Fast & Effective Lossy Compression Algorithms
for Scientific Datasets

Jeremy Iverson', Chandrika Kamath?, and George Karypis!

L University of Minnesota, Minneapolis MN 55455, USA
2 Lawrence Livermore National Laboratory, Livermore CA 94550, USA

Abstract. This paper focuses on developing effective and efficient algo-
rithms for compressing scientific simulation data computed on structured
and unstructured grids. A paradigm for lossy compression of this data is
proposed in which the data computed on the grid is modeled as a graph,
which gets decomposed into sets of vertices which satisfy a user defined er-
ror constraint e. Each set of vertices is replaced by a constant value with
reconstruction error bounded by e. A comprehensive set of experiments is
conducted by comparing these algorithms and other state-of-the-art scien-
tific data compression methods. Over our benchmark suite, our methods
obtained compression of 1% of the original size with average PSNR of 43.00
and 3% of the original size with average PSNR of 63.30. In addition, our
schemes outperform other state-of-the-art lossy compression approaches and
require on the average 25% of the space required by them for similar or better
PSNR levels.

1 Introduction

The process of scientific discovery often requires scientists to run simulations, ana-
lyze the output, draw conclusions, then re-run the simulations to confirm or expand
hypothesis. One of the most significant bottlenecks for current and future extreme-
scale systems is I/O. In order to facilitate the scientific process described above,
it is necessary for scientists to have efficient means to output and store data for
offline analysis. To facilitate this, data compression is turned to, to create reduced
representations of the resulting data for output, in such a way that the original
result data can be reconstructed off-line for further analysis.

Straightforward approaches for scientific data compression exist in lossless tech-
niques designed specifically for floating-point data. However, due to the high vari-
ability of the representation of floating-point numbers at the hardware level, the
compression factors realized by these schemes are often very modest [4,10]. Since
most post-run analysis is robust in the presence of some degree of error, it is possi-
ble to employ lossy compression techniques rather than lossless, which are capable
of achieving much higher compression rates at the cost of a small amount of re-
construction error. As a result, a number of approaches have been investigated for
lossy compression of scientific simulation datasets including classical [7] and diffu-
sion wavelets [3], spectral methods [5], and methods based on the techniques used
for transmission of HDTV signals [2]. However, these approaches are either applica-
ble only to simulations performed on structured grids or have high computational
requirements for in situ data compression applications.

In this paper we investigate the effectiveness of a class of lossy compression ap-
proaches that replace the actual values associated with sets of grid-nodes with a
constant value whose difference from the actual value is bounded by a user-supplied
error tolerance parameter. We develop approaches for obtaining these sets by con-
sidering only the nodes and their values and approaches that constrain these sets
to connected subgraphs in order to further reduce the amount of information that
needs to be stored. To ensure that these methods are applicable for in situ com-
pression applications, our work focuses on methods that have near-linear complexity
and are equally applicable to structured and unstructured grids. We experimentally
evaluate the performance of our approaches and compare it against that of other
state-of-the-art data compression methods for scientific simulation datasets. Over
our benchmark suite, our methods obtained compression of 1% of the original size
with average PSNR of 43.00 and 3% of the original size with average PSNR of 63.30.
Our experiments show that our methods achieve compressed representations, which
on average, require 50%-75% less space than competing schemes at similar or lower
reconstruction errors.

2 Definitions and Notations

The methods developed in this paper are designed for scientific simulations in which
the underlying physical domain is modeled by a grid. Here we assume that the grid
topology is fixed and thus can be compressed and stored separately from the data
which is computed on it. Each node of a grid has one or more values associated with
it that correspond to the quantities being computed in the course of the simulation.
The grid can be either structured or unstructured. A structured grid is a collection
of elements which have an implicit geometric structure. That structure is a basic
rectangular matrix structure, such that in IR?, the nodes can be indexed by a triplet
(x,y, z). Thus, the grid topology can be described simply by the number of nodes in
each of the three dimensions. An unstructured grid has no implicit structure. Since
there is no implicit structure, the topology is described by identifying the elements
which each node belongs to.

In this work, we model these grids via a graph G = (V, E, L). The set of vertices
V', models the nodes of the grid for which values are computed. The set of edges F,
models the connectivity of adjacent nodes. Two nodes are adjacent if they belong to
the same element in the grid. The set of vertex-labels L, models the values computed
at each node of the grid such that I; stores the value computed for node v;. In this
work we assume there is only one value being computed for each node of the grid.

An e-bounded set-based decomposition of G is a partitioning of its set of vertices
into non-overlapping sets {V1, ..., V4 } such that for each V;, Vv, v, € Vi, |l,—1| <€
(i.e., each set contains vertices whose values differ at most by €). When the induced
subgraph R; = (V;, E;) of G is connected, the set V; will also be referred to as a region
of G. When all sets in an e-bounded set-based decomposition form regions, then the
decomposition will be referred to as an e-bounded region-based decomposition of G.
Given a set of vertices V;, the average value of its vertices will be referred to as its
mean value and will be denoted by u(V;). Given a region V;, its boundary vertices
are its subset of vertices B; C V; that are adjacent to at least one other vertex not
in V;, and its interior vertices are the subset of vertices I; C V; that are adjacent
only to vertices in V;. Note that I, U B; = V.

3 Related Work

Most of the work on lossy compression of scientific datasets has focused on compress-
ing the simulation output for visualization purposes. The most popular techniques
in this area are based on wavelet theory [7] that produces a compression-friendly
sparse representation of the original data. To further sparsify this representation, co-
efficients with small magnitude are dropped with little impact on the reconstruction
error [8,9]. Due to the nature of the wavelet transform, classical wavelet methods
apply only to structured grids. An alternative to wavelet compression is Adaptive
Coarsening (AC) [11]. AC is an extension of the adaptive sub-sampling technique
first introduced for transmitting HDTV signals [2], which is based on down-sampling
a mesh in areas which can be reconstructed within some error tolerance and stor-
ing at full resolution the others. In [12], the authors use AC to compress data on
structured grids and compare the results to wavelet methods. Even though AC can
potentially be extended for unstructured grids [11], current implementations are
limited to structured grids.

Another approach is spectral compression that extends the discrete cosine trans-
form used in JPEG, from 2D regular grids to the space of any dimensional unstruc-
tured grids [5]. This method uses the Laplacian matrix of the grid to compute topol-
ogy aware basis functions. The basis functions serve the same purpose as those in
the wavelet methods and define a space where the data can be projected to, in order
to obtain a sparse representation. Since the Laplacian matrix can be defined for the
nodes of any grid, this method is not limited to structured grids. However, deriving
the basis functions from the Laplacian matrix of large graphs is computationally
prohibitive. For this reason, practical approaches first use a graph partitioning al-
gorithm to decompose the underlying graph into small parts, and each partition is
then compressed independently using spectral compression [5]. Finally, another ap-
proach, introduced in [3], is diffusion wavelets. The motivation for diffusion wavelets
is the same as that of spectral compression, and is used to generate basis functions
for a graph. However, instead of using the eigenvectors of the Laplacian matrix to
derive these basis functions, diffusion wavelets generate them by taking powers of
a diffusion operator. The advantage of diffusion wavelet is that its basis functions
capture characteristics of the graph at multiple resolutions, while spectral basis
functions only capture global characteristics.

4 Methods

In this work we investigated the effectiveness of a lossy compression paradigm for
grid-based scientific simulation datasets that replaces the values associated with
a set of nodes with a constant value whose difference from the actual values is
bounded. Specifically, given a graph G = (V, E, L) modeling the underling grid,
this paradigm computes an e-bounded set-based decomposition {Vi,...,Vi} of G
and replaces the values associated with all the nodes of each set V;, with its mean
value p(V;). This paradigm bounds the point-wise error to be no more than e,
whose actual value is explicitly controlled by the users based on their subsequent
analysis requirements. Since the values associated with the nodes tend to exhibit
local smoothness [1], these value substitutions increase the degree of redundancy,
which can potentially lead to better compression.

Following this paradigm, we developed two classes of approaches for obtaining
the e-bounded set-based decomposition of G. The first class focuses entirely on the
vertices of the grid and their values, where the second class also takes into account
the connectivity of these vertices in the graph. In addition, we developed different
approaches for encoding the information that needs to be stored on the disk in
order to maximize the overall compression. The description of these algorithms is
provided in the subsequent sections.

In developing these approaches, our research focused on algorithms whose un-
derlying computational complexity is low because we are interested in being able
to perform the compression in-situ with the execution of the scientific simulation
on future exascale-class parallel systems. As a result of this design choice, the algo-
rithms that we present tend to find sub-optimal solutions but do so in time that in
most cases is bounded by O(|V|]log |V |+ |E|).

4.1 Set-Based Decomposition

This class of methods derives the e-bounded set-based decomposition {Vi,..., Vi}
of the vertices by focusing entirely on their values. Towards this end, we developed
two different approaches. The first is designed to find the decomposition that has
the smallest cardinality (i.e., minimize k), whereas the second is designed to find a
decomposition that contains large-size sets.

The first approach, referred to as SBD1, operates as follows. The vertices of
G are sorted in non-decreasing order based on their values. Let (v;,,...,v;) be
the sequence of the vertices according to this ordering, where n is the number of
vertices in G. The vertices are then scanned sequentially from v;, up to vertex v;;
such that I;; —1I;; < e and l;,,, —l;; > e. The vertices in the set {v;,..., v}
satisfy the constraint of an e-bounded set and are used to form a set of the set-
based decomposition. These vertices are then removed from the sorted sequence
and the above procedure is repeated on the remaining part of the sequence until it
becomes empty. It can be easily shown that the above greedy algorithm will produce
a set-based decomposition that has the smallest number of sets for a given e.

The second approach, referred to as SBD2, utilizes the same sorted sequence
of vertices (vj,,...,v;,) but it uses a different greedy strategy for constructing the
e-bounded sets. Specifically, it identifies the pair of vertices v;, and v;, such that
li, —l;, < e and r — q is maximized. The vertices in the set {v;_,...,v;, } satisfy the
constraint of an e-bounded set and are used to form a set of the set-based decompo-
sition. The original sequence is then partitioned into two parts: (v;,,...v;,_,) and
(Vi,1s---,0i,), and the above procedure is repeated recursively on each of these
subsequences. Note that the greedy decision in this approach is that of finding a set
that has the most vertices (by maximizing r — ¢). It can be shown that SDB2 will
lead to a decomposition whose maximum cardinality set will be at least as large as
the maximum cardinality set of SBD1 and that the cardinality of the decomposition
can be greater than that of SDB1’s decomposition.

Decomposition Encoding We developed two approaches for encoding the ver-
tex values derived from the e-bounded set-based decomposition. In both of these
approaches, the encoded information is then further compressed using standard
lossless compression methods such as GZIP, BZIP2, and LZMA.

The first approach uses scalar quantization and utilizes a pair of arrays @ and
M. Array @ is of size k (the cardinality of the decomposition) and Q[i] stores the
mean value u(V;) of V;. Array M is of size n (the number of vertices) and M|j]
stores the number of the set that vertex v; belongs to. During reconstruction, the
value of v; is given by Q[M[j]]. Since for reasonable values of €, k < n, the number
of distinct values in M will be small, leading to a high degree of redundancy that
can be exploited by the subsequent lossless compression step. We will refer to this
approach as scalar quantization encoding and denote it by SQF.

The second approach encodes the information by sequentially storing the vertices
that belong to each set of the decomposition. Specifically, it uses three arrays @, S,
and P, of sizes k, k, and n, respectively. Array @ is identical to the @ array of SQE
and array S stores the number of vertices in each set (i.e., S[i] = |V;]). Array P is
used to store the vertices of each set in consecutive positions, starting with those
of set Vi, followed by V5, and so on. The vertices of each set are stored by first
sorting them in increasing order based on their number and then representing them
using a differential encoding scheme. The smallest numbered vertex of each set is
stored as is and the number of each successive vertex is stored as the difference
from the preceding vertex number. Since each vertex-set will likely have a large
number of vertices, the differential encoding of the sorted vertex lists will tend to
consist of many small values, and thus increase the amount of redundancy that
can be exploited by the subsequent lossless compression step. We will refer to this
approach as differential encoding and denote it by DE.

Vertex Ordering To achieve good compression using the above encoding schemes,
vertices which are close in the vertex ordering should have similar values. Towards
this end, we investigate three vertex orderings which are as follows. The first is the
original ordering of the nodes, that is often derived by the grid generator and tends
to have a spatial coherence. The second ordering is a breadth first traversal of the
graph starting from a randomly selected vertex. The third ordering is a priority
first traversal, in which priority is given to those vertices which are adjacent to the
most vertices which have been previously visited. Arranging the vertices according
to their visit order is intended to put together in the ordering vertices that are close
in the graph topology. Due to the local smoothness of values, vertices that appear
close in the ordering will share similar values.

4.2 Region-Based Decomposition

This class of methods derives an e-bounded set-based decomposition {Vi,..., Vi}
by requiring that each set V; also forms a region (i.e., its induced subgraph of G
is connected). The motivation behind this region-based decomposition is to reduce
the amount of data that needs to be stored by only writing information about V;’s
boundary vertices and a select few of its interior vertices. During reconstruction, by
taking advantage of V;’s connectivity, its non-saved interior vertices can be identified
by a depth- or breadth-first traversal of G starting at the saved interior vertices and
terminating at its boundary vertices. The set of vertices visited in the course of this
traversal will be exactly those in V;. From this discussion, we see that the amount of
compression that can be achieved by this class of methods is directly impacted by
the number of boundary vertices that must be stored. Thus, the region identification

approaches must try to reduce the number of boundary vertices. Towards this end,
we developed three different heuristic approaches whose description follows.

The first approach, referred to as RBD1 , is designed to compute a decompo-
sition that minimizes the number of regions. The motivation behind this approach
is that by increasing the average size of each region (due to a reduction in the de-
composition’s cardinality), the number of interior vertices will also increase. RBD1
initially sorts the vertices in a way identical to SBD1, leading to the sorted sequence
s = (Viy,...,v;,). Then, it selects the first vertex in the sequence (v;,), assigns it
to the first region V7, and removes it from s. It then proceeds to select from s a
vertex v;; that is adjacent to at least one vertex in V; and lvij — Iy, <€, inserts it
into V7, and removes it from s. This step is repeated until no such vertex can be
selected or s becomes empty. The above algorithm ensures that V; is an e-bounded
set and that the subgraph of G induced by V; is connected. Thus, V; is a region
and is included in the region-based decomposition. The above procedure is then
repeated on the vertices remaining in s, each time identifying an additional region
that is included in the decomposition. Note that unlike the algorithm for SBD1, the
above algorithm does not guarantee that it will identify the e-bounded region-based
decomposition that has the minimum number of regions.

The second approach, referred to as RBD2 | is designed to compute a decom-
position that contains large regions, as the regions that contain a large number of
vertices will also tend to contain many interior vertices. One way of developing such
an algorithm is to use the greedy approach similar to that employed by SBD2 to
repeatedly find the largest region from the unassigned vertices and include it in
the decomposition. However, due to the region’s connectivity requirement, this is
computationally prohibitive. For this reason, we developed an algorithm that con-
sists of two steps. The first step is to obtain an e-bounded set-based decomposition
{V1,...,V;} using SBD1. The second step is to compute an e-bounded region-based
decomposition of each set V;. The union of these regions over Vi, ..., Vj is then used
as the region-based decomposition computed by RBD2. This two-step approach is
motivated by the following observation. One of the reasons that prevents RBD1
from identifying large regions is that it starts growing each successive region from
the lowest-valued unassigned vertex and does not stop until all of the unassigned
vertices adjacent to that region have values that will violate the € bound. This will
tend to fragment subsequent regions as the are constrained by the initial vertices
that have low values. RBD2, by forcing RBD1’s region identification algorithm to
stay within each set V;, prevents this from happening and as our experiments will
later show, lead to a decomposition that has smaller number of boundary vertices
and better compression.

Finally, the third approach, referred to as RBDS3 , is designed to directly compute
a decomposition whose regions have a large number of interior vertices. It consists
of three distinct phases. The first phase identifies a set of core regions that contain
at least one interior vertex, the second phase expands these regions by including
additional vertices to them, and the third phase creates non-core regions. Let V' be
the subset of vertices of V' such that Vv € V'’ v Uadj(v) is an e-bounded set, where
adj(v) is the set of vertices adjacent to v. A core region, V;, is created as follows. An
unassigned vertex v € V' whose adjacent vertices are also unassigned is randomly
selected and v U adj(v) is inserted into V;. Then the algorithm proceeds to identify

an unassigned vertex u € V’/ such that: (i) it is connected to at least one vertex in
Vi, (i) all the vertices in adj(u) \ V; are also unassigned, and (iii) V; U {u} U adj(u)
is an e-bounded set. If such a vertex u exists, then u and adj(u) \ V; are inserted
into V;. If no such vertex exists, then V;’s expansion stops. The above procedure is
repeated until no more core regions can be created. Note that by including u and its
adj(u)\V; vertices into V;, we ensure that u becomes an interior vertex of V;. During
the second phase of the algorithm, the vertices that have not been assigned to any
region are considered. If a vertex v can be included to an existing region while the
resulting region remains an e-bounded set, then it is assigned to that. Finally, the
third phase is used to create additional regions containing the remaining unassigned
vertices (if they exist), which is done using RBD1.

Decomposition Encoding As discussed earlier, the region-based decomposition
allows us to reduce the storage requirements by storing only the boundary vertices
along with the interior vertices that are used as the seeds of the (depth- or breadth-
first) traversals. For each region V;, the set of seed-vertices If is determined as
follows. An interior vertex is randomly selected, added to I, and a traversal from
that vertex is performed terminating at V;’s boundary vertices. If any of V;’s interior
vertices has not been visited, then the above procedure is repeated on the unvisited
vertices, each time adding an additional source vertex into I7. In most cases, one
seed vertex will be sufficient to traverse all the interior vertices, but when regions
are contained within other regions, multiple seed vertices may be required. Also, in
the cases in which V; consists of only boundary vertices, I7 will be empty.

An additional storage optimization is possible, as there is no need to store the
boundary vertices for all the regions. In particular, consider a region V; and let
{Viy,..., Vi } be the set of its adjacent regions in the graph. We can then identify
Vi by performing a traversal from the vertices in I that terminates at the boundary
vertices of V;’s adjacent regions. All the vertices visited during that traversal (ex-
cluding the boundary vertices) along with I7 will be exactly the vertices of V;. Thus,
we can choose not to store V;’s boundary vertices as long as we store the bound-
ary vertices for all of its adjacent regions. In our algorithm, we choose the regions
whose boundary information will not be stored in a greedy fashion based on the size
of their boundaries. Specifically, we construct the region-to-region adjacency graph
(i.e., two regions are connected if they contain vertices that are adjacent to each
other), assign a weight to the vertex corresponding to V; that is equal to |B;| (i.e.,
the size of its boundary), and then identify the regions whose boundary information
will not be stored by finding a maximal weight independent set of vertices in this
graph using a greedy algorithm.

Given the above, we can now precisely describe how the region-based decom-
position is stored. Let {Vi,...,Vi} be the e-bounded region-based decomposition,
By, ..., By be the sets of boundary vertices that need to be stored (if no boundary
information is stored for a region due to the earlier optimization, then the corre-
sponding boundary set is empty), and I7, ..., I} be the sets of internal seed-vertices
that have been identified. Our method stores five arrays, Q, Ny, Ng, I7, and Ip.
The first three arrays are of length k, Iy is of length equal to the total number of
seed vertices (), [I7|), and Ip is of length equal to the total number of boundary
vertices (D, |B;|). Array @ stores the mean values of each region, whereas arrays

Table 1. Information about the various datasets.

Dataset v |[E| w(V) Grid Type Dataset V| |E| w(V) Grid Type
d1 486051 4335611 0.9958 unstruct. ds 31590144 94562224 0.0176 unstruct.
d2 589824 1744896 0.5430 struct. de6 41472000 123926400 0.2107 struct.
d3 1936470 15399496 0.9874 unstruct. d7 100663296 300744704 4.5644 struct.

d4 16777216 50102272 163.70 struct.

N; and Np store the number of seed and boundary vertices of each region, respec-
tively. Array I; stores the indices of the regions in consecutive order starting from
17, whereas array Ip is used to store the boundary vertices of each region in consec-
utive positions starting from B;. These indices are stored using the same differential
encoding approach described in Sect. 4.1 and like that approach, the results of this
encoding are further compressed using a standard lossless compression method.

5 Experimental Design & Results

Datasets We evaluated our algorithms using seven real world datasets obtained
from researchers at UMN and our colleagues at NASA and LLNL. These datasets
correspond to fluid turbulence and combustion simulations and contain both struc-
tured and unstructured grids. Their characteristics are shown in Table 1.

Evaluation Methodology & Metrics We measured the performance of the var-
ious approaches along two dimensions. The first is the error introduced by the lossy
compression and the second is the degree of compression that was achieved. The
error was measured using three different metrics: (i) the root mean squared error
(RMSE), (ii) the maximum point-wise error (MPE), and (iii) the peak signal-to-
noise ratio (PSNR). The RMSE is defined as

Vi

1 R
RMSE = \| gr 3l 1P (1)
=1

where [; is the original value of vertex v; and [j, is its reconstructed value. The
MPE is defined as . .
MPE:maX(“l*ll|a~~a|ln*ln|)» (2)

which is the £,.-norm of the point-wise error vector. The MPE measure is presented
in tandem with RMSE to identify those algorithms which achieve low RMSE, but
sustain high point-wise errors. Finally, the PSNR is defined as

max(z, ..., Tn)
PSNR =20-1o —_—], 3
€10 (RMSE) (3)
which is a normalized error measure; thus, facilitating comparisons of error between
datasets with values that differ greatly in magnitude. The compression effectiveness
was measured by computing the compression ratio (CR) of each method, which is

defined as follows:)
compressed size

CR = (4)

uncompressed size

The wavelet and spectral methods were implemented in Matlab®. The spectral
method uses METIS [6] as a pre-processing step to partition the graph before com-
pressing. The adaptive coarsening implementation was acquired from the authors

Table 2. Set-based compression results.

Dataset Method k Original BFT PET
SQE DE SQE DE SQE DE
w SBD1 22 2.39E-02 3.58E-02 6.32E-02 4.29E-02 5.97E-02 4.43E-02
SBD2 32 2.48E-02 3.53E-02 6.35E-02 4.31E-02 5.99E-02 4.27E-02
w SBD1 19 2.51E-03 7.66E-03 4.47E-02 7.35E-02 4.26E-03 1.81E-02
SBD2 28 3.47E-03 1.04E-02 5.91E-02 8.44E-02 5.72E-03 2.15E-02
w SBD1 33 1.27E-02 2.34E-02 6.65E-02 3.33E-02 6.53E-02 3.33E-02
SBD2 47 1.22B-02 2.21E-02 6.52E-02 3.21E-02 6.40E-02 3.16E-02
w SBD1 33 2.63E-03 2.98E-03 2.18E-02 1.85E-02 3.28E-03 5.62E-03
SBD2 38 3.01E-03 3.15E-03 2.30E-02 1.90E-02 3.67E-03 6.29E-03
s SBD1 45 3.22B-03 4.00E-03 2.90E-02 2.29E-02 1.60B-02 1.84E-02
SBD2 64 3.13E-03 3.T1E-03 2.89E-02 2.11E-02 1.60E-02 1.68E-02
w© SBDL 17 9.30E-03 1.90E-02 1.90E-02 2.28E-02 1.03E-02 1.97E-02
SBD2 29 9.87E-03 2.03E-02 2.19E-02 2.35E-02 1.09E-02 2.11E-02
@ SBD1 40 2.82E-02 6.01E-02 3.80E-02 6.79E-02 3.08E-02 6.15E-02
SBD2 56 2.85E-02 6.05E-02 3.85E-02 6.83E-02 3.11E-02 6.20E-02

of [12] and modified to provide the statistics necessary for these experiments. All
algorithms described in Sect. 4 were implemented in C++. Finally, for the lossless
compression of the decomposition encodings, we used LZMA compression (7-zip’s
implementation) as it resulted in better compression than either GZIP or BZIP2.
In addition, the same LZMA-based compression was applied to the output of the
spectral and wavelet-based compressions. Note that AC does not need that because
it achieves its compression by coarsening the graph and reducing the data output.

6 Results

Our experimental evaluation is done in two parts. First, we select a fixed set of values
for RMSE and compare the various algorithmic choices for the set- and region-based
decomposition approaches in terms of their compression ability. Second, we compare
the compression performance of the best combinations of these schemes against that
achieved by other approaches for two different levels of lossy compression errors.

6.1 Set-Based Decomposition
Table 2 shows the compression performance achieved by SBD1 and SBD2 for the
different datasets across the different vertex ordering and decomposition encoding
schemes described in Section 4.1. These results show that SBD1 tends to perform
somewhat better than SBD2 and on average, it requires 5% less storage for each
specific combination of decomposition encoding and vertex ordering scheme. This
can be attributed to the fact that the cardinality of its decomposition is often
considerably lower than SBD2’s (shown in the column labeled “k”), which tends to
outweigh the benefits achieved by the few larger sets identified by SBD2.
Comparing the performance of the decomposition encoding schemes (SQE and
DE), we see that SQE performs considerably better across both decomposition
methods and ordering schemes. On the average, SQE requires only 75% of the
storage of DE. These results suggest that when compared to scalar quantization,
the differential encoding of the vertices in each set is not as effective in introducing
redundancy in the encoding, which in turn reduces the compression that can be
obtained by the lossless LZMA compression. Finally, comparing the performance of
the three vertex ordering schemes, we see that the original ordering leads to greater
compression than either of the other two. As discussed in Section 4.1, this ordering

Table 3. Region-based compression results.

Dataset Method IR| NB Original BFT PFT
at RBD1 152 153567 3.97E-02 2.94E-02 4.36E-02
RBD2 174 105705 2.71E-02 1.91E-02 2.97E-02
RBD3 1100 104181 3.93E-02 3.37E-02 4.05E-02
W RBD1 852 399593 1.19E-02 6.22E-02 2.02E-02
RBD2 1016 393802 1.19E-02 5.92E-02 1.99E-02
RBD3 4776 360609 3.80E-02 9.99E-02 5.47E-02
a3 RBD1 312 312220 1.73E-02 2.03E-02 1.33E-02
RBD2 361 248773 1.31E-02 1.57E-02 1.05E-02
RBD3 1667 271304 1.81E-02 2.00E-02 1.51E-02
aa RBD1 51210 1503191 6.30E-03 1.65E-02 1.11E-02
RBD2 60301 1500247 5.67E-03 1.55E-02 9.99E-03
RBD3 94704 1511615 1.22E-02 2.29E-02 1.85E-02
s RBD1 23025 5832563 5.17E-03 1.81E-02 1.11E-02
RBD2 29358 3883703 3.55E-03 1.12E-02 6.76E-03
RBD3 107479 3910251 1.37E-02 2.58E-02 1.82E-02
a6 RBD1 69875 11435672 3.62E-02 4.83E-02 4.59E-02
RBD2 95618 5007376 1.87E-02 2.25E-02 2.09E-02
RBD3 281600 5112178 2.92E-02 3.81E-02 3.90E-02
a7 RBD1 358720 73369522 1.02E-01 1.33E-01 1.35E-01
RBD2 357382 36819989 5.60E-02 6.62E-02 6.23E-02
RBD3 2055003 38992553 9.48E-02 1.19E-01 1.25E-01

NB: number of boundary nodes after applying storage optimization discussed in Sect. 4.1

utilizes information from the underlying grid geometry, and as such it has a higher
degree of regularity, leading to better compression. With respect to the other two
methods, we see that PFT tends to perform better than BFT.

6.2 Region-Based Decomposition

Table 3 shows various statistics of the decompositions computed by RBD1, RBD2,
and RBD3 for the different datasets and their compression performance for the
three vertex ordering schemes. In terms of the number of regions into which G
is decomposed, we see that RBD1 results in the least number of regions, whereas
RBD3 identifies a considerably greater number of regions (often 2-7 times more
regions than RBD1). We also see that RBD2 only identifies slightly more regions
than RBD1 (about 18% more on average). In terms of the number of boundary
vertices that need to be stored by each decomposition, we see an inversion of the
previous results. RBD2 and RBD3 produce the smallest boundary sets, typically
being within about 5% of each other, whereas RBD1 produces boundary sets which
are considerably larger, in some cases, more than twice the size of those required
by RBD2 and RBD3. These results suggest that the region identification heuristics
employed by RBD2 and RBD3 are quite effective in minimizing the total number
of boundary vertices, even though they find more regions.

In terms of compression performance, we see that across all datasets RBD2 re-
sults in the lowest compression ratio. On the average, RBD2 requires only 70% of
the storage of RBD1 and 56% of RBD3. Contrasting this with the number of bound-
ary vertices identified by each approach, we see that there is a direct correlation,
based on the size of the boundary vertex set, between RBD1 and RBD2 in terms
of which approach results in lower compression ratio and by how much. RBD3 does
not share in this correlation, due to its significantly higher number of regions.

6.3 Comparison with Other Methods

In our last set of experiments, we compare the performance of the best-performing
combinations of the set- and region-based decomposition approaches (SBD1 with

Table 4. Comparison of scientific data compression algorithms for two different rmse.

info high error tolerance low error tolerance
Dataset Algorithm RMSE PSNR MPE CR RMSE PSNR MPE CR
SBD1 6.30E-03 4.64E+01 1.89E-02 2.39E-02 6.66E-04 6.60E+01 1.86E-03 7.80E-02
di RBD2 6.28E-03 4.65E+01 1.89E-02 2.52E-02 6.38E-04 6.63E+01 2.12E-03 1.28E-01
Spctrl 6.37E-03 4.63E+01 1.11E-01 4.00E-02 3.90E-03 5.06E+01 7.14E-02 1.05E-01
SBD1 2.92E-02 3.60E+01 7.33E-02 2.51E-03 2.50E-03 5.74E+01 7.7T1E-03 1.27E-02
RBD2 2.88E-02 3.61E+01 8.02E-02 5.02E-03 1.91E-03 5.97E+01 7.7T1E-03 6.57E-02
d2 Wvlt 3.10E-02 3.55E+01 2.34E-01 2.00E-02 2.59E-03 5.70E+01 2.38E-02 1.15E-01
Spctrl 3.17E-02 3.53E+01 7.34E-01 4.50E-02 7.04E-03 4.84E+01 3.56E-01 1.30E-01
AC 3.31E-02 3.49E+01 1.50E-01 1.86E-02 6.80E-03 4.8TE+01 7.19E-01 5.17E-02
SBD1 5.22E-03 4.88E+01 1.91E-02 1.27E-02 4.79E-04 6.96E+01 2.05E-03 3.56E-02
d3 RBD2 5.18E-03 4.89E+01 1.93E-02 1.33E-02 4.54E-04 7.00E+01 2.07E-03 4.33E-02
Spctrl 5.27E-03 4.87E+01 2.14E-01 4.50E-02 3.31E-03 5.28E+01 1.35E-01 1.00E-01
SBD1 2.36E+01 4.70E+01 1.63E+02 2.63E-03 2.43E+00 6.68E+01 1.34E+01 1.02E-02
RBD2 2.05E+01 4.83E+01 1.65E+02 6.30E-03 2.00E+00 6.85E+01 1.36E+01 3.51E-02
d4 Wvlt 2.47E+01 4.66E+01 6.86E+02 7.50E-03 2.64E+00 6.61E+01 4.87E+01 2.50E-02
Spctrl 2.57E+01 4.63E+01 1.78E+03 3.50E-02 3.92E+00 6.26E+01 3.59E+02 1.95E-01
AC 2.30E+01 4.73E+01 3.01E+03 2.15E-02 - - - -
SBD1 4.97E-04 4.59E+01 1.78E-03 3.22E-03 5.43E-05 6.51E+01 1.28E-04 1.42E-02
ds RBD2 4.88E-04 4.61E+01 1.76E-03 4.47E-03 5.32E-05 6.53E+01 1.69E-04 4.96E-02
Spctrl 5.84E-04 4.45E+01 4.56E-02 5.00E-03 5.87E-05 6.45E+01 8.T4E-03 6.50E-02
SBD1 1.21E-02 3.82E+01 5.70E-02 9.30E-03 1.05E-03 5.94E+01 4.87E-03 2.96E-02
RBD2 1.20E-02 3.82E+01 5.71E-02 1.28E-02 8.75E-04 6.10E+01 4.87E-03 1.74E-01
dé Wvlt 9.48E-03 4.03E+01 1.56E-01 5.00E-03 1.05E-03 5.94E+01 1.17E-02 5.50E-02
Spctrl 1.60E-02 3.57E+01 6.37E-01 5.00E-03 1.05E-03 5.94E+01 4.32E-02 6.50E-02
AC 1.82E-02 3.46E+01 1.50E-01 1.11E-02 - - - -
SBD1 2.72E-01 4.27E+01 5.50E-01 2.82E-02 2.74E-02 6.26E+01 6.37E-02 8.70E-02
RBD2 2.70E-01 4.28E+01 7.41E-01 3.43E-02 2.17E-02 6.47E+01 7.99E-02 5.16E-01
a7 Wvlt 2.76E-01 4.26E+01 2.75E+00 1.00E-02 3.05E-02 6.17E+01 2.00E-01 1.60E-01
AC 2.76E-01 4.26E+01 1.00E+00 1.82E-02 - - - -

bold indicates the lowest CR for a given dataset and error tolerance

SQE encoding and original vertex ordering, and RBD2 with original vertex ordering)
against wavelet compression (Wvlt), spectral compression (Spctrl), and adaptive
coarsening (AC). Among these techniques, the wavelet compression and adaptive
coarsening can only be applied to structured grids and are only presented for the
d2, d4, d6, and d7 datasets. Also, due to its high computational requirements, we
were not able to obtain results for the spectral compression for the largest problem
(d7). In addition to these schemes, we also experimented with diffusion wavelets [3].
However, we obtained poor compression and we omitted those results.

Table 4 shows the results of these experiments for two different compression
levels, labeled “high error tolerance” and “low error tolerance”. These compression
levels result in RMSEs and MPEs that differ by approximately an order of mag-
nitude, and were obtained by experimenting with the parameters of the various
schemes so that to match their RMSEs for each of the datasets. However, for AC
we were unable to achieve the desired RMSEs at all error tolerance levels. In the
case that we could not achieve a desired RMSE, the results were omitted.

The results show that on average, our algorithms compress the simulation datasets
to 2-5% of their original size. Compared with just lossless compression only, which
results in storage costs of 40-80% of the original size, this is a big improvement.
The results also show that for all but two experiments, SBD1 performs the best
and that on average it required only 36% of the storage of the next best algorithm.
For unstructured grids it requires on average 25% of the storage of Spctrl whereas
for structured grids it requires on average 48% and 38% of the space of Wvlt and
AC, respectively. Moreover, we see that as the amount of allowable error is lowered,
the performance gap between SBD1 and the other methods grows. In addition, for
unstructured grids, RBD2 performs the second best overall and requiring 61% of

the space required by the Spctrl on average. We also see that due to the e con-
straint placed on the our methods, they consistently result in MPE values which
are much lower than those of the competing algorithms. These results suggest that
in the context of grid-based simulation, SBD1 and RBD2 are consistently good
choices for compression, providing low point-wise and global reconstruction error,
high compression ratio, and low computational complexity.

7 Conclusion

In this paper, we introduced a paradigm for lossy compression of grid-based simu-
lation data that achieves compression by modeling the grid data via a graph and
identifying vertex-sets which can be approximated by a constant value within a user
provided error constraint. Our comprehensive set of experiments showed that for
structured and unstructured grids, these algorithms achieve compression which re-
sults in storage requirements that on average, are up to 75% lower than that other
methods. Moreover, the near linear complexity of these algorithms makes them
ideally suited for performing in situ compression in future exascale-class parallel
systems.

References

1. Baldwin, C., Abdulla, G., Critchlow, T.: Multi-resolution Modeling of Large Scale
Scientific Simulation Data. Proceedings of the twelfth international conference on In-
formation and knowledge management - CIKM 03 p. 40 (2003)

2. Belfor, R.A.F., Hesp, M.P.A., Lagendijk, R.L., Biemond, J.: Spatially Adaptive Sub-
sampling of Image Sequences. IEEE Transactions on Image Processing 3(5), 492-500
(Jan 1994)

3. Coifman, R., Maggioni, M.: Diffusion wavelets. Applied and Computational Harmonic
Analysis 21(1), 53-94 (Jul 2006)

4. Engelson, V., Fritzson, D., Fritzson, P.: Lossless Compression of High-volume Numer-
ical Data from Simulations. Data Compression Conference pp. 574-586 (2000)

5. Karni, Z., Gotsman, C.: Spectral Compression of Mesh Geometry. Proceedings of the
27th Annual Conference on Computer Graphics and Interactive Techniques - SIG-
GRAPH ’00 pp. 279-286 (2000)

6. Karypis, G.: METIS™5.0: Unstructured graph partitioning and sparse matrix ordering
system. Tech. rep., Department of Computer Science, University of Minnesota (2011)

7. Mallat, S.: A Theory for Multiresolution Signal Decomposition: The Wavelet Rep-
resentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7),
674-693 (Jul 1989)

8. Muraki, S.: Approximation and Rendering of Volume Data Using Wavelet Transforms.
Proceedings Visualization '92 pp. 21-28 (1992)

9. Muraki, S.: Volume Data and Wavelet Transforms. IEEE Computer Graphics and
Applications 13(4), 50-56 (Jul 1993)

10. Ratanaworabhan, P., Ke, J., Burtscher, M.: Fast Lossless Compression of Scientific
Floating-Point Data. Data Compression Conference (DCC’06) pp. 133-142 (2006)

11. Shafaat, T.M., Baden, S.B.: A Method of Adaptive Coarsening for Compressing Sci-
entific Datasets. In: Applied parallel computing: State-of-the-Art in Scientific and
Parallel Computing, 8th Intl. Workshop, Proc. PARA ’06. pp. 1-7 (2006)

12. Unat, D., Hromadka III, T., Baden, S.B.: An Adaptive Sub-sampling Method for
In-memory Compression of Scientific Data. 2009 Data Compression Conference pp.
262-271 (Mar 2009)

