but BiasOnly

achieves better RMSE, closely followed by CSRCF, with just

0.0009 difference.

In the two universities, we can see that for the majority of

the departments, the hybrid model performs the best. GMU

models take more advantage of the rich content features to
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TABLE IV: Prediction performance of different methods based on Ticks (↑ is better).

#Ticks Method CS A ECE A BIOL A PSYC A CS B ECE B BIOL B PSYC B

Percentage of
Grades
predicted
with no error

BO 15.02 18.58 19.41 19.75 25.48 27.58 24.90 34.40

MF 13.04 9.84 19.95 23.89 26.68 28.48 24.90 31.91

CSMF 15.22 18.58 24.53 23.25 24.76 29.09 30.12 34.75
CSRPC 19.57 20.77 28.84 34.08 29.33 26.06 25.70 23.76

CSRCF 13.44 16.39 28.03 27.39 25.96 28.48 25.30 31.91

CSRHY 19.76 22.40 30.73 35.35 25.00 28.18 29.32 30.50

Percentage of
grades
predicted
with an error
of at most
one tick

BO 44.27 44.26 55.26 53.82 65.38 66.36 61.85 65.60

MF 42.29 39.34 51.75 54.46 63.70 66.67 65.06 62.77

CSMF 43.08 40.44 58.76 61.78 63.94 64.85 65.06 68.44
CSRPC 48.22 55.19 62.80 61.15 69.23 64.85 62.65 57.45

CSRCF 44.66 51.37 70.89 64.97 64.42 66.67 63.05 68.44
CSRHY 49.80 55.19 67.38 61.78 68.03 66.97 64.66 66.31

Percentage of
grades
predicted
with an error
of at most
two ticks

BO 69.17 66.67 77.63 75.80 86.54 89.09 87.15 88.65
MF 64.82 63.38 76.82 77.07 82.69 88.79 86.75 83.69

CSMF 67.59 72.68 82.21 78.66 85.34 89.09 86.75 85.11

CSRPC 74.31 73.22 81.40 79.62 87.26 85.76 88.35 83.69

CSRCF 73.52 75.96 87.87 83.44 86.06 88.79 85.54 87.94

CSRHY 75.10 74.32 82.75 78.66 85.82 88.18 86.35 86.88

(a) True vs. Predicted Grades for BO (b) True vs. Predicted Grades for CSRPC

(c) True vs. Predicted Grades for CSRCF (d) True vs. Predicted Grades for CSRHY

Fig. 1: True vs. Predicted Grades for BiasOnly and Course-specific Models for GMU.
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(a) True vs. Predicted Grades for BO (b) True vs. Predicted Grades for CSRPC

(c) True vs. Predicted Grades for CSRCF (d) True vs. Predicted Grades for CSRHY

Fig. 2: True vs. Predicted Grades for BiasOnly and Course-specific Models for UMN.

improve the predicted grades, especially for the most flexible

departments.

To gain deeper insights into the types of errors made by

different methods, Table IV reports the percentage of grades

predicted with no error, with an error of at most one tick and

with an error of at most two ticks. Comparing the performance

achieved by the methods we notice that the course-specific

models have relatively better performance than non-specific

approaches. In GMU, in terms of the exact prediction (i.e.,

no error), the hybrid model has the best performance. For

departments with rigid degree program, such as Computer

Science and Electrical Engineering, the hybrid model has

better performance than other methods. If minor errors are

allowed (i.e., one or two ticks), for flexible departments,

model with only content features gives better performance.

In UMN, the picture is not that clear, as there is variation

in the performance depending on the degree of accuracy and

the department. The highest percentage of grades predicted

with no error is achieved by course-specific methods(CSMF and

CSRPC). The fact that other methods are the best performing in

terms of ticks, while CSRHY has the lowest RMSE for most of

the cases, indicates that CSRHY does not predict many grades

with significant error, in contrast with the other methods.

From the two universities’ results, we can see that in-

corporating content features into the course-specific model

can improve the prediction performance. For flexible degree

programs, as the prior-course grade matrix is sparse, the model

with content features has better predicting accuracy. This is

not evident in the results from UMN, as there are not enough

content features.

The distribution of true (ground truth) and predicted grades

for BiasOnly, CSRPC, CSRCF and CSRHY are also plotted for

GMU and UMN in Figures 1 and 2, respectively. Each row

of the figure represents the ratio of the predicted grades. For

example, in Figure 1b the bottom row represents that a high

proportion of A’s are predicted as such. We see that BiasOnly

tends to smooth the predicted grades i.e., it predicts most of

the grades around the average GPA (around B-). However, for

high grades most of the predicted grades are around the true

grades in course-specific models and for lower grades all the
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models tend to over predict.

Table V and VI show the detailed statistics of the courses

from the two universities of the departments with the least and

most flexible degree program, and the errors (RMSE) made

by three course-specific regression models. For GMU these

departments are the CS and PSYC, while for UMN are the

EE and PSYC. From the two tables, we can see that if the

grades in test set have high standard deviation or higher than

that of training set, the prediction error is high. The reason

might be that the course-specific models used in this work

and previous works are linear. In the future, we will explore

non-linear course-specific models.

Overall, incorporating content features into the course-

specific models can improve the prediction performance. In

GMU, for departments with less flexible degree programs,

the hybrid model achieves better performance than traditional

course-specific models. However, for departments with more

flexible degree programs, the grades of prior courses are

less informative than content features, therefore, it is more

appropriate to include only content features. In UMN, CSRHY

achieves the best performance. The existance of some content

features can boost the performance of the regression methods

when used alone(CSRCF) or in addition to the grades(CSRHY).

VII. CONCLUSIONS

In this paper, we proposed a hybrid model to further improve

the performance of the course-specific models. We evaluated

the proposed model on datasets from two Universities with

different characteristics. The experiments show similar results

in the two universities, which suggests the proposed model

is generalizable. In conclusion, it is beneficial to incorporate

content features into course-specific model, which motivates

us to explore other kinds of side information. In the future, we

will utilize side information mined from learning management

systems.
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TABLE V: Per course statistics and errors for GMU.

Course #training #testing density Mn Tr StD Tr Mn Te StD Te CSRPC CSRCF CSRHY

CS-2xx 322 76 0.766 2.640 1.249 2.548 1.455 1.179 1.226 1.176
CS-2xx 303 66 0.623 2.915 1.062 2.899 0.941 0.686 0.755 0.735
CS-3xx 138 19 0.748 3.049 0.803 3.158 0.597 0.463 0.417 0.434
CS-3xx 285 62 0.638 2.634 1.155 2.694 1.236 1.037 1.156 1.037
CS-3xx 181 41 0.711 3.063 0.779 3.041 0.617 0.527 0.465 0.539
CS-3xx 42 13 0.802 3.104 1.140 3.360 0.591 0.748 0.668 0.752
CS-3xx 189 35 0.754 2.783 1.032 2.657 1.053 0.876 0.949 0.876
CS-3xx 19 8 0.885 2.719 1.072 2.959 1.368 1.152 1.035 1.253
CS-3xx 156 29 0.768 3.088 0.762 2.897 1.175 1.072 1.045 1.066
CS-4xx 92 8 0.867 2.859 1.103 2.917 1.090 1.006 1.119 1.006
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CS-4xx 46 19 0.896 2.725 1.111 1.983 1.111 1.090 1.081 1.143
CS-4xx 32 8 0.897 3.083 0.866 3.041 1.207 0.964 1.106 0.964
CS-4xx 115 32 0.868 3.018 0.914 3.229 0.659 0.655 0.643 0.655
CS-4xx 26 22 0.868 3.525 0.668 3.333 0.841 0.669 0.870 0.610
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TABLE VI: Per course statistics and errors for UMN.

Course #training #testing density Mn Tr StD Tr Mn Te StD Te CSRPC CSRCF CSRHY

EExxx 514 22 0.441 2.82 0.73 2.95 0.70 0.603 0.547 0.544
EExxx 511 32 0.450 3.59 0.51 3.44 0.37 0.520 0.664 0.577
EExxx 540 5 0.352 2.88 0.67 2.73 0.25 0.454 0.393 0.419
EExxx 516 28 0.443 2.94 0.68 2.98 0.60 0.562 0.543 0.532
EExxx 520 21 0.405 3.05 0.67 2.84 0.79 0.574 0.589 0.573
EExxx 142 7 0.582 2.83 0.94 2.81 0.24 0.712 0.409 0.599
EExxx 88 31 0.837 3.27 0.63 3.10 0.69 0.559 0.585 0.568
EExxx 146 32 0.631 3.08 0.78 3.04 0.64 0.525 0.449 0.529
EExxx 51 13 0.587 3.86 0.28 3.95 0.18 0.378 0.494 0.383
EExxx 189 20 0.610 2.74 0.81 2.88 0.78 0.548 0.545 0.573
EExxx 225 11 0.576 3.11 0.75 3.12 0.94 0.825 0.835 0.833
EExxx 101 22 0.684 3.06 0.70 2.55 0.56 0.572 0.582 0.579
EExxx 331 29 0.558 3.24 0.63 3.47 0.54 0.445 0.416 0.419
EExxx 239 23 0.556 3.84 0.27 3.91 0.15 0.581 0.414 0.394
EExxx 407 26 0.655 3.65 0.43 3.88 0.45 0.486 0.585 0.485
EExxx 65 8 0.670 3.89 0.37 3.92 0.14 0.149 0.344 0.090
PSYCxxx 1031 18 0.207 3.30 0.59 3.26 0.57 0.452 0.429 0.433
PSYCxxx 464 7 0.259 3.21 0.83 3.14 0.59 1.027 0.998 1.023
PSYCxxx 444 10 0.263 2.90 0.80 3.17 0.43 0.733 0.693 0.784
PSYCxxx 606 17 0.261 3.21 0.77 3.24 0.72 0.490 0.509 0.510
PSYCxxx 557 18 0.254 2.97 0.87 3.48 0.92 0.795 0.794 0.802
PSYCxxx 488 13 0.220 3.03 0.89 3.56 0.48 0.430 0.495 0.438
PSYCxxx 34 12 0.482 2.80 0.90 3.42 0.71 0.873 0.870 0.867
PSYCxxx 399 12 0.259 3.13 0.79 3.39 0.45 0.512 0.389 0.375
PSYCxxx 288 13 0.261 2.97 0.79 2.95 0.76 0.468 0.468 0.485
PSYCxxx 554 7 0.271 3.35 0.67 3.48 0.43 0.471 0.629 0.538
PSYCxxx 743 13 0.162 3.17 0.78 2.87 0.78 0.626 0.812 0.650
PSYCxxx 346 9 0.268 3.30 0.78 2.74 0.91 0.676 0.699 0.705
PSYCxxx 301 10 0.229 3.46 0.59 3.67 0.42 0.907 0.679 0.684
PSYCxxx 366 5 0.276 3.22 0.82 3.07 0.44 0.593 0.660 0.618
PSYCxxx 1045 80 0.354 3.56 0.57 3.70 0.46 0.648 0.601 0.590
PSYCxxx 258 7 0.288 3.90 0.47 4.00 0.00 0.466 0.392 0.343
PSYCxxx 121 5 0.274 3.96 0.16 4.00 0.00 0.194 0.271 0.166
PSYCxxx 290 26 0.320 3.93 0.33 4.00 0.00 0.562 0.341 0.351

The second and third column stand for the number of training and testing instances, respectively.
density means the density of the prior course matrix.
Tr train, Te test, Mn mean, StD standard deviation.
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