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Hypergraph partitioning is an important problem with extensive applica-
tion to many areas, including VLSI design [Alpert and Kahng, 1995], efficient
storage of large databases on disks [Shekhar and Liu, 1996], and data min-
ing [Mobasher et al., 1996, Karypis et al., 1999b]. The problem is to partition
the vertices of a hypergraph intok equal-size parts, such that the number of
hyperedges connecting vertices in different parts is minimized.

During the course of VLSI circuit design and synthesis, it is important to
be able to divide the system specification into clusters so that the inter-cluster
connections are minimized. This step has many applications including design
packaging, HDL-based synthesis, design optimization, rapid prototyping, sim-
ulation, and testing. Many rapid prototyping systems use partitioning to map
a complex circuit onto hundreds of interconnected FPGAs. Such partitioning
instances are challenging because the timing, area, and I/O resource utilization
must satisfy hard device-specific constraints. For example, if the number of
signal nets leaving any one of the clusters is greater than the number of signal
pins available in the FPGA, then this cluster cannot be implemented using a
single FPGA. In this case, the circuit needs to be further partitioned, and thus
implemented using multiple FPGAs.

Circuits can be naturally represented using hypergraphs. The hypergraph’s
vertices will represent the cells of the circuit, and the hyperedges will represent
the nets connecting these cells. This mapping from a circuit to a hypergraph
is illustrated in Figure 1.1. A high quality hypergraph partitioning algorithm
greatly affects the feasibility, quality, and cost of the resulting system.

The importance of the problem has attracted a considerable amount of re-
search interest and over the last thirty years a variety of heuristic algorithms
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������ ���� (a) A sample circuit drawn using cells and nets and (b) its hypergraph represen-
tation.

have been developed that offer different cost-quality trade-offs. The focus of
this chapter is to describe one class of such algorithms that have come to be
known as themultilevel partitioning algorithms.

In recent years, multilevel partitioning algorithms have become the stan-
dard approach for partitioning large and irregular hypergraphs, as they pro-
vide high quality solutions, can scale to very large hypergraphs, and require
a relatively small amount of time. These algorithms were initially developed
for partitioning large graphs derived from scientific computations [Hendrick-
son and Leland, 1994, Karypis and Kumar, 1998b, Walshaw et al., 1997], but
their advantages were quickly recognized by the VLSI CAD community, and a
number of different multilevel algorithms have been developed [Karypis et al.,
1999a, Alpert et al., 1997, Karypis and Kumar, 2000]. In this chapter we try
to provide an overview of the multilevel paradigm and describe the various
algorithms that it uses and why it works. Even though our presentation will
be generic, from time-to-time we will use our experience in developing the
hMETIS [Karypis and Kumar, 1998a] hypergraph partitioning package to dis-
cuss some of the finer details of successful implementations of multilevel al-
gorithms.
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Formally, a hypergraphG = (V, E) is defined as a set of verticesV and
a set of hyperedgesE . Each hyperedge is a subset of the set of verticesV
[Berge, 1976], and thesize of a hyperedge is the cardinality of this subset. We
will assume that each vertex and hyperedge has a weight associated with it,
and we will usew(v) to denote the weight of a vertexv, andw(e) to denote
the weight of a hyperedgee. In the case of circuits, vertex weights usually rep-
resent the area of the corresponding module, and hyperedge weights represent



���������� ��	�
�
�	
 ��
��������� 


some measure of criticality. When the original hypergraph is unweighted, both
vertex- and hyperedge-weights are assumed to be one.

The goal of thek-way hypergraph partitioning problem is to partition the
vertices of the hypergraph intok disjoint subsetsV1, V2, . . . , Vk , such that a
certain function defined over the hyperedges is optimized, under the require-
ment that the size of each one of the partitions (i.e., vertex subsets) is bounded
(both from below and above). The requirement that the size of each partition is
bounded is referred to as thepartitioning constraint, and the requirement that
a certain function is optimized is referred to as thepartitioning objective.

������������ ���	������	
 There are a number of ways of specifying
the partitioning constraint. A common way of doing this, especially in the
context of hypergraph bi-partitioning, is to specify a lower-boundl and an
upper-boundu on the size of each partition, such thatl + u = 1.0. The goal
then is to compute a bi-partitioning such that the sum of the weight of the
vertices assigned to each partitionw(Vi ) is bounded by

lw(V ) ≤ w(Vi ) ≤ uw(V ),

wherew(V ) is the sum of the weights of all the vertices. This approach can
be extended to thek-way partitioning problem, by either using the same set of
[l, u] size-bounds for each partition, or specifying a different set[l i , ui ] size-
bounds for each partition. However, in order for the constraints to be feasible,
the sum of the upper-bounds over all the partitions should be greater than 1.0.

An alternate way of specifying a balance constraint, that is well-suited for
k-way partitioning, is to supply an overall load imbalance tolerancec such that
c ≥ 1.0. In this case, the goal is to compute a partitioning such that the sum of
the weight of the verticesw(Vi ) assigned to each partitionVi is bounded by

w(V )

ck
≤ w(Vi ) ≤ cw(V )

k
.
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 Over the years, a number of partitioning ob-
jective functions have been developed. The survey by Alpert and Kahng [Alpert
and Kahng, 1995] provides a comprehensive description of a variety of ob-
jective functions that are commonly used for hypergraph partitioning in the
context of VLSI design.

One of the most commonly used objective function is tominimize the hyper-
edge-cut of the partitioning;i.e., the sum of the weights of the hyperedges that
span multiple partitions. Another objective that is often used is tominimize
the sum of external degrees (SOED) of all hyperedges that span multiple par-
titions. Given ak-way partitioning and a hyperedgee, the external degree ofe
is defined to be 0, ife is not cut by the partitioning, otherwise it is equal to the
number of partitions that is spanned bye times its hyperedge weight. Then,
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the goal of the partitioning algorithm is to compute ak-way partitioning that
minimizes the sum of external degrees of the hyperedges. An objective related
to SOED is tominimize the (K − 1) metric [Alpert and Kahng, 1995, Cong
and Lim, 1998]. In the case of the(K − 1) metric, the cost of a hyperedge that
spansK partitions is(K − 1), whereas for the SOED metric, the cost isK .

In our discussion throughout this chapter will focus on the problem of mini-
mized the hyperedge cut, but the other objectives can be optimized in a similar
fashion.
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In addition to the above single-constraint single-objective partitioning prob-
lem, a number ofmulti-objective andmulti-constraint formulations have been
proposed. The idea behind the multi-objective formulations is to compute a
partitioning that simultaneously optimizes more than one objective. These ob-
jectives can be definedlocally, on the hyperedges that are cut by the parti-
tioning, or they can be definedglobally, in terms of certain properties of the
overall partitioning. Examples of such local objectives are the minimization
of the hyperedge cut, the SOED metric, and/or the(K − 1) metric; whereas
global objectives usually capture signal delays, placement and routing costs.

Multi-objective problems that combine both local and global objectives are
particularly hard to optimize in an efficient and problem independent way. On
the other hand, there are reasonably good approaches for optimizing multi-
objective problems in which the different objectives are defined locally. In this
chapter we will not discuss such problems because their formulation is inde-
pendent of the multilevel paradigm, and the reader should refer to [Schloegel
et al., 1999] for a discussion of the issues involved and a general framework
of using single-objective partitioning algorithms to solve multi-objective prob-
lems that use multiple locally defined objectives.

Multi-constraint partitioning formulations were introduced to model prob-
lems in which the desired partitioning needs to balance multiple weights asso-
ciated with the vertices of the hypergraph. In this model, a vector of weights
is assigned to each vertex and the goal is to produce a partitioning such that
it satisfies a balancing constraint associated with each one of the weights,
while attempting to minimize the cut (i.e., the objective function). This multi-
constraint framework can be used to compute partitionings for a number of
interesting problems. For instance, using this framework we can compute cir-
cuit partitionings that not only minimize the number of nets being cut, but also
simultaneously balance the area, power, noise, nets, pins,etc., of the parti-
tions. Such partitionings have the potential of leading to better, more reliable,
predictable, and robust VLSI design methodologies.
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The multi-constraint graph bisection problem is formally defined as follows.
Consider a hypergraphG = (V, E), such that each vertexv ∈ V has a weight
vectorw(v) of size m associated with it, and each hyperedgee ∈ E has a
scalar weightw(e). Let [li , ui ] for i = 1, 2, . . . , m, bem intervals such that
li < ui andli +ui = 1. Let P be the partitioning a vector of size|V |, such that
for each vertexv, P[v] is either one or two, depending on which partitionv

belongs to,i.e., P is the bisection vector. Finally, we will assume, without loss
of generality, that the weight vectors of the vertices satisfy the property that∑

∀v∈V wi(v) = 1.0 for i = 1, 2, . . . , m. If the vertex weights do not satisfy
the above property, we can divide eachwi(v) by

∑
∀v∈V wi (v) to ensure that

the property is satisfied. Note that this normalization does not in any way limit
the modeling ability.

The multi-constraint hypergraph bisection problem as follows: Compute a
bisectionP of V that minimizes the hyperedge cut and at the same time, the
following set of constraints is satisfied:

li ≤
∑

∀v∈V :P[v]=1

wi(v) ≤ ui and li ≤
∑

∀v∈V :P[v]=2

wi (v) ≤ ui , (1.1)

wherei = 1, 2, . . . , m representing the different vertex weights. The multi-
constraintk-way partitioning problem is defined in a similar fashion.
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The most commonly used approach for computing ak-way partitioning is
based on recursive bisectioning. In this approach, the overallk-way parti-
tioning is obtained by initially bisecting the hypergraph to obtain a two-way
partitioning. Then, each of these parts if further bisected to obtain a four-way
partitioning, and so on. Assuming thatk is a power of two, then the finalk-
way partitioning can be obtained in log(k) such steps (or after performingk−1
bisections. In the cases in whichk is not a power of two, the above approach
needs to be modified so that each bisectioning produces appropriate size par-
titions. For example, a five-way partitioning can be obtained by splitting the
hypergraph into two parts, one containing roughly 2/5 of the hypergraph and
the other 3/5. The smaller of these two partitions will be further bisected to
obtain two of the final five partitions, whereas the largest will be further parti-
tioned into three parts via recursive bisection.

An alternative way of computing thek-way partitioning is to do so directly.
There are a number of advantages of computing thek-way partitioning directly,
that were identified as early back as in the seminal work by Kernighan and Lin
[Kernighan and Lin, 1970]. First, a recursive bisection algorithm does not al-
low for the direct optimization of objectives that depend on knowing how the
hyperedges are partitioned across allk partitions. Some examples of such ob-
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jectives are the SOED (described earlier), scaled cost, and absorption that are
described in [Alpert and Kahng, 1995]. Second, ak-way partitioning algorithm
is capable of enforcing tighter balancing constraints while retaining the ability
to sufficiently explore the feasible solution space to optimize the partitioning
objective. This is especially true when the partitioning solution must simul-
taneously satisfy multiple balancing constraints [Karypis and Kumar, 1998c].
Third, a method that obtains ak-way partitioning directly can potentially pro-
duce much better partitionings than a method that computes ak-way partition-
ing via recursive bisection. In fact, in the context of a certain classes of graphs
it was shown that recursive bisectioning can be up to anO(logn) factor worst
than the optimal solution [Simon and Teng, 1993].
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The key idea behind the multilevel approach for hypergraph partitioning is
fairly simple and straightforward. Multilevel partitioning algorithms, instead
of trying to compute the partitioning directly in the original hypergraph, first
obtain a sequence of successive approximations of the original hypergraph.
Each one of these approximations represents a problem whose size is smaller
than the size of the original hypergraph. This process continues until a level
of approximation is reached in which the hypergraph contains only a few tens
of vertices. At this point, these algorithms compute a partitioning of that hy-
pergraph. Since the size of this hypergraph is quite small, even simple algo-
rithms such as Kernighan-Lin (KL) [Kernighan and Lin, 1970] or Fiduccia-
Mattheyses (FM) [Fiduccia and Mattheyses, 1982] lead to reasonably good so-
lutions. The final step of these algorithms is to take the partitioning computed
at the smallest hypergraph and use it to derive a partitioning of the original
hypergraph. This is usually done by propagating the solution through the suc-
cessive better approximations of the hypergraph and using simple approaches
to further refine the solution.

In the multilevel partitioning terminology, the above process is described in
terms of three phases. Thecoarsening phase, in which the sequence of succes-
sively approximate hypergraphs (coarser) is obtained, theinitial partitioning
phase, in which the smallest hypergraph is partitioned, and theuncoarsen-
ing and refinement phase, in which the solution of the smallest hypergraph
is projected to the next level finer graph, and at each level an iterative refine-
ment algorithm such as KL or FM is used to further improve the quality of
the partitioning. The various phases of multilevel approach in the context of
hypergraph bisection are illustrated in Figure 1.2.

This paradigm was independently studied by Bui and Jones [Bui and Jones,
1993] in the context of computing fill-reducing matrix reordering, by Hen-
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������ ���� The various phases of the multilevel hypergraph bisection. During the coarsening
phase, the size of the hypergraph is successively decreased; during the initial partitioning phase,
a bisection of the smaller hypergraph is computed; and during the uncoarsening and refinement
phase, the bisection is successively refined as it is projected to the larger hypergraphs. During
the uncoarsening and refinement phase, the dashed lines indicate projected partitionings and
dark solid lines indicate partitionings that were produced after refinement.

drickson and Leland [Hendrickson and Leland, 1993] in the context of finite
element mesh-partitioning, and by Hauck and Borriello [Hauck and Borriello,
1995] (called Optimized KLFM), and by Cong and Smith [Cong and Smith,
1993] for hypergraph partitioning. Karypis and Kumar extensively studied this
paradigm in [Karypis and Kumar, 1998b, Karypis and Kumar, 1995, Karypis
and Kumar, 1999a] for the partitioning of graphs. They presented novel graph
coarsening schemes and they showed both experimentally and analytically that
even a good bisection of the coarsest graph alone is already a very good bisec-
tion of the original graph. These coarsening schemes made the overall mul-
tilevel paradigm very robust and made it possible to use simplified variants
of KL or FM refinement schemes during the uncoarsening phase, which sig-
nificantly speeded up the refinement process without compromising overall
quality. METIS [Karypis and Kumar, 1998b], a multilevel graph partitioning
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algorithm based upon this work, routinely finds substantially better partition-
ings than other popular techniques such as spectral-based partitioning algo-
rithms [Pothen et al., 1990, Barnard and Simon, 1993], in a fraction of the time
required by them. Karypiset al [Karypis et al., 1999a] extended their multi-
level graph partitioning work to hypergraph partitioning. ThehMETIS [Karypis
and Kumar, 1998a] package contains many of these algorithms and have been
shown to produce high-quality partitionings for a wide-range of circuits.

%
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We now turn our focus on describing in detail, the algorithms used in the
various phases of the multilevel paradigm. Our discussion will primarily be
based on how these phases are implemented in the popularhMETIS 1 hyper-
graph partitioning package, but whenever appropriate will also discuss various
alternatives.

%
	  ��������� �����

During the coarsening phase, a sequence of successively smaller hyper-
graphs is constructed. The members of the sequence approximate the origi-
nal hypergraph at successive coarser scales of resolution. This is probably the
most important phase of the multilevel paradigm, and its overall success relies
on being able to find reasonable methods for obtaining these coarser hyper-
graphs. We will refer to these methods as thecoarsening methods or schemes.

There are two key requirements for a successful coarsening method:

1 Any partitioning in a coarse hypergraph can be easily translated (i.e.,
projected) to a partitioning of the next-level finer hypergraph.

2 The cut of the projected partitioning in the next-level finer hypergraph
should be less or equal to the cut of the partitioning in a coarse hyper-
graph.

The first requirement is important as it allows us to easily propagate the par-
titioning to successive finer hypergraphs (all the way to the original problem),
whereas the second requirement is essential to ensure that the refinement per-
formed at each successive finer hypergraph is meaningful.

Recall from the general description of the multilevel paradigm (Section 2),
that during the uncoarsening and refinement phase the solution of the coarsest
hypergraph is used to induce a partitioning of the original hypergraph by prop-
agating it to successive finer hypergraphs and refining it (i.e., further optimiz-

1hMETIS is available on the WWW athttp://www.cs.umn.edu/˜metis/hmetis.
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ing) at each intermediate hypergraph. Now, this refinement at the intermediate
hypergraphs will make sense if and only if any improvements in the quality of
the partitioning at that level also translates to improvements of the correspond-
ing partitioning of the original hypergraph. If that is not the case, then we may
be spending a lot of effort just to make the solution worse.

Fortunately, there is a simple way to obtain successively coarse hypergraphs
that automatically satisfy both of the above requirements. This is done by
grouping the vertices of the hypergraph into disjoint clusters and collapsing
the vertices of each cluster into a single vertex. Specifically, letG = (V, E)

be a hypergraph and letC = {c1, c2, . . . , cm} be the set of the vertex-clusters
such that for any pair of clustersci

⋂
c j = ∅, ci ⊂ V , and

⋃
i ci = V . Using

this clustering, we then obtain a coarse hypergraphG c = (V c, Ec) as follows.
Gc will have exactlym vertices such that thei th vertex will correspond to
the i th cluster ofC . The weight of each vertexvc

i ∈ V c will be set equal
to the sum of the vertex weights of the vertices inci . Each hyperedgee j =
{v j,1, v j,2, . . . , v j,k} of G will be mapped to a hyperedgeec

j of Gc as follows.
Let M(v) be a function that maps each vertexv ∈ V into its corresponding
cluster inC and hence its corresponding vertex inG c. Using this function,
thenec

j will be mapped to the hyperedge the contains the following vertices of
Gc: {M(v j,1), M(v j,2), . . . , M(v j,k)}. Now, sinceM is in general a many-to-
one mapping, some of the vertices in the above set will occur multiple times
and they are removed. Note that if after keeping only the unique vertices, the
size ofec

j becomes one, it is removed as it corresponds to a hyperedge that
contains only one vertex. Also, it may be the case that different hyperedges
in G get mapped to the same set of vertices inG c. In that case, only one
such hyperedge is kept, but its weight is set equal to the sum of the hyperedge
weight of its corresponding set of hyperedges inG. The coarse graph obtained
using the above method retains all essential information required to compute
a partitioning that correctly models the balancing constraints and at the same
time its cut will be identical to the cut of the corresponding partitioning of the
original hypergraph.

Numerous approaches have been proposed for finding the groups of vertices
to be merged together. Some of the underlying design goals of these schemes
are the following.

1 The scheme should lead to coarser hypergraphs for which high-quality
partitionings can readily be obtained. That is, the partition that can be
obtained in the coarse hypergraph should not be significantly worse than
the partition that can be obtained on the original hypergraph.

2 The coarsening should help in successively reducing the size of the hy-
peredges. That is, after several levels of coarsening, large hyperedges
should have been contracted to hyperedges that connect just a few ver-
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tices. This is particularly helpful, since refinement heuristics based on
the KL and FM are very effective in refining small hyperedges but are
quite ineffective in refining hyperedges with a large number of vertices
belonging to different partitions.

3 They should create successive hypergraphs in which the sum of the
weight of the hyperedges reduces as quickly as possible. Recall from
the above description, that each coarse hyperedge that gets mapped to a
single coarse vertex is eliminated from the hypergraph. Consequently,
a partitioning on that coarse hypergraph cannot possibly cut this hyper-
edge. Thus, one way for using the coarsening phase to help in improving
our chances of finding a good partitioning, is to remove as many hyper-
edges as possible that can potentially be cut. We will refer to the sum
of the weight of the hyperedges in the coarser hypergraphs as theex-
posed hyperedge weight, in contrast to the hyperedges that have been
contracted into a single coarse vertex.

In the rest of this section we present a number of approaches for grouping
vertices, followed by a discussion of some important aspects of the coarsening
phase.

�
�
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 The simplest way to group the ver-
tices is to select pairs of vertices that are present in the same hyperedges, as
illustrated in Figure 1.3(a). These pairs of vertices can be formed by finding a
maximal matching of the vertices that are connected via hyperedges. A com-
putationally efficient way of finding such a matching is to do it in randomized
fashion as follows.

The vertices are visited in a random order. For each vertexv, all unmatched
vertices that belong to hyperedges incident tov are considered, and one of them
selected randomly is matched withv. Essentially this scheme computes a max-
imal matching on the graph representation of the hypergraph in which each hy-
peredge has been replaced by its clique representation [Lengauer, 1990]. How-
ever, this hypergraph-to-graph conversion is done implicitly during matching
without forming the actual graph. For this reason, it is called theedge coars-
ening (EC) scheme.

The above basic randomized edge-selection scheme can be improved by
realizing two facts associated with matchings and how they affect the coarse
hypergraph they produce. First, there is in general a large number of match-
ings that have roughly the same cardinality. Second, since one of the goals of
coarsening is to produce hypergraphs in which the exposed hyperedge weight
is reduced as quickly as possible, we should give more emphasis on pairs of
vertices that are part of a large number of smaller hyperedges, as these hyper-
edges can easily disappear in one or two coarsening steps. This is the basic
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idea behind theheavy-edge variation of the edge coarsening scheme, that in-
stead of randomly selecting a vertex to match withv, it selects the unmatched
vertex that is connected via the edge with the largest weight. The weight of
an edge connecting two verticesv andu is computed as the sum of theedge-
weights of all the hyperedges that containv andu. Each hyperedgee of size
|e| is assigned an edge-weight of 1/(|e| − 1), and as hyperedges collapse on
each other during coarsening, their edge-weights are added up accordingly.

(b) Hyperedge Coarsening

(c) Modified Hyperedge Coarsening

(a) Edge Coarsening

������ ���� Various ways of matching the vertices in the hypergraph and the coarsening
they induce. (a) In edge-coarsening, connected pairs of vertices are matched together. (b)
In hyperedge-coarsening, all the vertices belonging to a hyperedge are matched together. (c) In
modified hyperedge coarsening, we match together all the vertices in a hyperedge as well as all
the groups of vertices belonging to a hyperedge.

�
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 Even though the edge coarsen-
ing scheme is able to produce successively coarser hypergraphs, it decreases
the hyperedge weight of the coarser graph only for those pairs of matched ver-
tices that are connected via a hyperedge of size two. As a result, the total
hyperedge weight of successively coarser graphs does not decrease very fast.
In order to ensure that for every group of vertices that are contracted together,
there is a decrease in the hyperedge weight in the coarser graph, each such
group of vertices must be connected by a hyperedge.
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This is the motivation behind thehyperedge coarsening (HEC) scheme. In
this scheme, an independent set of hyperedges is selected and the vertices that
belong to individual hyperedges are contracted together, as illustrated in Fig-
ure 1.3(b). This is implemented as follows. The hyperedges are initially sorted
in a non-increasing hyperedge-weight order and the hyperedges of the same
weight are sorted in a non-decreasing hyperedge size order. Then, the hyper-
edges are visited in that order, and for each hyperedge that connects vertices
that have not yet been matched, the vertices are matched together. Thus, this
scheme gives preference to the hyperedges that have large weight and those
that are of small size. After all of the hyperedges have been visited, the groups
of vertices that have been matched are contracted together to form the next
level coarser graph. The vertices that are not part of any contracted hyperedges
are simply copied to the next level coarser graph.

�
�
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 The hyperedge
coarsening algorithm is able to significantly reduce the amount of hyperedge
weight that is left exposed in successively coarser graphs. However, during
each coarsening phase, a majority of the hyperedges do not get contracted be-
cause vertices that belong to them have been contracted via other hyperedges.
This leads to two problems. First, the size of many hyperedges does not de-
crease sufficiently, making FM-based refinement difficult. Second, the weight
of the vertices (i.e., the number of vertices that have been collapsed together)
in successively coarser graphs becomes significantly different, which distorts
the shape of the contracted hypergraph.

To correct this problem we implemented amodified hyperedge coarsening
(MHEC) scheme as follows. After the hyperedges to be contracted have been
selected using the hyperedge coarsening scheme, the list of hyperedges is tra-
versed again. And for each hyperedge that has not yet been contracted, the
vertices that do not belong to any other contracted hyperedge are contracted
together, as illustrated in Figure 1.3(c).

�
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 The edge- and the
hyperedge-coarsening schemes share one characteristic that can potentially
lead to less than ideal coarse representations of the original hypergraph. This
common characteristic is that the grouping schemes employed by both ap-
proaches find maximal independent groups. That is, both the edge- and the
hyperedge-coarsening schemes will find as many groups of vertices as they
can, that are pair- or hyperedge-wise independent. The potential problem with
this approach is that the independence (and to a certain degree, the maximal-
ity) requirement may destroy some clusters of vertices that naturally exist in
the hypergraph.
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To see that, consider the example shown in Figure 1.4(a). As we can see
from this figure, there are two natural clusters. The first cluster contains the
five vertices on the left and the second cluster contains the five vertices on
the right. These two clusters are connected by a single hyperedge; thus, the
natural cut for this hypergraph is one. Figure 1.4(b) shows the pairs of vertices
that are found by the edge-coarsening scheme. In the edge-coarsening scheme,
vertex F will prefer to merge with vertexG, but vertexG had already been
grouped with vertexH , consequently, vertexE is grouped with vertexF . Once
the hypergraph is coarsened as shown in Figure 1.4(c), we can see that the
natural separation point in this hypergraph has been eliminated, as it has been
contracted in the vertex that resulted from mergingE andF . A similar kind of
example can be constructed using the hyperedge-coarsening as well.
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������ ���� An example in which the edge-coarsening scheme can lead to a coarse repre-
sentation in which the natural clusters of the hypergraph have been obscured. The weights on
the hyperedges of the coarse hypergraph (c) represent the number of hyperedges in the original
hypergraph that span the same set of vertices in the coarse representation.
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The above observation led to develop of theFirstChoice (FC) coarsening
scheme. The FC coarsening scheme is derived from the EC coarsening scheme
by relaxing the requirement that a vertex is matched only with another un-
matched vertex. Specifically, in the FC coarsening scheme, the vertices are
again visited in a random order. However, for each vertexv, all vertices (both
matched and unmatched) that belong to hyperedges incident tov are consid-
ered, and the one that is connected via the edge with the largest weight is
matched withv, breaking ties in favor of unmatched vertices. As a result, each
group of vertices to be merged together can contain an arbitrarily large number
of vertices. The one potential problem with this coarsening scheme is that the
number of vertices in successive coarse graphs may decrease by a large fac-
tor2, potentially limiting the effect of refinement [Alpert et al., 1997]. Some
methods of how to handle this type of problem are described in Section 3.1.6.

The FC scheme tends to remove a large amount of the exposed hyperedge-
weight in successive coarse hypergraphs, and thus, makes it easy to find high
quality initial partitionings that require little refinement during the uncoarsen-
ing phase.

�
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 The
various coarsening schemes described so far can also be used to cluster the
vertices in the context of multi-constraint hypergraph partitioning problems.
This is because coarsening schemes that substantially reduce the exposed hy-
peredge weight and lead to coarse hypergraphs in which good partitionings can
be computed, are equally critical for this problem, as well.

However, one can also use the coarsening process to try to reduce the inher-
ently difficult load balancing problem that arises due to the presence of multi-
ple weights. In general, it is easier to compute a balanced bisection if the values
of the different elements of every weight vector are not significantly different.
In the simplest case, if for every vertexv, w1(v) = w2(v) = · · · = wm(v), then
them-weight balancing problem becomes identical to that of balancing a single
weight. So during coarsening, one should try (whenever possible) to collapse
groups of vertices so as to minimize the differences among the weights of the
merged vertex.

�
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In addition to the exact method used to cluster together the vertices of the
hypergraph, there is a number of other issues that need to be considered that,
in general, impact the overall success of the multilevel paradigm.

2In the case of the EC coarsening scheme, the size of successive coarse graphs can be reduced by at most a
factor of two.
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The first issue has to do with the degree to which the various regions of
hypergraph coarsen in a uniform way. Since, most of the above methods are
randomized, there may be cases in which at successive coarser hypergraphs,
the weight of certain vertices will increase at a higher rate than others. This
usually happens because the coarsest vertices were obtained from larger clus-
ters. In general this is not desirable because it significantly limits the number of
partitionings of the coarsest graph that actually satisfy the balance constraints,
consequently reducing our ability to optimize the cut. This problem is espe-
cially severe if the original hypergraph already has weights associated with the
vertices, in which case there may be vertices at the coarsest level whose weight
is greater than the upper bound on the weight of each partition. To prevent such
pathological cases, all of the above coarsening schemes are usually modified
so that they will never create clusters with large vertex weight. This can be
done by either imposing an overall upper bound on the vertex-weight of the
cluster, or imposing an upper bound that is progressively increasing with the
coarsening level.

The second issue has to do with the rate at which we reduce the size of the
hypergraphs during the coarsening phase. Schemes based on edge coarsening
will in general reduce the size (in terms of vertices) of successive hypergraphs
by a factor of two, whereas schemes based on (modified) hyperedge and first-
choice can reduce the size by a much higher factor. One of the benefits of the
multilevel paradigm is the fact that we perform refinement at different resolu-
tions; thus, reducing the number of coarsening levels by quickly reducing the
size of the successive coarse graphs may negatively affect the quality of the
results. To address this problem, the various coarsening schemes can be easily
modified to reduce the coarsening rate (by either selecting smaller groups or by
finding non-maximal matches) and thus increasing the number of coarsening
levels. However, even though this approach will tend to increase the quality of
the partitionings, it will happen at the expense of higher memory and compu-
tational requirements. Experiments performed while developinghMETIS have
shown that a reasonable balance between quality and runtime occurs when the
size of successive graphs reduces by a factor in the range of 1.5–1.8.

Finally, one last issue that needs to be considered is when to actually stop
the coarsening process. There are two competing factors that need to be con-
sidered. If we stop coarsening too early, then the coarsest hypergraph will be
fairly large, as a result we may not be able to find a very good initial partition-
ing. On the other hand, if we stop the coarsening when there are only a very
small number of vertices, the space of feasible solutions may be quite small,
again reducing our ability to find a good solution. Thus, the right balance
between these two factors needs to be established. Again, drawing from our
experience withhMETIS, we found that a good point to stop the coarsening is
when there are about 30k vertices, wherek is the number of desired partitions.
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During the initial partitioning phase, a partitioning of the coarsest hyper-
graph is computed, such that it minimizes the cut and satisfies the balancing
constraints. Since this hypergraph has a very small number of vertices, the time
to find a partitioning using any of the heuristic algorithms tends to be small.
Note that it is not useful to find an optimal partition of this coarsest graph, as
the initial partition will be substantially modified during the refinement phase.

Two algorithms have traditionally been used to compute the initial partition-
ing. The first algorithm simply creates a random partitioning that isfeasible, in
the sense that it satisfies the balancing constraints. The second algorithm starts
from a randomly selected vertex and uses a breadth-first region-growing algo-
rithm to carve out one of the partitions, and repeats this process for the rest of
the partitions [Karypis and Kumar, 1999a]. After a partitioning is constructed
using either of these algorithms, the partitioning is refined using the various
refinement algorithms that are described in Section 3.3.

Since both algorithms are randomized, different runs give solutions of dif-
ferent quality. For this reason, a small number of different initial partitionings
is commonly computed, and the one with the smallest cut is selected as the ini-
tial partitioning. A potential problem with this approach is that the partitioning
of the coarsest hypergraph that has the smallest cut may not necessarily be the
one that will lead to the smallest cut in the original hypergraph. It is possible
that another partitioning of the coarsest hypergraph (with a higher cut) will
lead to a better partitioning of the original hypergraph after the refinement is
performed during the uncoarsening phase. For this reason, instead of selecting
a single initial partitioning (i.e., the one with the smallest cut), one can choose
to propagate all or a subset of the initial partitionings.

Note that propagation ofi initial partitionings increases the time during the
refinement phase by a factor ofi . Thus, by increasing the value ofi , we can
potentially improve the quality of the final partitioning at the expense of higher
runtime. One way to dampen the increase in runtime due to large values ofi is
to eliminate unpromising partitionings as the hypergraph is uncoarsened. For
example, one possibility is to propagate only those partitionings whose cuts
are withinx% of the best partitionings at the current level. If the value ofx is
sufficiently large, then all partitionings will be maintained and propagated in
the entire refinement phase. On the other hand, if the value ofx is sufficiently
small, then on average only one partitioning will be maintained, as all other
partitionings will be eliminated at the coarsest level. For moderate values ofx ,
many partitionings may be available at the coarsest graph, but the number of
such available partitionings will decrease as the graph is uncoarsened. This is
useful for two reasons. First, it is more important to have many alternate parti-
tionings at the coarser levels, as the size of the cut of a partitioning at a coarse
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level is a less accurate reflection of the size of the cut of the original finest level
hypergraph. Second, refinement is more expensive at the fine levels, as these
levels contain far more nodes than the coarse levels. Hence by choosing an
appropriate value ofx , we can benefit from the availability of many alternate
partitionings at the coarser levels and avoid paying the high cost of refinement
at the finer levels by keeping fewer candidates on average.

%
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During the uncoarsening phase, a partitioning of the coarser hypergraph is
successively projected to the next level finer hypergraph, and a partitioning
refinement algorithm is used to reduce the cut-set (and thus to improve the
quality of the partitioning) without violating the user specified balance con-
straints. Since the next level finer hypergraph has more degrees of freedom,
such refinement algorithms tend to improve the solution quality.

The partitioning refinement approaches that have historically being used
in the context of the multilevel paradigm are variations of the traditional al-
gorithm by Fiduccia and Mattheyses, despite the fact that significantly more
powerful algorithms such as the look-ahead scheme by Krishnamurthy [Krish-
namurthy, 1984], and the PROP [Dutt and Deng, 1996a], and CLIP [Dutt and
Deng, 1996b] schemes by Dutt and Deng. The primary reason for that is that
the multilevel paradigm itself, by performing refinement at different levels, au-
tomatically offers some of the characteristics that the above schemes exploit.

�
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 The partitioning
refinement algorithm by Fiduccia and Mattheyses is iterative in nature. It starts
with an initial partitioning of the hypergraph. In each iteration, it tries to find
subsets of vertices in each partition, such that moving them to other partitions
improves the quality of the partitioning (i.e., the number of hyperedges being
cut decreases) and this does not violate the balance constraint. If such subsets
exist, then the movement is performed and this becomes the partitioning for
the next iteration. The algorithm continues by repeating the entire process. If
it cannot find such a subset, then the algorithm terminates, since the partition-
ing is at a local minimum and no further improvement can be made by this
algorithm.

For each vertexv, the FM algorithm computes thegain, which is the reduc-
tion in the hyperedge-cut achieved by movingv to the other partition. The FM
algorithm starts by inserting all the vertices into two max-priority queues, one
for each partition, according to their gains. Initially all vertices areunlocked,
i.e., they are free to move to the other partition. The algorithm iteratively se-
lects an unlocked vertexv from the top of the priority queue from one of the
partitions (source partition) and moves it to the other partition (target partition).
The source partition is determined based on whether the current bisection is a
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feasible solution or not. If it is feasible, then the partition that contains the
highest gain vertex becomes the source. On the other hand, if it is not feasible
(i.e., the balancing constraint is violated), the partition that contains the largest
number of vertices, becomes the source.

When a vertexv is moved, it islocked and the gain of the vertices adjacent
to v are updated. After each vertex movement, the algorithm records the value
of the objective function achieved at this point and whether or not the current
bisection satisfies the balancing constraints or not. Note that the algorithm
does not allow locked vertices to be moved, since this may result in thrashing
(i.e., repeated movement of the same vertex). A single pass of the algorithm
ends when there are no more unlocked vertices. Then, the recorded values
of the cut are checked, and the point where the minimum value was achieved
while satisfying the balancing constraints, is selected, and all vertices that were
moved after that point are moved back to their original partition. Now, this
becomes the initial partitioning for the next pass of the algorithm. With the use
of appropriate data-structures, the complexity of each pass of the FM algorithm
is O(|Eh|) [Fiduccia and Mattheyses, 1982].

� !��!���! ���	���������	
 For refinement in the context of mul-
tilevel schemes, the initial partitioning obtained from the next level coarser
graph is actually a very good partition. For this reason we can make a number
of optimizations to the original FM algorithm. The first optimization limits the
maximum number of passes performed by the FM algorithm to only two. This
is because the greatest reduction in the cut is obtained during the first or sec-
ond pass, and any subsequent passes only marginally improve the quality. Our
experience has shown that this optimization significantly improves the runtime
of FM without affecting the overall quality of the produced partitionings. The
second optimization aborts each pass of the FM algorithm before actually mov-
ing all the vertices. The motivation behind this is that only a small fraction of
the vertices being moved actually lead to a reduction in the cut, and after some
point, the cut tends to increase as we move more vertices. When FM is applied
to a random initial partitioning, it is quite likely that after a long sequence of
bad moves, the algorithm will climb-out of a local minimum and reach to a
better cut. However, in the context of a multilevel scheme, a long sequence of
cut-increasing moves rarely leads to a better local minimum. For this reason,
each pass of the FM algorithm can be stopped as soon as we have performed
k vertex moves that did not improve the cut. Reasonable values ofk are in
the range of 1%–5% of the number of vertices in the hypergraph being refined.
This modification to FM, calledearly-exit FM (FM-EE), does not significantly
affect the quality of the final partitioning, but it dramatically improves the run
time.
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Another issue that also arises when refining the hypergraphs at the coarsest
levels is that it may be very hard to perform any vertex moves and still maintain
the balance constraints. This is especially true when the original hypergraphs
have weights associated with the vertices and when the balancing constraints
are tight. There are two things that are quite often beneficial in this type of
situations. First, allow the solution to momentarily violate the balancing con-
straints as it moves vertices between the two partitions, but ensure that only
solution instances that are actually balanced are recorded. Second, it may be
beneficial to relax the balancing constraints at the coarsest levels and make
them tighter incrementally as the solution gets propagated to successive finer
hypergraphs.
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 Refining ak-way par-
titioning is significantly more complicated because vertices can move from a
partition to many other partitions; thus, increasing the optimization space com-
binatorially. An extension of the FM refinement algorithm in the case ofk-way
refinement is described in [Sanchis, 1989]. This algorithm usesk(k − 1) pri-
ority queues, one for each type of move. In each step of the algorithm, the
moves with the highest gain are found from each of thesek(k − 1) queues,
and the move with the highest gain that preserves or improves the balance, is
performed. After the move, all of thek(k − 1) priority queues are updated.
The complexity ofk-way refinement is significantly higher than that of 2-way
refinement, and is only practical for small values ofk. Furthermore, as the
experiments in [Cong and Lim, 1998] suggest, thek-way FM algorithm is also
very susceptible of being trapped into a local minimum that is far from being
optimal.

The hill-climbing capability of the FM algorithm serves a very important
purpose. It allows movement of an entire cluster of vertices across a partition
boundary. Note that it is quite possible that as the cluster is moved across
the partition boundary, the value of the objective function increases, but after
the entire cluster of vertices moves across the partition, then the overall value
of the objective function comes down. In the context of multilevel schemes,
this hill-climbing capability becomes less important. The reason is that these
clusters of vertices are coarsened into a single vertex at successive coarsening
phases. Hence, movement of a vertex at a coarse level really corresponds to
the movement of a group of vertices in the original hypergraph.

If the hill-climbing part of the FM algorithm is eliminated (i.e., if vertices
are moved only if they lead to positive gain), then it becomes less useful to
maintain a priority queue. This is because vertices whose move results in
a large positive gain will most likely be moved anyway even if they are not
moved earlier (in the priority order). Hence, a variation of the FM algorithm
that simply visits the vertices in a random order and moves them if they result
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in a positive gain is likely to work well in the multilevel context. Furthermore,
the complexity of this algorithm will be independent of the number of parti-
tions being refined, leading to a fast algorithm. For these reasons,hMETIS uses
a greedy refinement algorithm to refine ak-way partitioning. It consists of a
number of iterations. In each iteration all the vertices are checked to see if they
can be moved so that the partitioning objective function is optimized, subject
to the partitioning balancing constraint (as described in Section 2).

More precisely, the greedyk-way refinement algorithm works as follows.
Consider a hypergraphG = (V, E), and its partitioning vectorP. The vertices
are visited in a random order. Letv be such a vertex, letP[v] = a be the
partition thatv belongs to. Ifv is a node internal to partitiona thenv is not
moved. Ifv is at the boundary of the partition, thenv can potentially be moved
to one of the partitionsN (v) that vertices adjacent tov belong to (the setN (v)

is often refer to as theneighborhood of v). Let N ′(v) be the subset ofN (v)

that contains all partitionsb such that movement of vertexv to partitionb does
not violate the balancing constraint. Now the partitionb ∈ N ′(v) that leads to
the greatest positive reduction (gain) in the objective function is selected andv

is moved to that partition.
The above greedy refinement algorithm can be used to compute a partition-

ing that minimizes a variety of objective functions, by appropriately comput-
ing the gain achieved in moving a vertex. Our current implementation allows a
choice of two different objective functions. The first minimizes the hyperedge
cut and the second minimizes the sum of external degrees (SOED) (Section 2).

Experiments with this greedyk-way refinement algorithm show that it con-
verges after a small number of iterations and that it leads to reasonably good
solutions [Karypis and Kumar, 1999b].
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 The sin-
gle constraint FM refinement algorithm can be directly extended when the ver-
tices have multiple weights by modifying the source-partition selection scheme.
In this modified algorithm, the source partition is selected as follows. If the cur-
rent bisection is feasible, then similarly to the single-constraint FM algorithm,
the partition that contains the highest gain vertex is selected to be the source.
On the other hand, if the current bisection is infeasible, then the source parti-
tion is determined based on which partition is the largest. However, unlike the
single-constraint bisection problem, in the case of multiple weights, we may
have both partitions being “overweight”, for different weights. For example for
a two-weight problem, we may have that the first partition contains more than
the required total weight with respect to the first weight, whereas the second
partition contains more with respect to the second weight. In such cases, a rea-
sonable way for selecting the source partition is to choose the one that contains
the most weight with respect to any single weight. For example, in the case
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of a two-weight problem and a 45-55 balancing constraint for each one of the
weights, if(.56, .40) and(.44, .60) are the fractions of the two weights for par-
titions A andB, respectively, then this approach will selectB to be the source,
as.60 is greater than.56 (thatA contains with respect to the first weight). This
scheme is referred to as FM1 [Karypis and Kumar, 1998c, Karypis, 1999].

One of the problems of FM1 is that it may make a large number of moves
before it can reach to a feasible solution, or in the worst case fail to reach it
all together. This is because it selects the highest gain vertex, irrespective of
the relative weights of this vertex. For instance, in the previous example, we
selected to move a vertex fromB, so that we can reducew2(B). However,
the highest gain vertexv from B, may have a weight vector such thatw2(v)

is much smaller thanw1(v). As a result, in the process of trying to correct
the imbalance with respect to the second weight, it may end up worsening the
imbalance with respect to the first weight. In fact, in [Karypis and Kumar,
1998c] it has been shown that a scheme is not guaranteed to reach to a feasible
solution.

For this reason, a different extension of the FM algorithm called FM2 was
proposed [Karypis and Kumar, 1998c, Karypis, 1999], that is better suited for
refining a bisection in the presence of multiple vertex weights. In FM2, instead
of maintaining one priority queue it maintainsm queues for each one of the two
partitions, wherem is the number of weights. A vertex belongs to only a single
priority queue depending on the relative order of the weights in its weight
vector. In particular, a vertexv with weight vector(w1(v),w2(v), . . . , wm(v)),
belongs to thej th queue ifw j(v) = maxi(wi (v)). Given these 2m queues, the
algorithm starts by initially inserting all the vertices to the appropriate queues
according to their gains. Then, the algorithm proceeds by selecting one of these
2m queues, picking the highest gain vertex from this queue, and moving it to
the other partition. The queue is selected as follows. If the current bisection
represents a feasible solution, then the queue that contains the highest gain
vertex among the 2m vertices at the top of the priority queues is selected. On
the other hand, if the current bisection is infeasible, then the queue is selected
depending on the relative weights of the two partitions. Specifically, ifA and
B are the two partitions, then the algorithm selects the queue corresponding
to the largestwi (x) with x ∈ {A, B} andi = 1, 2, . . . , m. If it happens that
the selected queue is empty, then the algorithm selects a vertex from the non-
empty queue corresponding to the next heaviest weightof the same partition.
For example, ifm = 3,

(w1(A), w2(A), w3(A)) = (.43, .60, .52),

and

(w1(B), w2(B), w3(B)) = (.57, .4, .48),
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the algorithm will select the second queue of partitionA. If this queue is empty,
it will then try the third queue ofA, followed by the first queue ofA. Note that
we give preference to the third queue ofA as opposed to the first queue of
B, even thoughB has more of the first weight thanA does of the third. This
is because our goal is to reduce the second weight ofA. If the second queue
of A is non-empty, we will select the highest gain vertex from that queue and
move it toB. However, if this queue is empty, we still will like to decrease the
second weight ofA, and the only way to do that is to move a node fromA to
B. This is why when our first-choice queue is empty, we then select the most
promising node from the same partition that this first-queue belongs to.

)
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Extensive experimental studies have shown that multilevel graph partition-
ing algorithms are extremely robust and lead to high quality solutions, both
for small and very large hypergraphs. In this section we attempt to explain the
three primary reasons that explains the robustness of these algorithms.

����	����� ��*�	 ��� ����!�# ��	���
 A good coarsening
scheme can hide a large number of the original hyperedges on the coarsest
hypergraph. Figure 1.5 illustrates this point for simple graphs. The original
graphs in Figures 1.5(a) and (b) have total edge weights of 37. After coarsening
is performed on each, their total edge weights are reduced. Figures 1.5(a) and
(b) show two possible coarsening heuristics, random and heavy-edge. In both
cases, the total weight of the visible edges in the coarsened graph is less than
that on the original graph. Note that by reducing the exposed edge weight, the
task of computing a good quality partitioning becomes easier. For example,
a worst case partitioning (i.e., one that cuts every edge) of the coarsest graph
will be of higher quality than the worst case partitioning of the original graph.
Also, a random bisection of the coarsest graph will tend to be better than a
random bisection of the original graph [Karypis and Kumar, 1995].
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 Incremental refinement schemes such as
KL/FM become much more powerful in the multilevel context. Here, the
movement of a single vertex across the subdomain boundary in one of the
coarse hypergraphs is equivalent to the movement of a large number of highly
connected vertices in the original hypergraph, but is much faster. The ability
of a refinement algorithm to move groups of highly connected vertices allows
the algorithm to escape from some types of local minima. Figure 1.6 illustrates
this phenomenon, again for simple graphs. The uncoarsened graph on the left
hand side of Figure 1.6 is in a local minimum. However, the coarsened graph
on the right side is not. Edge-cut reducing moves can be made here that will
result in the left side graph escaping from its local minimum. Modifications of
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������ ���� A partitioning in a local minimum for a graph and its coarsened variant. The
graph to the right has been coarsened. Now it is possible to escape from the local minimum
with edge-cut reducing moves.

KL/FM schemes have been developed that attempt to move sets of vertices in
this way. However, computing these sets is computationally intensive. Multi-
level schemes obtain much of the same benefits quickly.

��*� ��� (����#��� ����!�# ��	���
 The previous two rea-
sons are equally applicable to graphs and hypergraphs. However, the third
reason that can explain why the multilevel paradigm works so well is specify
to hypergraphs. One of the challenges in refining the partitioning of a hyper-
graph using the various KL/FM algorithms is that large hyperedges tend to
limit our ability to get out of local minima. This is illustrated in Figure 1.7(a)
that shows a bisection that equally splits a large net of size six. In order for this
net to be removed off the cut, the KL/FM algorithms need to move all three of
the cells from partition one to partition two, without moving any of the cells
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������ �� � The effect of coarsening on the size of the hyperedges.

from two to one. However, this may be very hard to prevent using local gain
information. Now in the context of the multilevel paradigm, as a result of
coarsening, the size of these nets is progressively decreasing, as illustrated in
Figures 1.7(b) and (c). Consequently, when the KL/FM refinement approaches
are applied to coarser hypergraphs, they will be more effective as there will not
be very many large nets.

-
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Although the multilevel paradigm is quite robust, randomization is inher-
ent in all three phases of the algorithm. In particular, the random choice of
vertices to be matched in the coarsening phase can disallow certain hyperedge-
cuts, reducing the refinement possibilities in the uncoarsening phase. For ex-
ample, consider the example hypergraph in Figure 1.8(a) and its two possible
condensed versions (Figure 1.8(b) and 1.8(c)) with the same partitioning. The
version in Figure 1.8(b) is obtained by selecting hyperedgesa andb to be com-
pressed in the hyperedge coarsening phase and then selecting pairs of nodes
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(4,5), (6,7), and (8,9) to be compressed in the modified hyperedge coarsening
phase. Similarly, the version shown in Figure 1.8(c) is obtained by selecting
hyperedgec to be compressed in the hyperedge coarsening phase and then
selecting pairs of nodes (6,7) and (8,9) to be compressed in the modified hy-
peredge coarsening phase. In the version of Figure 1.8(b) vertexA(4,5) can
be moved from partitionP0 to P1 to reduce the hyperedge-cuts by 1, but in
Figure 1.8(c) no vertex can be moved to reduce the hyperedge-cuts.
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������ ��!� Effect ofRestricted coarsening. (a) example hypergraph with a given partitioning
with the required balance of 40/60, (b) a possible condensed version of (a), and (c) another
condensed version of a hypergraph.

What this example shows is that in a multilevel setting, a given initial par-
titioning of a hypergraph can be potentially refined in many different ways
depending upon how the coarsening is performed. Hence, a partitioning pro-
duced by a multilevel partitioning algorithm can be potentially further refined
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if the partitions are again coarsened in a manner different from the previous
coarsening phase (which is easily done given the random nature of all of the
coarsening schemes described here). The power of iterative refinement at dif-
ferent coarsening levels can also be used to develop a partitioning refinement
algorithm based on the multilevel paradigm.

The idea behind thismulti-phase refinement algorithm is quite simple. It
consists of two phases, namely a coarsening and an uncoarsening phase. The
uncoarsening phase of the multi-phase refinement algorithm is identical to the
uncoarsening phase of the multilevel hypergraph partitioning algorithm de-
scribed in Section 3.3. The coarsening phase however is somewhat different, as
it preserves the initial partitioning that is input to the algorithm. We will refer
to this asrestricted coarsening scheme. Given a hypergraphG and a partition-
ing P, during the coarsening phase a sequence of successively coarser hyper-
graphs and their partitionings is constructed. Let(G i , Pi ) for i = 1, 2, . . . , m,
be the sequence of hypergraphs and partitionings. Given a hypergraphG i and
its partitioningPi , restricted coarsening will collapse vertices together that be-
long to only one of the two partitions. The partitioningPi+1 of the next level
coarser hypergraphGi+1 is computed by simply inheriting the partition from
Gi . For example, if a set of vertices{v1, v2, v3} from partition A is collapsed
together to form vertexui of Gi+1, then vertexui belongs to partitionA as
well. By constructingGi+1 and Pi+1 in this way we ensure that the number
of hyperedges cut by the partitioning is identical to the number of hyperedges
cut by Pi in Gi . The set of vertices to be collapsed together in this restricted
coarsening scheme can be selected by using any of the coarsening schemes
described in Section 3.1, namely edge-coarsening, hyperedge-coarsening, or
modified hyperedge-coarsening.

Due to the randomization in the coarsening phase, successive runs of the
multi-phase refinement algorithm can lead to additional reductions in the hy-
peredge cut. Thus, the multi-phase refinement algorithm can be performed
iteratively. Note that during the refinement phase, we only propagate a single
partitioning; thus, multi-phase refinement is quite fast.

In the context of the multilevel hypergraph partitioning algorithm, this new
multi-phase refinement can be used in a number of ways.

+"���!�
 In this scheme, the best solution obtained from the multilevel
partitioning algorithm (Pb) is improved using multi-phase refinement repeat-
edly. The multi-phase refinement stops when the solution quality cannot be
improved further. The number of multi-phase refinement steps performed is
problem dependent, and in general it increases as the size of the hypergraph
increases. This is due to the larger solution space of the large hypergraphs.
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 Our experience with the multilevel partitioning algorithm has
shown that refining multiple solutions is expensive, especially during the fi-
nal uncoarsening levels when the size of the contracted hypergraphs is large.
One way to reduce the high cost of refining multiple solutions during the final
uncoarsening levels is to select the best partitioning at some point in the un-
coarsening phase and further refine only this best partitioning using multiphase
refinement. This is the idea behind the v-cycle refinement.

In particular, letGm/2 be the coarse hypergraph at the midpoint between
G0 (original hypergraph) andGm (coarsest hypergraph). LetPm/2 be the best
partitioning atGm/2. Then we use (Gm/2, Pm/2) as the input to multi-phase
refinement. SinceGm/2 is relatively small as compared toG m, multi-phase
refinement converges in a small number of iterations. By using v-cycles, we
can significantly reduce the amount of time spent in the refinement phase, es-
pecially for large hypergraphs. However, the overall quality can potentially
decrease because we may have not picked up the best overall partitioning at
Gm/2.

�+"���!�
 We can combine both V-cycles and v-cycles in the algorithm
to obtain high quality partitioning in a small amount of time. In this scheme
we use v-cycles to partition the hypergraph followed by the V-cycles to fur-
ther improve the partition quality. V-cycles used in this way are particularly
effective in significantly improving the hyperedge cut.

.
 ��������� �� /����� (�������

Numerous studies have shown that multilevel graph partitioning algorithms
are very successful in producing high quality hypergraph partitionings in a
relatively small amount of time. It may be possible to further improve the
quality of the partitionings produced by these algorithms in many ways. In
particular, one area that is still not very well-understood, is the correct choice
of the coarsening method. Our experience has been that no single coarsening
method dominates the rest for all the different benchmarks. Further research
is required to identify coarsening methods that are suitable for a wider class of
hypergraphs.

The success of multilevel graph partitioning, has also sparked an increased
interest in applying the key ideas of the multilevel paradigm to other hard com-
binatorial optimization problems arising in VLSI design. Many of the articles
in this book describe some of these new algorithms, and the results being re-
ported are encouraging, suggesting that the multilevel paradigm can potentially
be applied to solve problems in placement, routing, and timing optimization.
However, numerous research questions are still open regarding the properties
of the correct coarsening and refinement methods for these new problems.
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