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Despite recent developments in protein structure prediction, an accurate new fold pre-
diction algorithm remains elusive. One of the challenges facing current techniques is the
size and complexity of the space containing possible structures for a query sequence.
Traditionally, to explore this space fragment assembly approaches to new fold prediction
have used stochastic optimization techniques. Here we examine deterministic algorithms
for optimizing scoring functions in protein structure prediction. Two previously unused
techniques are applied to the problem, called the Greedy algorithm and the Hill-climbing
algorithm. The main difference between the two is that the latter implements a technique
to overcome local minima. Experiments on a diverse set of 276 proteins show that the
Hill-climbing algorithms consistently outperform existing approaches based on Simulated
Annealing optimization (a traditional stochastic technique) in optimizing the root mean
squared deviation (RMSD) between native and working structures.

1. INTRODUCTION

Reliably predicting protein structure from amino acid sequence remains a challenge

in bioinformatics. Although the number of known structures continues to grow,

many new sequences still lack a known homolog in the PDB 2, which makes it harder

to predict structures for these sequences. The conditional existence of a known

structural homolog to a query sequence commonly delineates a set of subproblems

within the greater arena of protein structure prediction. For example, the biennial

CASP competitiona breaks down structure prediction as follows. In homologous

fold recognition the structure of the query sequence is similar to a known structure

for some other sequence. However, these two sequences have only a low (though

∗Corresponding author.
ahttp://predictioncenter.org/
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detectable) similarity. In analogous fold recognition there exists a known structure

similar to the correct structure of the query, but the sequence of that structure has

no detectable similarity to the query sequence. Still more challenging is the problem

of predicting the structure of a query sequence lacking a known structural relative,

which is called new fold (NF) prediction.

Within the context of the NF problem knowledge-based methods have attracted

increasing attention over the last decade. In CASP, prediction approaches that

assemble fragments of known structures into a candidate structure 20,8,12 have con-

sistently outperformed alternative methods, such as those based largely on explicit

modeling of physical forces. Fragment assembly for a query protein begins with the

selection of structural fragments based on sequence information. These fragments

are then successively inserted into the query protein’s structure, replacing the coor-

dinates of the query with those of the fragment. The quality of this new structure

is assessed by a scoring function. If the scoring function is a reliable measure of

how close the working structure is to the native fold of the protein, then optimizing

the function through fragment insertions will produce a good structure prediction.

Thus, building a structure in this manner can break down into three main com-

ponents: a fragment selection technique, an optimizer for the scoring function, and

the scoring function itself.

To optimize the scoring function, all the leading assembly-based approaches

use an algorithm involving a stochastic search (e.g. Simulated Annealing 20, genetic

algorithms 8, or conformational space annealing 12). One potential drawback of such

techniques is that they can require extensive parameter tuning before producing

good solutions.

In this paper we wish to examine the relative performance of deterministic and

stochastic techniques to optimize a scoring function. The new algorithms presented

below are inspired by techniques originally developed in the context of graph parti-

tioning 5, and do not depend on a random element. The Greedy approach examines

all possible fragment insertions at a given point and chooses the best one available.

The Hill-climbing algorithm follows a similar strategy but allows for moves that

reduce the score locally, provided that they lead to a better global score.

Several variables can affect the performance of optimization algorithms in the

context of fragment-based ab initio structure prediction. For example, how many

fragments per position are available to the optimizer, how long the fragments are, if

they should be multiple sizes at different stages 20 or all different sizes used together
8, and other parameters specific to the optimizer can all influence the quality of the

resulting structures.

Taking the above into account, we varied fragment length and number of frag-

ments per position when comparing the performance of our optimization algorithms

to that of a tuned Simulated Annealing approach. Our experiments test these al-

gorithms on a diverse set of 276 protein domains derived from SCOP 1.69 16. The

results of these experiments show that the Hill-climbing-based approaches are very
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Table 1. Number of sequences at various length
intervals and SCOP class.

Sequence Length

SCOP Class < 100 100–200 > 200 total

alpha 23 40 6 69
beta 23 27 18 69
alpha/beta 4 26 39 69
alpha+beta 15 36 17 69

effective in producing high-quality structures in a moderate amount of time, and

that they generally outperform Simulated Annealing. On the average, Hill-climbing

is able to produce structures that are 6% to 20% better (as measured by the root

mean square deviation (RMSD) between the computed and its actual structure),

and the relative advantage of Hill-climbing-based approaches improves with the

length of the proteins.

2. COMPUTATIONAL METHODS

2.1. Data

The performance of the optimization algorithms studied in this paper were evaluated

using a set of proteins with known structure that was derived from SCOP 1.69 16 as

follows. Starting from the set of domains in SCOP, we first removed all membrane

and cell surface proteins, and then used Astral’s tools 4 to construct a set of proteins

with less than 25% sequence identity. This set was further reduced by keeping only

the structures that were determined by X-ray crystallography, filtering out any

proteins with a resolution greater than 2.5Å, and removing any proteins with a

Cα − Cα distance greater than 3.8Å times their sequential separationb.

The above steps resulted in a set of 2817 proteins. From this set, we selected a

subset of 276 proteins (roughly 10%) to be used in evaluating the performance of

the various optimization algorithms (i.e., a test set), whereas the remaining 2541

sequences were used as the database from whence to derive the structural fragments

(i.e., a training set).c The test sequences, whose characteristics are summarized in

Table 1, were selected to be diverse in length and secondary structure composition.

2.2. Neighbor Lists

As the search space for fragment assembly is much too vast, fragment-based ab

initio structure prediction approaches must reduce the number of possible structures

that they consider. They accomplish this primarily by restricting the number of

bNo bond lengths were modified to fit this constraint; proteins not satisfying it were simply
removed from consideration.
cThis dataset is available at http://www.cs.umn.edu/
˜deronne/supplement/optimize
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structural fragments that can be used to replace each k-mer of the query sequence. In

evaluating the various optimization algorithms developed in this work, we followed

a methodology for identifying these structural fragments that is similar in spirit to

that used by the Rosetta 20 system.

Consider a query sequence X of length l. For each position i, we identify a

list (Li) of n structural fragments by comparing the query sequence against the

sequences of the proteins in the training set. For fragments of length k, these com-

parisons involve the k-mer of X starting at position i (0 ≤ i ≤ l − k + 1) and all

k-mers in the training set. The n structural fragments are selected so that their cor-

responding sequences have the highest profile-based score with the query sequence’s

k-mer. Throughout the rest of this paper, we will refer to the list Li as the neighbor

list of position i.

In our study we used neighbor lists containing fragments of a single length as

well as neighbor lists containing fragments of different lengths. In the latter case

we consider two different approaches to leveraging the varied length fragments.

The first, referred to as scan, uses the fragment lengths in decreasing order. For

example, if the neighbor lists contain structural fragments of length three, six, and

nine, the algorithm starts by first optimizing the structure using only fragments of

length nine, then fragments of length six, and finally fragments of length three. Each

one of these optimization phases terminates when the algorithm has finished (i.e.,

reached a local optimum or performed a predetermined number of iterations), and

the resulting structure becomes the input to the subsequent optimization phase.

The second approach for combining different length fragments is referred to as pool,

and it optimizes the structure once, selecting fragments from any available length.

Using any single length fragment in isolation, or using either scan or pool will be

referred to as a fragment selection scheme.

2.2.1. Sequence Profiles

The comparisons between the query and the training sequences take advantage of

evolutionary information by utilizing PSI-BLAST 1 generated sequence profiles.

The profile of a sequence X of length l is represented by two l × 20 matrices.

The first is its position-specific scoring matrix PSSMX that is computed directly

by PSI-BLAST. The rows of this matrix correspond to the various positions in X ,

while the columns correspond to the 20 distinct amino acids. The second matrix is

its position-specific frequency matrix PSFMX that contains the frequencies used by

PSI-BLAST to derive PSSMX . These frequencies (also referred to as target frequen-

cies 15) contain both the sequence-weighted observed frequencies (also referred to

as effective frequencies 15) and the BLOSUM62 7 derived-pseudocounts 1. For each

row of a PSFM, the frequencies are scaled so that they add up to one. In the cases

where PSI-BLAST could not produce meaningful alignments for a given position

of X , the corresponding rows of the two matrices are derived from the scores and

frequencies of BLOSUM62.
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For our study, we used the version of the PSI-BLAST algorithm available in

NCBI’s blast release 2.2.10 to generate profiles for both the test and training se-

quences. These profiles were derived from the multiple sequence alignment con-

structed after five iterations using an e value of 10−2. The PSI-BLAST search was

performed against NCBI’s nr database that was downloaded in November of 2004

and which contained 2,171,938 sequences.

2.2.2. Profile-to-Profile Scoring Method

The similarity score between a pair of k-mers (one from the query sequence and one

from a sequence in the training set) was computed as the ungapped alignment score

of the two k-mers whose aligned positions were scored using profile information.

Many different schemes have been developed for determining the similarity be-

tween profiles that combine information from the original sequence, position-specific

scoring matrix, or position-specific target and/or effective frequencies 15,23,13. In our

work we use a scheme that is derived from PICASSO 6,15 that was recently used in

developing effective remote homology prediction and fold recognition algorithms 18.

Specifically, the similarity score between the ith position of protein X ’s profile, and

the jth position of protein Y ’s profile is given by

SX,Y (i, j) =
20∑

l=1

PSFMX(i, l) PSSMY (j, l) +

20∑

l=1

PSFMY (j, l) PSSMX(i, l),

(1)

where PSFMX(i, l) and PSSMX(i, l) are the values corresponding to the lth amino

acid at the ith position of X ’s position-specific scoring and frequency matrices.

PSFMY (j, l) and PSSMY (j, l) are defined in a similar fashion.

Equation 1 determines the similarity between two profile positions by weight-

ing the position-specific scores of the first sequence according to the frequency at

which the corresponding amino acid occurs in the second sequence’s profile. The

key difference between Equation 1 and the corresponding scheme used in 15 (therein

referred to as PICASSO3), is that our measure uses the target frequencies, whereas

the scheme of 15 is based on effective frequencies.

2.3. Protein Structure Representation

Internally, we consider only the positions of the Cα atoms, and we use a vector repre-

sentation of the protein in lieu of φ and ψ backbone angles. Our protein construction

approach uses the actual coordinates of the atoms in each fragment, rotated and

translated into the reference frame of the working structure. Fragments are taken

directly from known structures, and are chosen from the training dataset using the

above profile-profile scoring methods.
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2.4. Scoring Function

As the focus of this work is to develop and evaluate new optimization techniques,

we use the RMSD between the predicted and native structure of a protein as the

scoring function. Although such a function cannot serve as a predictive measure,

we believe that using this as a scoring function allows for a clearer differentiation

between the optimization process and the scoring function. In effect, we assume an

ideal scoring function in order to test the optimization techniques.

2.5. Optimization Algorithms

In this study we compare the performance of three different optimization algorithms

in the context of fragment assembly-based approaches for ab initio structure pre-

dictions. One of these algorithms, Simulated Annealing 10, is currently a widely

used method to solve such problems, whereas the other two algorithms, Greedy and

Hill-climbing, are newly developed for this work.

The key operation in all three of these algorithms is the replacement of a k-

mer starting at a particular position i, with that of a neighbor structure. We will

refer to this operation as a move. A move is considered valid if, after inserting the

fragment, it does not create any steric conflicts. A structure is considered to have a

steric conflict if it contains a pair of Cα atoms within 2.5Å of one another. Also, for

each valid move, its gain is defined as the improvement in the value of the scoring

function between the working structure and the native structure of the protein.

2.5.1. Simulated Annealing (SA)

Simulated Annealing 10 is a generalization of the Monte Carlo 14 method for discrete

optimization problems. This optimization approach is designed to mimic the process

by which a material such as metal or glass cools. At high temperatures, the atoms of

a metal can adopt configurations not available to them at lower temperatures—e.g.,

a metal can be a liquid rather than a solid. As the system cools, the atoms arrange

themselves into more stable states, forming a stronger substance.

The Simulated Annealing (SA) algorithm proceeds in a series of discrete steps. In

each step it randomly selects a valid move and performs it (i.e., inserts the selected

fragment into the structure). This move can either improve or degrade the quality

of the structure. If the move improves the quality, then the move is accepted. If it

degrades the quality, then the move will still be accepted with probability

p = e

“

Sold−Snew

T

”

, (2)

where T is the current temperature of the system, qold is the score of the last state,

and qnew is the score of the state in question. From Equation 2 we see that the

likelihood of accepting a bad move is inversely related to the temperature and how

much worse the new structure is from the current structure. That is, the optimizer
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will accept a very bad move with a higher probability if the temperature is high

than if the temperature is low.

The algorithm begins with a high system temperature which it progressively

decreases according to an annealing schedule. As the optimization must use finite

steps, the cooling of the system cannot be continuous, but the annealing schedule

can be modified to increase its smoothness. The annealing schedule depends on a

combination of the number of total allowed moves and the number of steps in which

to make those moves. Our implementation of Simulated Annealing, following the

general framework employed in Rosetta 20, uses an annealing schedule that linearly

decreases the temperature of the system to zero over a fixed number of cycles.

Furthermore, due to its stochastic nature, a number of iterations of the complete

schedule can result in improved performance.

Simulated Annealing is a highly tunable optimization framework. The starting

temperature and the annealing schedule can be varied to improve performance, and

the performance of the algorithm depends greatly on these parameters. Section 3.2.1

describes how we arrive at the values for these parameters of SA as implemented in

this study.

2.5.2. The Greedy Algorithm (G)

One of the characteristics of the Simulated Annealing algorithm is that it considers

moves for insertion at random, irrespective of their gains. The Greedy algorithm

that we present here selects maximum gain moves.

Specifically, the algorithm consists of two phases. In the first phase, called initial

structure generation, the algorithm starts from a structure corresponding to a fully

extended chain, and attempts to make a valid move at each position of the protein.

This is achieved by scoring all neighbors in each neighbor list and inserting the best

neighbor (i.e. the neighbor with the highest gain) from each list. If some positions

have no valid moves on the first pass, the algorithm attempts to make moves at

these positions after trying all positions once. This ensures that the algorithm makes

moves at nearly every position down a chain, and also provides a good starting point

for the next phase.

In the second phase, called progressive refinement, the algorithm repeatedly finds

the maximum gain valid move over all positions of the chain, and if this move leads

to a positive gain—i.e. it improves the value of the scoring function—the algorithm

makes the move. This progressive refinement phase terminates upon failing to find

any move to make. The Greedy algorithm is guaranteed to finish the progressive

refinement phase in at least a local optimum.

2.5.3. Hill-Climbing (HC)

The Hill-climbing algorithm was developed to allow the Greedy algorithm to effec-

tively climb out of locally optimal solutions. The key idea behind Hill-climbing is
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to not stop after achieving a local optimum but to continue performing valid moves

in the hope of finding a better local or a (hopefully) global optimum.

Specifically, the Hill-climbing algorithm works as follows. The algorithm begins

by applying the Greedy algorithm in order to reach a local optimum. At this point,

it begins a sequence of iterations consisting of a hill-climbing phase, followed by

a progressive refinement phase (as in the Greedy approach). In the hill-climbing

phase, the algorithm performs a series of moves, each time selecting the highest

gain valid move irrespective of whether or not it leads to a positive gain. If at any

point during this series of moves, the working structure achieves a score that is

better than that of the structure at the beginning of the hill-climbing phase, this

phase terminates and the algorithm enters the progressive refinement phase. The

above sequence of iterations terminates when the hill-climbing phase is unable to

produce a better structure after successively performing all best scoring valid moves.

Since the hill-climbing phase starts at a local optimum, its initial set of moves

will lead to a structure whose quality (as measured by the scoring function) is worse

than that at the beginning of the hill-climbing phase. However, subsequent moves

can potentially lead to improvements that outweigh the initial quality degradation;

thus allowing the algorithm to climb out of locally optimal solutions.

Move Locking As Hill-climbing allows negative gain moves, the algorithm can po-

tentially oscillate between a local optimum and a non-optimal solution. To prevent

this from happening, we implement a notion of move locking. After each move, a

lock is placed on the move to prevent the algorithm from making this move again

within the same phase. By doing so, we ensure the algorithm does not repeatedly

perform the same sequence of moves; thus guaranteeing its termination after a finite

number of moves. All locks are cleared at the end of a hill-climbing phase, allowing

the search maximum freedom to proceed.

We investigate two different locking methods. The first, referred to as fine-grain

locking, locks the single move made. The algorithm can subsequently select a differ-

ent neighbor for insertion at this position. The second, referred to as coarse-grain

locking, locks the position of the query sequence itself; preventing any further in-

sertions at that position. In the case of pooling, coarse locking locks moves of all

sizes.

Since fine-grain locking is less restrictive, we expect it to lead to better quality

solutions. However, the advantage of coarse-grain locking is that each successive

fragment insertion significantly reduces the set of fragments that need to be con-

sidered for future insertions; thus, leading to a faster optimization algorithm.

2.5.4. Efficient Checking of Steric Conflicts

One characteristic of the Greedy and Hill-climbing algorithms is their need to evalu-

ate the validity of every available move after every insertion. This proves necessary

because each insertion can potentially introduce new proximity conflicts. In an
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attempt to assuage the time requirement for this process, we have developed an

efficient formulation for validity checking.

Recall that a valid move brings no two Cα atoms within 2.5Å of each other. To

quickly determine if this proximity constraint holds, we impose a three-dimensional

grid over the structure being built with boxes 2.5Å on each side. As each move is

made, its atoms are added to the grid, and for each addition the surrounding 26

boxes are checked for atoms violating the proximity constraint. In this fashion we

limit the number of actual distances that must be computed.

We further decrease the required time by sequentially checking neighbors at

each position down the amino acid chain. All atoms upstream of the insertion point

must be internally valid, as they have previously passed proximity checks. Thus, we

need only examine those atoms at or downstream from the insertion. This saves on

computation time within one iteration of checking all possible moves.

3. COMPUTATIONAL EXPERIMENTAL EVALUATION

3.1. Performance of the Greedy and Hill-climbing Algorithms

To compare the effectiveness of the Greedy and Hill-climbing optimization tech-

niques, we report results from a series of computational experiments in which we

vary a number of parameters. Table 2 shows results for the Greedy and Hill-climbing

optimization techniques using k-mer sizes of 9, 6, and 3 individually, as well as using

the scan and pool techniques to combine them. Average times are also reported for

each of these five fragment selection schemes. All times are from machines running

dual core 2 Ghz AMD Opteron 270 processors with 4 GB of system memory.

Examining Table 2, we see that the Hill-climbing algorithm consistently out-

Table 2. Average values over 276 proteins optimized using Hill-climbing and different locking
schemes. Times are in seconds and scores are in Å. Lower is better in both cases.

n = 25 n = 50 n = 75 n = 100
Score Time Score Time Score Time Score Time

Greedy

k = 9 9.07 11 8.20 14 7.77 18 7.38 22
k = 6 8.76 12 7.98 17 7.50 22 7.21 27
k = 3 8.20 15 7.51 22 7.08 30 6.80 39
Scan 7.19 33 6.49 40 6.00 48 5.79 56
Pool 7.06 41 6.34 58 5.94 76 5.57 97

Hill-
climbing
(coarse)
(HCc)

k = 9 6.70 49 5.99 98 5.54 143 5.29 226
k = 6 6.46 65 5.67 124 5.23 221 4.93 279
k = 3 6.07 76 5.35 182 4.92 313 4.68 433
Scan 5.07 120 4.47 216 4.01 333 3.76 517
Pool 5.06 341 4.33 912 3.96 1588 3.74 1833

Hill-
climbing
(fine)
(HCf )

k = 9 5.81 357 4.96 1314 4.53 2656 4.30 4978
k = 6 5.67 352 4.76 1417 4.30 3277 3.99 5392
k = 3 5.56 390 4.60 1561 4.10 3837 3.87 6369
Scan 4.65 736 3.92 2878 3.37 6237 3.17 10677
Pool 4.30 1997 3.56 7101 3.14 18000 2.87 21746
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performs the Greedy algorithm. As Hill-climbing includes running Greedy to con-

vergence, the result is not surprising, and neither is the increased run-time that

Hill-climbing requires. Both schemes seem to take advantage of the increased flexi-

bility of smaller fragments and greater numbers of fragments per position. For ex-

ample, on the average the 3-mer results are 9.4%, 12.0%, and 8.5% better than the

corresponding 9-mer results for Greedy, Hill-climbing (coarse) (hereafter HCc) and

Hill-climbing (fine) (hereafter HCf ), respectively. Similarly, increasing the neighbor

lists from 25 to 100 yields a 23.1%, 31.6%, and 43.6% improvement for Greedy,

HCc, and HCf , respectively. These results also show that the search algorithms

embedded in Greedy, HCc, and HCf are progressively more powerful as the size of

the overall search space increases.

With respect to locking, a less restrictive fine-grained approach generally yields

better results than a coarse-grained scheme. For example, averaging over all experi-

ments, fine-grained locking yields a 21.2% improvement over coarse-grained locking.

However, this increased performance comes at the cost of an increase in run-time

of 1128% on the average.

Comparing the performance of the scan and pooling methods to combine variable

length k-mers we see that pool performs consistently better than scan by an average

of 4.4%. This improvement also comes at the cost of an increase in run time, which

in this case is 131.1% on the average. Results from the pool and scan settings clearly

indicate that Greedy and HCc are not as effective at exploring the search space as

HCf .

Table 3. SCOP classes and lengths for the
tuning set.

SCOP identifier length SCOP class

d1jiwi 105 beta
d1kpf 111 alpha+beta
d2mcm 112 beta
d1bea 116 alpha
d1ca1 2 121 beta
d1jiga 146 alpha
d1nbca 155 beta
d1yaca 204 alpha/beta
d1a8d 2 205 beta

d1aoza2 209 beta

3.2. Comparison with Simulated Annealing

3.2.1. Tuning the Performance of SA

Due to the sensitivity of Simulated Annealing to specific values for various pa-

rameters, we performed a search on a subset of the test proteins in an attempt
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to maximize the ability of SA to optimize the test structures. Specifically, we at-

tempted to find values for two governing factors: the initial temperature T0 and

the number of moves nm. To this end, we selected ten medium length proteins of

diverse secondary structural classification (see Table 3), and optimized them over

various initial temperatures. The initial temperature that yielded the best average

optimized RMSD was T0 = 0.1 and we used this value in all subsequent experiments.

In addition to an initial temperature, when using Simulated Annealing one must

select an appropriate annealing schedule. Our annealing schedule decreases the tem-

perature linearly over 3500 cycles. This allows for a smooth cooling of the system.

Over the course of these cycles, the algorithm attempts α × (l × n) moves, where

α is an empirically determined scaling factor, l is the number of amino acids in the

query protein, and n is the number of neighbors per position. Note that for the

scan and pool techniques (see Section 2.2), we allow SA three times the number

of attempted moves because the total number of neighbors is that much larger. In

order to produce comparable run-times to the G, HCc and HCf schemes, α values

of 20, 100 and 200 are employed, respectively. Finally, following recent work 19 we

allowed for a temporary increase in the temperature after 150 consecutive rejected

moves.

External to the annealing schedule, running Simulated Annealing multiple times

with different seeds produces a different result each time. We call the number of

complete iterations r. For both α = 20 and α = 100 we set r to one and for α = 200

we set r to five.

3.2.2. Results

The Simulated Annealing results are summarized in Table 4. As we see in this table,

Simulated Annealing consistently outperforms the Greedy scheme. Specifically, the

average performance of SA with α = 20 is 15.1% better than that obtained by G.

These performance comparisons are obtained by averaging the ratios between the

two schemes of the corresponding RMSDs over all fragment selection schemes and

values of n. The superior performance of Simulated Annealing over Greedy is to be

expected, as Greedy lacks any sort of hill-climbing ability, whereas the stochastic

nature of Simulated Annealing allows it a chance of overcoming locally optimal

solutions. In contrast, both the fine and coarse-locking versions of Hill-climbing

outperform SA. More concretely, on the average HCc performs 22.8% better than

SA with α = 100, and HCf performs 36.6% better than SA with α = 200, r = 5.

Furthermore, HCc performs 14% better than SA with α = 200, r = 5, while taking

an average of 495.5% less time.

Analyzing the results shown in Table 4, the performance occasionally decreases

as the α value increases. This ostensibly strange result comes from the dependence

of the cooling process on the number of allowed moves, in which the value of α plays

a role. For all entries in Table 4 the annealing schedule will cool the system over a

fixed number of steps, but the number of moves made will vary greatly. Thus, in
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Table 4. Average values over 276 proteins optimized using Simulated Annealing. Times are in
seconds and scores are in Å. Lower is better in both cases.

n = 25 n = 50 n = 75 n = 100
Score Time Score Time Score Time Score Time

α = 20
r = 1

k = 9 7.88 25 6.99 31 6.54 36 6.28 42
k = 6 7.45 25 6.46 30 6.12 36 6.03 42
k = 3 6.78 25 6.01 31 5.87 37 5.81 43
Scan 6.10 74 5.53 92 5.39 109 5.38 128
Pool 5.93 75 5.84 94 6.00 112 6.13 132

α = 100
r = 1

k = 9 6.76 52 6.34 81 6.31 112 6.28 145
k = 6 6.31 50 6.14 81 6.18 115 6.26 146
k = 3 6.05 52 6.21 84 6.34 118 6.40 155
Scan 5.60 147 5.52 240 5.55 341 5.60 438
Pool 5.99 156 6.23 265 6.34 352 6.38 447

α = 200
r = 5

k = 9 5.78 317 5.74 624 5.78 1000 5.80 1437
k = 6 5.66 327 5.83 653 5.89 981 5.94 1360
k = 3 5.89 336 6.09 674 6.13 1060 6.18 1473
Scan 5.12 1134 5.11 2174 5.11 3268 5.18 4305
Pool 5.68 1063 5.86 2164 5.92 3805 5.95 5355

Note: The values of α in the above table scale the number of moves Simulated Annealing is allowed
to make. In our case, the total number of moves is α × (l × n) where l is the length of the protein
being optimized and n is the number of neighbors per position. The value of r is the number of
independent runs attempted, from which the best possible value is taken.

order to keep the cooling of the system linear we vary the number of moves allowed

before the system reduces its temperature. As a result, different values of α can

lead to different randomly chosen optimization paths.

Comparing the performance of the various optimization schemes with respect

to the various fragment selection schemes, we see an interesting trend. The perfor-

mance of SA deteriorates (by 9.9% on the average) when the different length k-mers

are used via the pool method, whereas the performance of HCf improves (by 4.4%

on average). We are currently investigating the source of this behavior, but one

possible explanation is that Simulated Annealing has a bias towards smaller frag-

ments. This bias might result because an insertion of a bad 3-mer will degrade the

structure less than that of a bad 9-mer, and as a result, the likelihood of accepting

the former move will be higher (Equation 2). This may reduce the optimizers ability

to effectively utilize the variable length k-mers.

Performance on Different Length Sequences To better understand how

the length of the sequences affects the performance of the different optimization

schemes, we divided the 276 proteins of our test set into two halves. The first

contains the 138 shortest sequences, whereas the second contains the 138 longest

sequences. The length of the proteins in the first set ranged from 33—140 with

an average length of 99.1±27.0, whereas the length of the proteins in the second

set ranged from 141—759 with an average length of 248.7±114.3. Fig. 1 shows the
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Fig. 1. Percent improvement of Greedy based algorithms over Simulated Annealing.

relative improvement of G, HCc, and HCf as compared to SA with α equal to 20,

100, and 200, respectively for these subsets as well as the entire set of proteins.

Even though the overall trends in this figure agree with those observed for all the

proteins, a key point is that the relative performance of the various schemes does

depend on the length of the proteins. For the longer sequences, the improvement

of the Hill-climbing scheme over Simulated Annealing is higher than that achieved

for the shorter sequences, whereas the Greedy scheme does relatively worse than

Simulated Annealing as the length of the proteins increases. For example, comparing

G and SA for α = 20, G performs 12.1% worse for the shortest sequences, as opposed

to 13.6% worse for the longest sequences. Comparing HCc and SA for α = 100, HCc

performs 28.4% better for the longest sequences as opposed to 13.1% for the shortest

sequences. Finally, comparing HCf and SA for α = 200 and with r set to five, HCf

is 46.1% better for the longest sequences, as opposed to 20.6% for the shortest

sequences. Since the search space associated with longer sequences is larger, these

results suggest that within an extended search space, (i) the hill-climbing ability is

important, and (ii) the HCc and HCf schemes are more effective in exploring large

search spaces than SA.

Performance on the Different SCOP Classes To study how the overall 3D

structure of the proteins affects the performance of the different optimization
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Fig. 2. Percent improvement of Greedy based algorithms over Simulated Annealing.

schemes we also divide the proteins in our test set according to their SCOP class

(i.e., α, β, α/β, and α+ β). Fig. 2 shows the relative improvements achieved by G,

HCc, and HCf over SA for each of these four subsets. Recall from the discussion in

Section 2.1 that our test set contains the same number (69) of proteins from each

SCOP class.

These results show that the relative performance of the different schemes does

depend on the overall structure of the proteins being reconstructed. Even though

the relative performance of the various optimization schemes for α, β and α/β

proteins shows little variation, there is a marked difference between the α+ β class

and the other three. We believe that this variation is primarily due to the fact that

proteins belonging to the α + β class tend to be longer than those belonging to

the other classes. In the test set, the average length is 134.71±91.3 for α proteins,

153.2±96.6 for β proteins, 252.3±139.9 for α/β proteins and 155.3±68.6 for α+ β

proteins. As the results in Fig. 1 show, the hill-climbing schemes show a higher

relative improvement on the longer sequences, so it is not surprising that the biggest

improvement is in the class with the largest average length.
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4. RELATED RESEARCH

Several different approaches have been applied to the problem of optimizing frag-

ment placement. Historically, the stochastic nature of evolutionary and energetic

processes have motivated the use of random algorithms. In addition to Simulated

Annealing, described in section 2.5.1 genetic algorithms have been used for some

time 8,9,3 in structure prediction. The basic idea behind genetic optimizations is

to allow for a random population of candidates to evolve under selection to a

near-global optimum. Applied to structure prediction, a set of working structures

constitutes a population, and the objective function provides selection. Modifica-

tions to a structure’s coordinates provide the raw material for the simulated evo-

lution. In the early years, such algorithms made simple modifications to individual

dihedral angles (mutations) or swapped sets of dihedral angles between working

structures (recombinations). As the field has progressed, more complicated confor-

mational changes have allowed for a better optimization of the objective function.

Although the dihedral angles must still be the eventual target of such operations,

using UNDERTAKER9 as an example, the optimization can replace multiple frag-

ments simultaneously, make rigid body movements of disconnected portions and

move side-chains independently from the backbone.

A recently developed third approach, called conformational space annealing 12,

incorporates aspects of both Simulated Annealing and genetic algorithms. A set

of structures provides a so-called bank, which is similar to a population in genetic

algorithms. As the optimization progresses, structures from this bank are modified

or discarded based on the value of the objective function and an annealing parame-

ter. As in Simulated Annealing, this parameter is slowly changed to focus more and

more on better values of the objective function. Thus the optimization can maintain

diversity in the bank in early stages while still finding good values of the objective

function in later stages.

An interesting similarity between both Simulated Annealing-based approaches

and genetic algorithms is that the objective function can be directly linked to the

optimization algorithm. Genetic algorithms can modify the rate at which certain

modifications are made based on previous results 9, and Simulated Annealing can

incorporate different terms of the objective function at different temperatures 19,

and/or modify its temperature based on the current value of that function. In the

algorithms this paper presents, the optimization technique is decoupled from the

objective function.

Recently, greedy techniques have been applied to problems similar to the one this

paper addresses. The first problem is to determine a set of representative fragments

for use in decoy structure construction 17,11. The second problem is to reconstruct

a native protein fold given such a set of representative fragments 21,22. The greedy

approaches used for both these problems traverse the query sequence in order,

inserting the best found fragment for each position. As an extension, the algorithms

build multiple structures simultaneously in the search for a better structure. While
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such approaches have the ability to avoid local minima, they lack an explicit notion

of hill-climbing.

The techniques this paper describes could be modified to solve either of the

above two problems. To build a representative set of fragments, one could track the

frequency of fragment use within multiple Hill-climbing optimizations of different

proteins. This would yield a large set of fragments, which could serve as input to

a clustering algorithm. The centroids of these clusters could then be used in decoy

construction. In order to construct a native fold from these fragments one need only

restrict the move options of Hill-climbing to the representative set. We are currently

working on adapting our algorithms to solve these problems.

The algorithms presented in this paper can be easily parallelized to further

reduce the elapsed amount of time taken by the optimizers. The rate-limiting step

in both the Hill-climbing and Greedy algorithms is determining the valid move

that achieves the maximum gain over all positions of the chain. This step can be

performed in parallel by having each processor check a subset of the moves and then

selecting the best move among the processors via a global reduction operation. This

approach will essentially parallelize the inner-most (and most expensive) loop of the

overall computation and will dramatically reduce the amount of time taken by the

algorithm.

5. CONCLUSION

This paper presents two new techniques for optimizing scoring functions for pro-

tein structure prediction. One of these approaches, HCc, using the scan technique,

reaches better solutions than Simulated Annealing in comparable time. The per-

formance of SA seems to saturate beyond α = 50, but HCf will make use of an

increased time allowance, finding the best solutions of all the examined algorithms.

Furthermore, experiments with variations on the number of moves available to the

optimizer demonstrate that the Hill-climbing approach makes better use of an ex-

panded search space than Simulated Annealing. Additionally, Simulated Annealing

requires the hand-tuning of several parameters, including the total number of moves,

the initial temperature, and the annealing schedule. One of the main advantages

of using schemes like Greedy and Hill-climbing is that they do not rely on such

parameters.

The sole focus of this paper is on developing better optimization methods. How-

ever, within the context of fragment-assembly-based ab initio protein structure pre-

diction, the objective function (i.e., the energy function) that is optimized is also

critical. Currently deployed energy functions 20,8,12 do not perfectly correlate with

the native conformation of the proteins. Consequently, the global optimum solution

may not necessarily correspond to the native state. Nevertheless, we believe that,

irrespective of the objective function, the presented approaches lead to better so-

lutions. Whether or not these better solutions correspond to better structures will

depend on the quality of the objective function, which by itself is a very active
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research field.
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