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Abstract. Word2Vec’s Skip Gram model is the current state-of-the-art
approach for estimating the distributed representation of words. How-
ever, it assumes a single vector per word, which is not well-suited for rep-
resenting words that have multiple senses. This work presents LDMI, a
new model for estimating distributional representations of words. LDMI
relies on the idea that, if a word carries multiple senses, then having a
different representation for each of its senses should lead to a lower loss
associated with predicting its co-occurring words, as opposed to the case
when a single vector representation is used for all the senses. After iden-
tifying the multi-sense words, LDMI clusters the occurrences of these
words to assign a sense to each occurrence. Experiments on the contex-
tual word similarity task show that LDMI leads to better performance
than competing approaches.

1 Introduction

Many NLP tasks benefit by embedding the words of a collection into a low
dimensional space in a way that captures their syntactic and semantic informa-
tion. Such NLP tasks include analogy /similarity questions [11], part-of-speech
tagging [2], named entity recognition [1], machine translation [12,16] etc. Dis-
tributed representations of words are real-valued, low dimensional embeddings
based on the distributional properties of words in large samples of the language
data. However, representing each word by a single vector does not properly
model the words that have multiple senses (i.e., polysemous and homonymous
words). For multi-sense words, a single representation leads to a vector that is
the amalgamation of all its different senses, which can lead to ambiguity.

To address this problem, models have been developed to estimate a different
representation for each of the senses of multi-sense words. The common idea
utilized by these models is that if the words have different senses, then they
tend to co-occur with different sets of words. The models proposed by Reisinger
and Mooney [14], Huang et al. [10] and the Multiple-Sense Skip-Gram (MSSG)
model of Neelakantan et al. [13] estimates a fixed number of representations per
word, without discriminating between the single-sense and multi-sense words.
As a result, these approaches fail to identify the right number of senses per word
and estimate multiple representations for the words that have a single sense.
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In addition, these approaches cluster the occurrences without taking into con-
sideration the diversity of words that occur within the contexts of these occur-
rences (explained in Sect.3). The Non-Parametric Multiple-Sense Skip-Gram
(NP-MSSG) model [13] estimates a varying number of representations for each
word but uses the same clustering approach and hence, is not effective in taking
into consideration the diversity of words that occur within the same context.

We present an extension to the Skip-Gram model of Word2Vec to accurately
and efficiently estimate a vector representation for each sense of multi-sense
words. Our model relies on the fact that, given a word, the Skip-Gram model’s
loss associated with predicting the words that co-occur with that word, should
be greater when that word has multiple senses as compared to the case when
it has a single sense. This information is used to identify the words that have
multiple senses and estimate a different representation for each of the senses.
These representations are estimated using the Skip-Gram model by first clus-
tering the occurrences of the multi-sense words by accounting for the diversity
of the words in these contexts. We evaluated the performance of our model for
the contextual similarity task on the Stanford’s Contextual Word Similarities
(SCWS) dataset. When comparing the most likely contextual sense of words,
our model was able to achieve approximately 13% and 10% improvement over
the NP-MSSG and MSSG approaches, respectively. In addition, our qualitative
evaluation shows that our model does a better job of identifying the words that
have multiple senses over the competing approaches.

2 Definitions, Notations and Background

Distributed representation of words quantify the syntactic and semantic relations
among the words based on their distributional properties in large samples of the
language data. The underlying assumption is that the co-occurring words should
be similar to each other. We say that the word w; co-occurs with the word wj if
w; occurs within a window around w;. The context of w; corresponds to the set
of words which co-occur with w; within a window and is represented by C(w;).

The state-of-the-art technique to learn the distributed representation of
words is Word2Vec. The word vector representations produced by Word2Vec
are able to capture fine-grained semantic and syntactic regularities in the lan-
guage data. Word2Vec provides two models to learn word vector representations.
The first is the Continuous Bag-of-words Model that involves predicting a word
using its context. The second is called the Continuous Skip-gram Model that
involves predicting the context using the current word. To estimate the word
vectors, Word2Vec trains a simple neural network with a single hidden layer to
perform the following task: Given an input word (w;), the network computes the
probability for every word in the vocabulary of being in the context of w;. The
network is trained such that, if it is given w; as an input, it will give a higher
probability to w; in the output layer than wy if w; occurs in the context of w;
but wj does not occur in the context of w;. The set of all words in the vocabulary
is represented by V. The vector associated with the word w; is denoted by w;.
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The vector corresponding to word w; when w; is used in the context is denoted
by w;. The size of the word vector w; or the context vector w; is denoted by d.

The objective function for the Skip-Gram model with negative sampling is
given by [8]

V]
minimize —Z( Z log o ({(w;, w;)) + Z 10g<7(—<’wi,’£5k>)>7

i=1 \w,;eC(w;) keRég(,IV)l)
Wi wi

where R(m,n) denotes a set of m random numbers from the range [1, n] (negative
samples), (w;,w;) is the dot product of w; and w; and o((w;,w;)) is the
sigmoid function.

The parameters of the model are estimated using Stochastic Gradient Descent
(SGD) in which, for each iteration, the model makes a single pass through every
word in the training corpus (say w;) and gathers the context words within a
window. The negative samples are sampled from a probability distribution which
favors the frequent words. The model also down-samples the frequent words using
a hyper-parameter called the sub-sampling parameter.

3 Prior Approaches for Dealing with Multi-sense Words

Various models have been developed to deal with the distributed representations
of the multi-sense words. These models presented in this section work by esti-
mating multiple vector-space representations per word, one for each sense. Most
of these models estimate a fixed number of vector representations for each word,
irrespective of the number of senses associated with a word. In the rest of this
section, we review these models and discuss their limitations.

Reisinger and Mooney [14] clusters the occurrences of a word using the mix-
ture of von Mises-Fisher distributions [3] clustering method to assign a different
sense to each occurrence of the word. The clustering is performed on all the
words even if the word has a single sense. This approach estimates a fixed num-
ber of vector representations for each word in the vocabulary. As per the authors,
the model captures meaningful variation in the word usage and does not assume
that each vector representation corresponds to a different sense. Huang et al. [10]
also uses the same idea and estimates a fixed number of senses for each word. It
uses spherical k-means [5] to cluster the occurrences.

Neelakantan et al. [13] proposed two models built on the top of the Skip-
Gram model: Multiple-Sense Skip-Gram (MSSG), and its Non-Parametric coun-
terpart NP-MSSG. MSSG estimates a fixed number of senses per word whereas
NP-MSSG discovers varying number of senses. MSSG maintains clusters of the
occurrences for each word, each cluster corresponding to a sense. Each occur-
rence of a word is assigned a sense based on the similarity of its context with
the already maintained clusters, and the corresponding vector representation,
as well as the sense cluster of the word is updated. During training, NP-MSSG
creates a new sense for a word with the probability proportional to the distance
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of the context to the nearest sense cluster. Both MSSG and NP-MSSG create
an auxiliary vector to represent an occurrence, by taking the average of vectors
associated with all the words belonging to its context. The similarity between
the two occurrences is computed as the cosine similarity between these auxiliary
vectors. This approach does not take into consideration the variation among the
words that occur within the same context. Another disadvantage is that the aux-
iliary vector is biased towards the words having higher Ls norm. This leads to
noisy clusters, and hence, the senses discovered by these models are not robust.

4 Loss Driven Multisense Identification (LDMTI)

In order to address the limitations of the existing models, we developed an exten-
sion to the Skip-Gram model that combines two ideas. The first is to identify the
multi-sense words and the second is to cluster the occurrences of the identified
words such that the clustering correctly accounts for the variation among the
words that occur within the same context. We explain these parts as follows:

4.1 Identifying the Words with Multiple Senses

For the Skip-Gram model, the loss associated with an occurrence of w; is

L(w;) = —( Z log o ((w;, w;)) + Z loga(—(w,-gﬁ”)).
w; €C(w;) keRg(gl(,\V;)
Wik wi

The model minimizes L(w;) by increasing the probability of the co-occurrence
of w; and w; if w; is present in the context of w; and decreasing the probability
of the co-occurrence of wy and w; if wy is not present in the context of w;.
This happens by aligning the directions of w; and w; closer to each other and
aligning the directions of w; and wy farther from each other. At the end of the
optimization process, we expect that the co-occurring words have their vectors
aligned closer in the vector space. However, consider the polysemous word bat.
We expect that the vector representation of bat is aligned in a direction closer
to the directions of the vectors representing the terms like ball, baseball, sports
etc. (the sense corresponding to sports). We also expect that the vector repre-
sentation of bat is aligned in a direction closer to the directions of the vectors
representing the terms like animal, batman, nocturnal etc. (the sense correspond-
ing to animals). But at the same time, we do not expect that the directions of
the vectors representing the words corresponding to the sports sense are closer to
the directions of the vectors representing the words corresponding to the animal
sense. This leads to the direction of the vector representing bat lying in between
the directions of the vectors representing the words corresponding to the sports
sense and the directions of the vectors representing the words corresponding to
the animal sense. Consequently, the multi-sense words will tend to contribute
more to the overall loss than the words with a single sense.
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Having a vector representation for each sense of the word bat will avoid
this scenario, as each sense can be considered as a new single-sense word in
the vocabulary. Hence, the loss associated with a word provides us information
regarding whether a word has multiple senses or not. LDMI leverages this insight
to identify a word w; as multi-sense if the average L(w;) across all its occurrences
is more than a threshold. However, L(w;) has a random component associated
with it, in the form of negative samples. We found that, in general, infrequent
words have higher loss as compared to the frequent words. This can be attributed
to the fact that given a random negative sample while calculating the loss, there
is a greater chance that the frequent words have already seen this negative sample
before during the optimization process as compared to the infrequent words. This
way, infrequent words end up having higher loss than frequent words. Therefore,
for the selection purposes, we ignore the loss associated with negative samples.
We denote the average loss associated with the prediction of the context words
in an occurrence of w; as L™ (w;) and define it as

1

;) = —
7w = = ety

Z log o ((w;,W;)).

w; €C(w;)

We describe LT (w;) as the conteztual loss associated with an occurrence of w;.
To identify the multi-sense words, LDMI performs a few iterations to optimize
the loss function on the text dataset, and shortlist the words with average con-
textual loss (average L (w;) across all the occurrences of the w;) that is higher
than a threshold. These shortlisted words represent the identified multi-sense
words, which form the input of the second step described in the next section.

4.2 Clustering the Occurrences

To assign senses to the occurrences of each of the identified multi-sense words,
LDMI clusters its occurrences so that each of the clusters corresponds to a
particular sense. The clustering solution employs the Z; criterion function [15]
which maximizes the objective function of the form

k

maximize ZniQ(Si), (1)

i=1
where Q(S;) is the quality of cluster S; whose size is n;. We define Q(S;) as
1 .
Q(S) = — Z sim(u, v),

n:
u,ES;

where sim(u, v) denotes the similarity between the occurrences v and v, and is
given by

1 *; COS(T
i) = fEgiom) 2 2 o) )

zeC(u) yeC(v)
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According to Eq. (2), LDMI measures the similarity between the two occurrences
as the average of the pairwise cosine similarities between the words belonging to
the contexts of these occurrences. This approach considers the variation among
the words that occur within the same context. We can simplify Eq. (1) to the
following equation

2

k
- Z 1 Z T
maximize —_— E
—n; ) llll2

ueS; \zeC(u

LDMI maximizes this objective function using a greedy incremental strategy [15].

4.3 Putting Everything Together

LDMI is an iterative algorithm with two steps in each iteration. The first step is
to perform a few SGD iterations to optimize the loss function. In the second step,
it calculates the contextual loss associated with each occurrence of each word
and identifies the words having the average contextual loss that is more than
a threshold. It then clusters the occurrences of the identified multi-sense words
into two clusters (k = 2) as per the clustering approach discussed earlier. The
algorithm terminates after a fixed number of iterations. x number of iterations
of LDMI can estimate a maximum of 2% senses for each word.

5 Experimental Methodology

5.1 Datasets

We train LDMI on two corpora of varying sizes: The Wall Street Journal (WSJ)
dataset [9] and the Google’s One Billion Word (GOBW) dataset [4]. In prepro-
cessing, we removed all the words which contained a number or did not contain
any alphabet and converted the remaining words to lower case.

For WSJ, we removed all the
words with frequency less than 10
and for GOBW, we removed all
the words with frequency less than
100. The statistics of these datasets WSJ 88,118 62,653,821
after preprocessing are presented in GOBW|73,443 710,848,599
Table 1.

We use Stanford’s Contextual Word Similarities (SCWS) dataset [10] for
evaluation on the contextual word similarity task. SCWS contains human judg-
ments on pairs of words (2,003 in total) presented in sentential context. The
word pairs are chosen so as to reflect interesting variations in meanings.

When the contextual information is not present, different people can consider
different senses when giving a similarity judgment. Therefore, having represen-
tations for all the senses of a word can help us to find similarities which align

Table 1. Dataset statistics.

Dataset|Vocabulary size|Total words
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better with the human judgments, as compared to having a single representa-
tion of a word. To investigate this, we evaluated our model on the WordSim-353
dataset [7], which consists of 353 pairs of nouns, without any contextual infor-
mation. Each pair has an associated averaged human judgments on similarity.

5.2 Evaluation Methodology and Metrics

Baselines. We compare the LDMI model with the MSSG and NP-MSSG
approaches as they are also built on top of the Skip-Gram model. As men-
tioned earlier, MSSG estimates the vectors for a fixed number of senses per
word whereas NP-MSSG discovers varying number of senses per word. To illus-
trate the advantage of using the clustering with Z; criterion over the clustering
approach used by the competing models, we also compare LDMI with LDMI-
SK. LDMI-SK uses the same approach to select the multi-sense words as used
by the LDMI, but instead of clustering with the Z; criterion, it uses spherical
K-means [5].

Parameter Selection. For all our experiments, we consider 10 negative sam-
ples and a symmetric window of 10 words. The sub-sampling parameter is 104
for both the datasets. To avoid clustering the infrequent and stop-words, we only
consider the words within a frequency range to select them as the multi-sense
words. For the WSJ dataset, we consider the words with frequency between 50
and 30,000 while for the GOBW dataset, we consider the words with frequency
between 500 and 300,000. For the WSJ dataset, we consider only 50-dimensional
embeddings while for the GOBW dataset, we consider 50, 100 and 200 dimen-
sional embeddings. The model checks for multi-sense words after every 5 iter-
ations. We selected our hyperparameter values by a small amount of manual
exploration to get the best performing model.

To decide the threshold for the aver-
age contextual loss to select the multi-
sense words, we consider the distribu-
tion of the average contextual loss after
running an iteration of Skip-Gram. For
example, Fig. 1 shows the average con-
textual loss of every word in the vocab-
ulary for the GOBW dataset for the y
50-dimensional embeddings. We can see 0 led 2e4 3ed4 ded Sed Ged Ted
that there is an increase in the aver- Words
age contextual loss around 2.0—2.4. We Fig. 1. Distribution of the average con-
experiment around this range to select textual loss for all words (Words on the
a loss threshold for which our model x-axis are sorted in order of their loss)
performs best. For the experiments pre-
sented in this paper, this threshold is set to 2.15 for the WSJ (50-dimensional
embeddings), and 2.15, 2.10 and 2.05 for the GOBW corresponding to the 50,

Distribution of the average contextual loss

2.5

2.0 1

1.5 4

1.0 1

0.5 1

Average contextual loss
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100 and 200-dimensional embeddings, respectively. With increasing dimension-
ality of the vectors, we are able to model the information from the dataset in a
better way, which leads to a relatively lower loss.

For the MSSG and NP-MSSG models, we use the same hyperparameter val-
ues as used by Neelakantan et al. [13]. For MSSG, the number of senses is set to
3. Increasing the number of senses involves a compromise between getting the
correct number of senses for some words while noisy senses for the others. For
NP-MSSG, the maximum number of senses is set to 10 and the parameter A is
set to —0.5 (A new sense cluster is created if the similarity of an occurrence to
the existing sense clusters is less than \). The models are trained using SGD
with AdaGrad [6] with 0.025 as the initial learning rate and we run 15 iterations.

Metrics. For evaluation, we use the similarities calculated by our model and
sort them to create an ordering among all the word-pairs. We compare this order-
ing against the one obtained by the human judgments. To do this comparison, we
use the Spearman rank correlation (p). Higher score for the Spearman rank cor-
relation corresponds to the better correlation between the respective orderings.
For the SCWS dataset, to measure the similarity between two words given their
sentential contexts, we use two different metrics [14]. The first is the maxSimC,
which for each word in the pair, identifies the sense of the word that is the most
similar to its context and then compares those two senses. It is computed as

maxSimC(wy, we, C(wy), C(wz)) = cos(t(wy), T (ws)),

where, 7(w;) is the vector representation of the sense that is most similar to
C(w;). As in Eq. (2), we measure the similarity between  and C(w;) as

m(y)
. 1 .
sim(r, Cw) = 2 | 303 coste, Vw3)) |
yeC(w;) =1

where, Z =3 ¢ c(w,) M(y), m(y) is the number of senses discovered for the word
y and V(y,i) is the vector representation associated with the ith sense of the
word y. For simplicity, we consider all the senses of the words in the sentential
context for the similarity calculation. The second metric is the avgSimC which
calculates the similarity between the two words as the weighed average of the
similarities between each of their senses. It is computed as

avgSimC(wi, we, C(w1), C(ws)) =

m(w1) m(w2)

Z <Pr(w1,i, C(wn))Pr(ws, §, C(wsz)) x cos(V(w1,1), V(wg,j))>,

i=1  j=1

where Pr(x,i, C(z)) is the probability that x takes the ith sense given the context
C(z). We calculate Pr(z,i,C(x)) as
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Pr(z,i,C(x)) = % (1—slm(1x0(x))> ’

where N is the normalization constant so that the probabilities add to 1. Note
that, the maxSimC metric models the similarity between two words with respect
to the most probable identified sense for each of them. If there are noisy senses
as a result of overclustering, maxSimC will penalize them. Hence, maxSimC is
a stricter metric as compared to the avgSimC.

For the WordSim-353 dataset, we used the avgSim metric, which is quali-
tatively similar to the avgSimC, but does not take contextual information into
consideration. The avgSim metric is calculated as

1 m(wy) m(wsz)

avgSim(wy, ws) = —————— X cos(V(w1,1), V(ws,J)).
( 1 2) m(wl)m(wQ) ; JE::I ( ( 1 )7 ( 2 ))
For qualitative analysis, we look into the similar words corresponding to different
senses for some of the words identified as multi-sense by the LDMI and compare

them to the ones discovered by the competing approaches.

6 Results and Discussion

6.1 Quantitative Analysis

Table 2 shows the Spearman rank correlation (p) on the SCWS and WordSim-
353 dataset for various models and different vector dimensions. For all the vec-
tor dimensions, LDMI performs better than the competing approaches on the
maxSimC metric. For the GOBW dataset, LDMI shows an average improvement
of about 13% over the NP-MSSG and 10% over the MSSG on the maxSimC met-
ric. The average is taken over all vector dimensions. This shows the advantage of
LDMI over the competing approaches. For the avgSimC metric, LDMI performs
at par with the competing approaches. The other approaches are not as effective
in identifying the correct number of senses, leading to noisy clusters and hence,
poor performance on the maxSimC metric. LDMI also performs better than
LDMI-SK on both maxSimC and avgSimC, demonstrating the effectiveness of
the clustering approach employed by LDMI over spherical k-means. Similarly,
LDMI performs better than other approaches on the avgSim metric for the
WordSim-353 dataset in all the cases, further demonstrating the advantage of
LDMI.

In addition, we used the Kolmogorov-Smirnov two-sample test to assess if
LDMTI’s performance advantage over the Skip-Gram is statistically significant.
We performed the test on maxSimC and avgSimC metrics corresponding to the
1,000 runs each of LDMI and Skip-Gram on the WSJ dataset. For the null
hypothesis that the two samples are derived from the same distribution, the
resulting p-value (~10~8) shows that the difference is statistically significant for
both maxSimC and avgSimC metrics. Similarly, the difference in the LDMI’s
and LDMI-SK’s performance is also found to be statistically significant.
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Table 2. Results for the Spearman rank correlation (p x 100).

Dataset | Model d | maxSimC |avgSimC |avgSim
(SCWS) | (SCWS) | (WordSim-353)
WSJ Skip-Gram | 50 |57.0 57.0 54.9
WSJ MSSG 50414 56.3 50.5
WSJ NP-MSSG | 50 33.0 52.2 47.4
WSJ LDMI-SK | 50|57.1 57.9 55.2
WSJ LDMI 50| 57.9 58.9 56.8
GOBW | Skip-Gram | 50 | 60.1 60.1 62.0
GOBW | MSSG 50| 50.0 59.6 57.1
GOBW | NP-MSSG | 50 |48.2 60.0 58.9
GOBW | LDMI-SK | 50/60.1 60.6 62.8
GOBW | LDMI 50| 60.6 61.2 63.8
GOBW | Skip-Gram | 100 | 61.7 61.7 64.3
GOBW | MSSG 100 | 53.4 62.6 60.4
GOBW | NP-MSSG | 100 | 47.9 63.3 61.7
GOBW | LDMI-SK |100|61.9 62.4 64.9
GOBW | LDMI 100 | 62.2 63.1 65.3
GOBW | Skip-Gram | 200 | 63.1 63.1 65.4
GOBW | MSSG 200 | 54.7 64.0 64.2
GOBW | NP-MSSG | 200 | 51.5 64.1 62.8
GOBW | LDMI-SK | 200 | 63.3 63.9 66.4
GOBW | LDMI 200/ 63.9 64.4 66.8

6.2 Qualitative Analysis

In order to evaluate the actual senses that the different models identify, we look
into the similar words corresponding to different senses for some of the words
identified as multi-sense by LDMI. We compare these discovered senses with
other competing approaches. Table 3 shows the similar words (corresponding to
the cosine similarity) with respect to some of the words that LDMI identified
as multi-sense words and estimated a different vector representation for each
sense. The results correspond to the 50-dimensional embeddings for the GOBW
dataset. The table illustrates that LDMI is able to identify meaningful senses. For
example, it is able to identify two senses of the word digest, one corresponding
to the food sense and the other to the magazine sense. For the word block, it is
able to identify two senses, corresponding to the hindrance and address sense.
Table 4 shows the similar words with respect to the identified senses for the
words digest and block by the competing approaches. We can see that LDMI
is able to identify more comprehensible senses for digest and block, compared
to MSSG and NP-MSSG. Compared to the LDMI, LDMI-SK finds redundant
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Table 3. Top similar words for different senses of the multi-sense words (different lines

in a row correspond to different senses).

Word |Similar words

Sense

figure status; considered; iconoclast; charismatic; stature; known; leader

calculate; understand; know; find; quantify; explain; how; tell; |deduce
doubling; tenth; average; percentage; total; cent; gdp; estimate |numbers

cool |breezy; gentle; chill; hot; warm; chilled; cooler; sunny; frosty; |weather

pretty; liking; classy; quite; nice; wise; fast; nicer; okay; mad; |expression

block lamend; revoke; disallow; overturn; thwart; nullify; reject; hindrance
alley; avenue; waterside; duplex; opposite; lane; boulevard; address

digest eat; metabolize; starches; reproduce; chew; gut; consume; food
editor; guide; penguin; publisher; compilers; editions; paper; magazine

head |arm; shoulder; ankles; neck; throat; torso; nose; limp; toe; body

assistant; associate; deputy; chief; vice; executive; adviser;

Table 4. Senses discovered by the competing approaches (different lines in a row

correspond to different senses).

digest (Skip-Gram)
nutritional; publishes; bittman; reader

block (Skip-Gram)
annex; barricade; snaked; curving; narrow

digest (MSSG)

comenu; ponder; catch; turn; ignore
areat; grow; tease; releasing; warts
nast; conde; blender; magazine; edition

block (MSSG)

street; corner; brick; lofts; lombard; wall
yancey; linden; calif; stapleton; spruce; ellis
bypass; allow; clears; compel; stop

digest (NP-MSSG)

guide; bible; ebook; danielle; bookseller
snippets; find; squeeze; analyze; tease

eat; ingest; starches; microbes; produce
oprah; cosmopolitan; editor; conde; nast
disappointing; ahead; unease; nervousness
observer; writing; irina; reveals; bewildered

block (NP-MSSG)

acquire; pipeline; blocks; stumbling; owner
override; approve; thwart; strip; overturn
townhouse; alley; blocks; street; entrance
mill; dix; pickens; dewitt; woodland; lane
slices; rebounded; wrestled; effort; limit
target; remove; hamper; remove; binding
hinder; reclaim; thwart; hamper; stop
side; blocks; stand; walls; concrete; front
approve; enforce; overturn; halted; delay
inside; simply; retrieve; track; stopping

digest (LDMI-SK)

almanac; deloitte; nast; wired; guide
sugars; bacteria; ingest; enzymes; nutrients
liking; sort; swallow; find; bite; whole

find; fresh; percolate; tease; answers

block (LDMI-SK)
cinder; fronted; avenue; flagstone; bricks
amend; blocking; withhold; bypass; stall

347
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senses for the word digest, but overall, the senses found by the LDMI-SK are
comparable to the ones found by the LDMI.

7 Conclusion

We presented LDMI, a model to estimate distributed representations of the
multi-sense words. LDMI is able to efficiently identify the meaningful senses
of words and estimate the vector embeddings for each sense of these identi-
fied words. The vector embeddings produced by LDMI achieves state-of-the-art
results on the contextual similarity task by outperforming the other related work.
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