J. Chem. Inf. Model. 2010, 50, 979-991

Assessing Synthetic Accessibility of Chemical Compounds Using Machine Learning

Methods

Yevgeniy Podolyan,” Michael A. Walters,* and George Karypis*’

Department of Computer Science and Computer Engineering, University of Minnesota, Minneapolis,
Minnesota 55455, and Institute for Therapeutics Discovery and Development, Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455

Received August 10, 2009

With de novo rational drug design, scientists can rapidly generate a very large number of potentially
biologically active probes. However, many of them may be synthetically infeasible and, therefore, of limited
value to drug developers. On the other hand, most of the tools for synthetic accessibility evaluation are very
slow and can process only a few molecules per minute. In this study, we present two approaches to quickly
predict the synthetic accessibility of chemical compounds by utilizing support vector machines operating
on molecular descriptors. The first approach, RSsvm, is designed to identify the compounds that can be
synthesized using a specific set of reactions and starting materials and builds its model by training on the
compounds identified as synthetically accessible or not by retrosynthetic analysis. The second approach,
DRsvu, is designed to provide a more general assessment of synthetic accessibility that is not tied to any
set of reactions or starting materials. The training set compounds for this approach are selected from a
diverse library based on the number of other similar compounds within the same library. Both approaches
have been shown to perform very well in their corresponding areas of applicability with the RSSvM achieving
a receiver operator characteristic score of 0.952 in cross-validation experiments and the DRsvM achieving
a score of 0.888 on an independent set of compounds. Our implementations can successfully process thousands
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of compounds per minute.

1. INTRODUCTION

Many modern tools available today for virtual library
design or de novo rational drug design allow the generation
of a very large number of diverse potential ligands for various
targets. One of the problems associated with de novo ligand
design is that these methods can generate a large number of
structures that are hard to synthesize. There are two broad
approaches to address this problem. The first approach is to
limit the types of molecules a program can generate. For
example, restriction of the number of fragment types and
other parameters in the CONCERTS' program allows it to
control the types of molecules being generated, which results
in a greater percentage of the molecules being synthetically
reasonable. SPROUT? applies a complexity filter® at each
stage of a candidate generation by making sure that all
fragments in the molecule are frequent in the starting material
libraries. An implicit inclusion of synthesizability constraints
is implemented in programs such as TOPAS* and SYNOP-
SIS.> The TOPAS uses only the fragments obtained from
known drugs, using a reaction-based fragmentation procedure
similar to RECAP.® Instead of using the small fragments,
SYNOPSIS uses the entire molecules in the available
molecules library as fragments. Both programs then use a
limited set of chemical reactions to combine the fragments
into a single structure, thus increasing the likelihood that
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the produced molecule is synthetically accessible. However,
a potential limitation of using reaction-based fragmentation
procedures is that they can limit drastically the diversity of
the generated molecules. Consequently, such approaches may
fail to design molecules for protein targets that are signifi-
cantly different from those with known ligands.

The second approach is to generate a very large number
of possible molecules and only then apply a synthetic
accessibility filter to eliminate hard to synthesize compounds.
Several approaches have been developed to identify such
structures that are based on structural complexity,” '?
similarity to available starting materials,’ retrosynthetic
feasibility,'>~'> or a combination of those.'®

Complexity-based approaches use empirically derived
formulas to estimate molecular complexity. Various methods
have been developed to compute structural complexity. One
of the earliest approaches suggested by Bertz’' uses a
mathematical approach to calculate the chemical complexity.
Whitlock® proposed a simple metric based on the counts of
rings, nonaromatic unsaturations, heteroatoms, and chiral
centers. The molecular complexity index by Barone and
Chanon'® considers only the connectivity of the atoms in a
molecule and the size of the rings. In an attempt to overcome
the high correlation of the complexity scores with the
molecular weight, Allu and Oprea'? devised a more-
thorough scheme that is based on relative atomic elec-
tronegativities and bond parameters, which takes into
account atomic hybridization states and various structural
features such as the number of chiral centers, geminal
substitutions, the number of rings and the types of fused
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rings, etc. All methods to compute molecular complexity
scores are very fast, because they do not need to perform
any comparisons to other structures. However, this is also
a deficiency in these methods, because the complexity
alone is only loosely correlated with the synthetic acces-
sibility, since many starting materials with high complexity
scores are readily available.

One of the newer approaches based on molecular com-
plexity® attempts to overcome the problems associated with
regular complexity-based methods by including the statistical
distribution of various cyclic and acyclic topologies and atom
substitution patterns in existing drugs or commercially
available starting materials. The method is based on the
assumption that if the molecule contains only the structural
motifs that occur frequently in commercially available
starting materials, then they are probably easy to synthesize.

The use of sophisticated retrosynthetic analysis is another
approach to assess the synthetic feasibility. Several methods,
such as LHASA,"> WODCA,'” and CAESA,"* utilize this
approach. These methods attempt to find the starting materi-
als for the synthesis by iteratively breaking the bonds that
are easy to create using high-yielding reactions. Unlike the
methods described above, which require explicit reaction
transformation rules, the Route Designer'’ automatically
generates these rules from the reaction databases. However,
these reaction databases are not always annotated with yields
and/or possibly difficult reaction conditions, which would
limit their use. In addition, almost all of the programs based
on retrosynthetic analysis are highly interactive and relatively
slow, often taking up to several minutes per structure. This
renders these methods unusable for the fast evaluation of
the synthetic accessibility of tens to hundreds of thousands
of molecules that can be generated by the de novo ligand
generation programs.

One of the most recent methods by Boda et al."” attempts
to evaluate the synthetic accessibility by combining molec-
ular graph complexity, ring complexity, stereochemical
complexity, similarity to available starting materials, and an
assessment of strategic bonds where a structure can be
decomposed to obtain simpler fragments. The resulting score
is the weighted sum of the components, where the weights
are determined using regression, so that it maximizes the
correlation with medicinal chemists’ predictions. The method
was able to achieve a correlation coefficient of 0.893 with
the average scores produced by five medicinal chemists.
However, this method was only shown to work for the 100
compounds used in the regression analysis to select the
weights for the individual components. In addition, this
method uses a complex retrosynthetic reaction fitness
analysis, which was shown to have a very low correlation
with the total score. The method is able to process only
200—300 molecules per minute.

In this paper, we present methods for determining the
relative synthetic accessibility of a large set of compounds.
These methods formulate the synthetic accessibility predic-
tion problem as a supervised learning problem in which the
compounds that are considered to be synthetically accessible
form the positive class and those that are not form the
negative class. This approach is based on the hypothesis that
the compounds containing fragments that are present in a
sufficiently large number of synthetically accessible mol-
ecules are themselves synthetically accessible. The actual
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supervised learning model is built using support vector
machines (SVMs) and utilizes a fragment-based representa-
tion of the compounds that allows it to precisely capture the
compounds’ molecular fragments and their frequency. Using
this framework, we developed two complementary machine
learning models for synthetic accessibility prediction that
differ on the approach that they employ for determining the
label of the compounds during training.

The first model, referred to as RSsvM, uses a set of
compounds that were retrosynthetically determined to be
synthesizable in a small number of steps as positive instances
and a set of compounds that required a large number of steps
as negative instances. The resulting machine learning model
can then be used to substantially reduce the amount of time
required by approaches based on retrosynthetic analysis by
replacing retrosynthesis with the model’s prediction. The
advantage of this model is that by identifying the positive
and negative instances using a retrosynthetic approach, it is
trained on a set of compounds whose labels are reliable.
However, assuming a sufficiently large library of starting
materials, the resulting model will be dependent on the set
of reactions used in the retrosynthetic analysis, and, as such,
it may not be able to generalize to compounds that can be
synthesized using additional reactions. Consequently, this
approach is well-designed for cases in which the compounds
must be synthesized with a predetermined set of reactions,
which is often the case in the pharmaceutical industry, where
only parallel synthesis reactions are used.

The second model, which is referred to as DRsvM, is based
on the assumption that compounds belonging to dense
regions of the chemical space were probably synthesized via
a related route through combinatorial or conventional
synthesis and, as such, they are relatively easy to synthesize.
Based on that, this approach uses a set of compounds that
are similar to a large number of other compounds in a diverse
library as positive instances and a set of compounds that are
similar to only a few (if any) compounds as negative
instances. The advantage of this approach is that, assuming
that the library from where they were obtained was suf-
ficiently diverse, the resulting model is not tied to a specific
set of reactions and, as such, it should be able to provide a
more general assessment of synthetic accessibility. However,
since the labels of the training instances are less reliable,
the error rate of the resulting predictions can potentially be
higher than those produced by RSsvm for compounds that
can be synthesized by the reactions used to train the RSsvm
models.

We experimentally evaluated the performance of these
models on datasets derived from the Molecular Libraries
Small Molecule Repository (MLSMR) and a set of com-
pounds provided by Eli Lilly and Company. Specifically,
cross-validation results on MLSMR using a set of high-
throughput synthesis reactions show that RSsvm leads to
models that achieve an ROC score of 0.952, and on the Eli
Lilly dataset, both RSsvm and DRsvM correctly position only
synthetically accessible compounds among the 100 highest
ranked compounds.

2. METHODS

2.1. Chemical Compound Descriptors. The compounds
are represented as a frequency vector of the molecular
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fragments that they contain. The molecular fragments cor-
respond to the GF descriptors,'® which are the complete set
of unique subgraphs between a minimum and maximum size
that are present in each compound. The frequency corre-
sponds to the number of distinct embeddings of each
subgraph in a compound’s molecular graph. Details on how
these descriptors were generated are provided in Section 3.3.

The GF descriptor-based representation of chemical com-
pounds is well-suited for synthetic accessibility purposes for
several reasons:

(i) Molecular complexity (e.g., the number and types of
rings, bond types, etc.) is easily encoded with such fragments.

(i1) The fragments can implicitly encode chemical reactions
through the new sets of bonds they create.

(iii) The similarity to the starting materials can also be
determined by the share of the common fragments present
in the compound of interest and the compounds in the starting
materials.

(iv) Unlike descriptors based on physicochemical proper-
ties,'>?° they capture elements of the compound’s molecular
graph (e.g., bonding patterns, rings, etc.), which are more
directly relevant to the synthesizability of a compound.

(v) Unlike molecular descriptors based on hashed finger-
prints (e.g., Daylight or extended connectivity fingerprints"),
they precisely capture the molecular fragments present in
each compound without the many-to-one mapping errors
introduced as a result of hashing.

(vi) Unlike methods that utilize a very limited set of
predefined structural features (e.g., MACCS keys by Mo-
lecular Design, Ltd.), the GF descriptors are complete and,
in conjunction with the use of supervised learning methods,
can better identify the set of structural features that are
important for predicting the synthetic accessibility of
compounds.

2.2. Model Learning. We used support vector machines
(SVMs)?? to build the discriminative model that explicitly
differentiates between easy-to-synthesize and hard-to-
synthesize compounds. Once built, such a model can be
applied to any compound to assess its synthetic accessibility.
The SVM machine learning method is a linear classifier of
the form

fx)=wx+b (D)

where w'x is the dot product of the weight vector w and the
input vector x which represents the object being classified.
However, by applying a kernel trick,>>*** the SVM can be
turned into a nonlinear classifier. The kernel trick is applied
by simply replacing the dot product in the above equation
with the kernel function to compute the similarity of two
vectors. The SVM classifier can be rewritten as

0= X ATKxx) — Y AKX X)) 2)

xSt xS~

where S* and S~ are the sets of positive and negative class
vectors, respectively, chosen as support vectors during the
training stage; A" and A; are the non-negative weights
computed during the training; and K is the kernel function
that computes the similarity between two vectors. The
resulting value f(x) can be used to rank the testing set
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instances, while the sign of the value can be used to classify
the vectors into positive or negative classes.

In this study, we used the Tanimoto coefficient® as the
kernel function,®® as well as for computations of the
similarity to the compounds in starting materials library.
Tanimoto coefficient has the following form:

n
2 XiaXip
. i=1
n n n
2 2
inA + zx,p - inAxiB
i=1 i=1 i=1

where A and B are the vectors being compared, 7 is the total
number of features, and x;4 and x;z are the numbers of times
feature i occurs in vectors A and B, respectively. The
Tanimoto coefficient is the most widely used metric to
compute similarity between the molecules encoded as vectors
of various kinds of descriptors. It was recently shown?’ to
be the best performing coefficient for the widest range of
query and database partition sizes in retrieving complemen-
tary sets of compounds from the MDL Drug Data Report
database.

The Tanimoto coefficient for any two vectors is a value
between 0 and 1, which indicates how similar the compounds
represented by those vectors are. Some examples of molec-
ular pairs with different computed similarity scores (based
on the GF descriptors) are presented in Figure 1.

2.3. Identifying the Training Compounds. To train a
machine learning model, one must supply a training set
consisting of positive and negative examples. In the context
of synthetic accessibility prediction, the positive examples
would represent the compounds that are relatively easy to
synthesize and the negative examples would represent the
compounds that are relatively hard to synthesize. The
problem here lies in the fact that there are no catalogs or
databases that would list compounds labeled as easy or hard
to synthesize. The problem is complicated even further by
the fact that, even though the easy-to-synthesize molecules
can be proven to be easy, the opposite is not true—one cannot
prove with absolute certainty that the molecules classified
as hard to synthesize are not actually easy to synthesize by
some little-known or newly discovered method.

One way to create a training set of molecules would be to
ask synthetic chemists to give a score to each molecule that
would represent their opinion of the difficulty associated with
the synthesis of that molecule. One can then split the set
into two parts: one with lower scores and another with higher
scores. However, such an approach cannot lead to very large
training sets, because there is a limit on the number of
compounds that can be manually labeled. Moreover, the
resulting scores are not objective, because chemists often
disagree with each other.'®

In this paper, we developed two different approaches,
described in the subsequent sections, that take as input a large
diverse compound library and automatically identify the
positive and negative compounds for training SVM models
for synthetic accessibility prediction.

2.3.1. Retrosynthetic Approach (RSsvm Model). This ap-
proach identifies the subsets of compounds that are easy or
hard to synthesize by using a retrosynthetic decomposition
approach?®?? to determine the number of steps required to

SA,B (3)
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Figure 1. Examples of molecular pairs with given computed similarity scores.

decompose each compound into easily available compounds
(e.g., commercially available starting materials). Those
compounds that can be decomposed in a small number of
steps are considered to be easy to synthesize, whereas those
compounds that either required a large number of steps or
they could not be decomposed are considered to be hard to
synthesize.

This approach requires three inputs: (i) the compounds
that must be decomposed, (ii) the reactions whose reverse
application will split the compounds, and (iii) the starting
materials library. The decomposition is performed in the
following way. First, each reaction is applied to a given
compound to check whether it is applicable to this particular
compound. All applicable reactions, i.e., reactions that break
bond(s) that is/are present in a given molecule, are applied
to produce two or more smaller compounds. Each of the
resulting compounds is checked for an exact match in the
starting materials library. Those compounds not found among
the starting materials are further broken down into smaller
compounds. The process is done in a breadth-first search
fashion to find the shortest path to the starting materials. The
search is halted when all parts of the compound along one
of the reaction paths in this search tree are found in the
starting materials library or when no complete decomposition
is found after performing a certain number of decomposition
rounds.

The schematic representation of the decomposition process
is shown in Figure 2, where the squares represent compounds
(dashed squares represent compounds found in the starting
materials library) and circles represent reactions (dashed
circles represent reactions that are not applicable to the
chosen compound). One can see that the height of the
decomposition tree for compound A is 2, because it can be
decomposed with two rounds of reactions. Using reaction
R4, compound A can be broken down into compounds D
and E. Since D is already in the starting materials library, it

Figure 2. Example of compound decomposition. The squares
represent compounds (dashed squares represent compounds found
in the starting materials library). The circles represent reactions
(dashed circles represent reactions that are not applicable to the
chosen compound). The height of the decomposition tree for
compound A is 2, because it can be decomposed with a minimum
of two rounds of reactions.

does not need to be broken down any further. Compound E
can be broken down into compounds H and C, both of which
are in the starting materials library, with another reaction
R4. The retrosynthetic analysis stopped after two rounds
because the path A — R, — (D)E — R4 — (H)(C) terminates
with all compounds found in the starting materials library.

In this paper, we considered all compounds that have
decomposition search trees with 1—3 rounds of reactions (i.e.,
have a height of 1—3, measured in terms of reactions) to be
easy to synthesize and compounds that cannot be synthesized
within at least five rounds of reactions to be hard to
synthesize. Note that this method assumes that the difficulty
associated with performing these reactions is the same.
However, the overall approach can be easily extended to
account for reactions with different levels of difficulty by
using variable depth cutoffs, based on the reactions used.
These easy-to-synthesize and hard-to-synthesize compounds
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are used as the sets of positive and negative instances for
training the RSsvM models and will be denoted by RS™ and
RS™, respectively. The molecules with a decomposition
search tree height of 4 or 5 were not used in training or
testing the RSsvMm models.

The advantage of this approach approach is that it provides
an objective way of determining the synthetic accessibility
of a compound based on the input reactions and library of
starting materials. Moreover, even though for a large number
of reactions, retrosynthetic analysis is computationally
expensive, the RSsvM model requires this step to be
performed only once while generating its training set, and
subsequent applications of the RSsvMm model do not require
retrosynthetic analysis. Thus, the RSsvM model can be used
to dramatically reduce the computational complexity of
retrosynthetic analysis by using it to prioritize the compounds
that will be subjected to such type of analysis.

2.3.2. Dense Regions Approach (DRsvM Model). A po-
tential limitation with the retrosynthetic approach is that the
resulting RSsvM model will be biased toward the set of
reactions used to identify the positive and negative com-
pounds. As a result, it may fail to properly assess the
synthetic accessibility of compounds that can be decomposed
using a different set of reactions. To address this problem,
we developed an alternate method for selecting the sets of
positive and negative training instances from the input library.
The assumption underlying this approach is that if a
compound has a large number of other compounds in the
library that are significantly similar to it, then this compound
and many of its neighbors were probably synthesized by a
related route through combinatorial or conventional synthesis
and are, therefore, synthetically accessible.

In this approach, the positive training set, denoted by DR,
is generated by selecting from the input library the ones with
at least «* other compounds that have a similarity of at least
6. These compounds represent the dense area of the library.
Conversely, the negative training set, denoted by DR, is
generated by selecting those library compounds that have
no more that ¥~ other compounds that have a similarity of
at least 0. Note that k= << k" and that the similarity between
compounds is determined using the Tanimoto coefficient of
their GF descriptor representation. The DR' and DR™ sets
are used for building the DRsSvM model for synthetic
accessibility prediction. In our study, we used «™ = 20, k~
= 1, and 6 = 0.6, because we found them to produce a
reasonable number of positive and negative training
compounds.

2.3.3. Baseline Approaches. To establish a basis for the
comparison of the above models, we also developed two
simple approaches for synthetic accessibility prediction. The
first, denoted by SMNPsvM, is an SVM-based model that is
trained on the starting materials as the positive class and
natural products as the negative class. This approach is
motivated by the facts that (i) most commercially available
materials are easily synthesized and (ii) natural products are
considered to be hard to synthesize.>* As a result, an SVM-
based model that uses starting materials as the positive class
and natural products as the negative class may be used to
prioritize a set of compounds, with respect to their synthetic
accessibility. The second, denoted by MAXSMSIM, is a scheme
that ranks the compounds whose synthetic accessibility is
determined based on their highest similarity to a library of
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starting materials. Specifically, for each unknown compound,
its Tanimoto similarity to each of the compounds in a starting
materials library is computed, and the maximum similarity
value is used as its synthetic accessibility score. The final
ranking of the compounds is then obtained by sorting them
in descending order, based on those scores. The use of the
maximum similarity to starting materials is motivated by the
empirical observation that the molecules in the positive set
have, on average, higher maximal similarity to starting
materials than the molecules in the negative set (see Table
3, presented later in this paper).

3. MATERIALS

3.1. Datasets. In this study, we used four sets of
compounds:

(1) A library of starting materials (SM) that is needed for
the retrosynthetic analysis. This set was compiled from
Sigma—Aldrich’s Selected Structure Sets for Drug Discov-
ery, Acros, and Maybridge databases. After stripping the salts
and removing the duplicates, the starting materials library
contained 97 781 compounds, including the multiple tauto-
meric forms for some compounds.

(i) A library of natural products (NP) obtained from
InterBioScreen Ltd., which is used to train the SVM-based
baseline model (see section 2.3.3). This library contains
41 746 natural compounds, their derivatives, and analogs that
are offered for high-throughput screening programs.

(iii)) The compounds in the Molecular Libraries Small
Molecule Repository (MLSMR), which is available from
PubChem.?' This library was used as the diverse library of
compounds for training the RSsvm and DRsvMm models and
evaluating the performance of the RSsvm models. MLSMR
is designed to collect, store, and distribute compounds for
high-throughput screening (HTS) of biological assays that
were submitted by the research community. Since a large
portion of the deposited compounds were synthesized via
parallel synthesis, one can assume that many of them should
be relatively straightforward to synthesize. The size of the
MLSMR library that we used contained 224 278 compounds.

(iv) A set of 1048 molecules obtained from Eli Lilly and
Company that is used for evaluating the performance of the
RSsvM and DRsvM models that were trained on the MLSMR
library, and, as such, providing an external way of evaluating
the performance of these methods. These compounds were
considered to be hard to synthesize by Eli Lilly chemists,
and their synthesis was outsourced to an independent
company specializing in the chemical synthesis. The set
contains 830 compounds that were eventually synthesized
and 218 compounds for which no feasible synthetic path was
found by chemists. We will denote the set of synthesized
compounds as EL" and the set of compounds that were never
synthesized as EL".

3.2. Reactions. For the retrosynthetic analysis, we used
a set of 23 reactions that are employed widely in the high-
throughput synthesis. The set included parallel synthesis
reactions such as reductive amination; amine alkylation;
nucleophilic aromatic substitution; amide, sulfonamide, urea,
ether, carbamate, and ester formation; amido alkylation; thiol
alkylation; and Suzuki and Buchwald couplings. Note that
this set can be considerably expanded to include various
benchtop reactions and as such lead to potentially more
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Table 1. Characteristics of the Retrosynthetic Decomposition of Different Datasets

Eli Lilly Dataset

MLSMR Natural Products EL* EL~
count % of total count % of total count % of total count % of total
found in SM 7890 3.5 459 1.1 0 0.0 0 0.0
depth 1 26074 11.6 1751 4.2 56 6.7 0 0.0
depth 2 20025 8.9 1387 33 28 34 0 0.0
depth 3 2522 1.1 155 0.4 4 0.5 0 0.0
depth 4 188 0.1 20 <0.1 0 0.0 0 0.0
depth 5 5 <0.1 11 <0.1 0 0.0 0 0.0
depth >5¢ 167574 74.7 37963 90.9 742 89.4 218 100.0
total 224278 100.0 41,746 100.0 830 100.0 218 100.0

“ Compounds with no identifiable path with depths up to 5.

Table 2. Use of Each Reaction in the Decomposition of 48 781 Easy-to-Synthesize MLSMR Molecules and the Effect of Each Reaction

Exclusion on the Height of the Shortest Decomposition Path

molecules using

Molecules with Decomposition Changed to a Given Depth

reaction reaction” depth = 4 depth =5 depth > 5 description”
1 3989 5 0 1351 reductive amination of aldehydes and ketones
2 4721 9 0 2855 amine alkylation with alkylhalides
3 1055 24 28 844 NAS of haloheterocycles with amines
4 21495 125 179 17872 amide formation with amines and acids
5 56 0 0 41 urea formation with isocyanates and amines
6 844 0 0 729 Suzuki coupling
7 2620 0 0 318 phenol alkylation with alkyl halides
8 644 0 0 451 ether formation from phenols and secondary alcohols
9 7224 1 0 7169 sulfonamide formation with sulfonyl chlorides and
amines
10 2544 0 478 N-N'-disuccinimidyl carbonate mediated urea
formation
11 12392 0 0 68 amide formation with amines and acyl halides
12 3622 45 0 827 amido alkylation with alkyl halides
13 68 0 0 0 urea formation with ethoxycarbonyl-carbamyl
chlorides and amines
14 2131 0 0 4 ester formation with acyl halides and alcohols
15 3411 0 0 3093 ester formation with acids and alcohols
16 400 0 0 368 NAS of haloheterocycles with alcohols and phenols
17 3467 0 0 3345 thiol alkylation with alkyl halides
18 236 0 0 235 benzimidazole formation with phenyldiamines and
aldehydes
19 161 0 0 161 synthesis of imidazo-fuzed ring systems from
aminoheterocycles and a-haloketones
20 429 0 0 302 carbamate synthesis with primary alcohols and
secondary amines
21 1061 12 0 108 reductive amination of carbonyl compounds, followed
by acylation with carboxylic acids
22 40 0 0 0 NAS of dihaloheterocycles with amines
23 332 0 0 0 ether formation from phenolic aldehydes followed by

reductive amination with amines

“ The number of molecules whose shortest decomposition search tree contains a given reaction.  NAS = nucleophilic aromatic substitution.

general RSsvM models for synthetic accessibility prediction.
However, because we are interested in assessing the potential
of the RSsvM models in the context of high-throughput
synthesis, we only used parallel synthesis reactions.

Table 1 shows some statistics of the retrosynthetic
decomposition of the MLSMR, natural products, and Eli Lilly
datasets based on this set of reactions. The compounds in
these datasets that were found in the starting materials library
(the first line in the table) were not used in this study. These
results show that a larger fraction of the MLSMR library
(21.6%) can be synthesized in three or fewer steps (easy to
synthesize) than the corresponding fractions of the NP library
(7.9%) and Eli Lilly dataset (10.6%). These results indicate
that the compounds in the Eli Lilly dataset are considerably

harder to synthesize than those in MLSMR. Moreover, since
the retrosynthetic decomposition of all the compounds in EL™
is greater than five, these results provide an independent
confirmation on the difficulty of synthesizing the EL™
compounds. Note that one reason for the relatively small
fraction of the MLSMR and Eli Lilly compounds that are
determined to be synthetically accessible is due to the use
of a small number of parallel synthesis reactions, and the
number will be higher if additional reactions are used.

In addition, Table 2 provides some information on the role
of the different reactions in decomposing the easy-to-
synthesize compounds in MLSMR. Specifically, for each
reaction, Table 2 shows the number of compounds that used
that reaction at least once and the number of compounds
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that had their decomposition tree height increased when the
reaction was excluded from the set of available reactions.
These statistics indicate that not all reactions are equally
important. Some of the reactions, such as reactions 4 and
11 (amide formation from amines with acids and acyl halides,
respectively), are ubiquitous. Reaction 4 was used in the
decomposition of 21 495 molecules, whereas reaction 11 was
used in the decomposition of 12 392 molecules. On the other
hand, several reactions have been used in the decomposition
of <100 molecules. In addition, some of the reactions are
replaceable, in the sense that their elimination will not cause
significant changes in the decomposition trees of the
compounds. For instance, the elimination of reaction 11
increased the synthesis path for 68 out of the 12392
molecules that used that reaction in their shortest decomposi-
tion paths. On the other hand, the elimination of reaction 17
(thiol alkylation with alkyl halides) caused 96% of the 3467
molecules that used that reaction to become hard to
synthesize (i.e., their depth of the decomposition tree became
>5). Similarly, reaction 19 (the synthesis of the imidazo-
fused ring systems from aminoheterocycles and a-haloke-
tones), while used only by 161 molecules, was absolutely
essential to their decomposition as the decomposition paths
of height up to 5 could not be discovered for all 161
molecules when the reaction was omitted.

3.3. Descriptors. The GF descriptors of the compounds
were generated with the AFGen 2.0 program.’*** AFGen
treats all molecules as graphs, with atoms being vertices and
bonds being edges in the graph. The atom types serve as
vertex labels while bond types serve as the edge labels. We
used fragments with a length of 4—6 bonds. The fragments
contained cycles and branch points in addition to linear paths.
Since most chemical reactions create only one or just a few
new bonds, such a fragment length will be sufficient to
implicitly encode the reactions that may have been used in
the compound synthesis. Our experiments with the maximum
length of the fragments used as GF descriptors have shown
that increasing it beyond 6 does not improve the classification
accuracy but significantly increases the computational re-
quirements of the methods.

To compare the performance of the SVM models based
on the GF descriptors to those using fingerprints, we
generated the latter with ChemAxon’s GenerateMD.** The
produced fingerprints are similar to the Daylight fingerprints.
The 2048-bit fingerprints were produced by hashing the paths
in the molecules of the length up to 6 bonds. Note that both
the GF descriptors and the hashed fingerprints contained only
heavy atoms (i.e, all atoms except hydrogen).

3.4. Implementation Details. The retrosynthetic decom-
position has been implemented in C+-+ programming
language using OpenEye’s OEChem software development
kit.>> The kit, which is a library of classes and functions,
allows, among other things, application of a given reaction
(encoded as Daylight’s SMIRKS patterns describing molec-
ular transformations) to a set of reactants and obtaining of
the products if the reaction is applicable. If the same reaction
can be applied in multiple ways, then multiple sets of
products will be obtained. The reactions were encoded in
reverse, i.e., in the direction from products to reactants. The
SVM'#" implementation of the support vector machines®®
was used to perform the learning and classification. All input
parameters to the SVM"#" with the exception of the kernel
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(see Section 2.2), were left at their default values. All
experiments were performed on a Linux workstation with a
3.4 GHz Intel Xeon processor.

3.5. Training and Testing Framework. The MLSMR
library was used to evaluate the performance of the RSsvm
model in the following way. Initially, to avoid molecules
that are very similar within the positive sets and the negative
sets, as well as across training and testing sets, a subset of
MLSMR compounds was selected from the entire MLSMR
set, such that no two compounds had a similarity of >0.6
(the similarity was computed using the Tanimoto coefficient
of GF-descriptor representation). A greedy maximal inde-
pendent set (MIS) algorithm was used to obtain this set of
compounds. The algorithm works in the following way.
Initially, a graph is built in which vertices represent
compounds and edges are placed between vertices that have
a similarity of >0.6. After the graph is constructed, a vertex
is picked from the graph, placed in the independent set, and
then removed with all of its neighbors from the graph. The
process is repeated until the graph is empty. To generally
maximize the size of the independent set, and the positive
subset (RS™) in particular, the order in which the vertices
were picked from the graph was based on the label and the
degree (number of neighbors) of the vertex. For that purpose,
all vertices in a graph were sorted first by their label
(positively labeled vertices were placed in a queue before
the negatively labeled ones) and then by the degree (vertices
with fewer neighbors were placed ahead of the ones with a
larger number of neighbors). The order of vertices with the
same label and degree was determined randomly. The
application of this MIS algorithm with a subsequent clas-
sification using retrosynthetic analysis resulted in 12 113
easy-to-synthesize compounds (RS*) and 35 580 hard-to-
synthesize compounds (RS™). The variations in the sizes of
the sets and in the results of the performance studies due to
the random ordering of the vertices with the same label and
degree were found to be insignificant and will not be
discussed. Both RS and RS~ sets were randomly split into
five subsets of similar size, leading to five folds each
containing a subset of positive compounds and a subset of
negative compounds. The RSsvMm model was evaluated using
5-fold cross validation, i.e., the model was learned using four
folds and tested on the fifth fold (repeating the process five
times for each of the folds). The baseline models were also
evaluated on each of the five test folds. In addition, an RSsvm
model was trained on all RS* and RS~ compounds without
performing the MIS selection. This model was then used to
determine the synthetic accessibility of the compounds in
the Eli Lilly dataset, thus providing an assessment of the
RSsvMm’s model on an independent dataset.

The performance of the DRsvM-based approach was also
assessed using the method described in section 2.3.2, to
identify the DR™ and DR~ compounds in MLSMR, train the
DRsvM model, and then use it to predict the synthetic
accessibility of the compounds in the Eli Lilly dataset. The
DR" and DR training sets included 89 073 and 15 802
compounds, respectively, with DR containing 23.1% and
DR™ containing 9.9% of compounds identified as easy via a
retrosynthetic analysis. Note that we did not attempt to
evaluate the performance of the DRsvM-based models on
the RST and RS~ compounds of the MLSMR dataset,
because the labels of these compounds are derived from the
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Table 3. Characteristics of Molecules in the Different Positive and Negative Datasets

MLSMR Eli Lilly
RS* RS~ DR" DR~ EL* EL- natural products  starting materials
median number of unique features 190 268 276 207 257 346 332 163
mean maximum similarity to SM 0.74 0.65 0.69 0.63 0.63 0.52 0.70 0.88¢

¢ Similarity to compounds in the SM library other than itself.

small number of reactions used during the retrosynthetic
decomposition, and, as such, they do not represent the
broader sets of synthetically accessible compounds that the
DRsvMm-based approach is designed to capture.

Some characteristics of the above MLSMR and Eli Lilly
sets of compounds, such as median number of unique features
(graph fragments) and mean maximal similarity to the
compounds in the starting materials library, are given in
Table 3.

3.6. Performance Evaluation. We used the receiver
operating characteristic (ROC) curve to measure the perfor-
mance of the models. The ROC measures the rate at which
positive-class molecules are discovered, compared to the rate
of the negative class molecules.?’ The area under the ROC
curve (or, simply, the ROC score) can indicate how good a
method is. For example, in the ideal case, when all of the
positive class molecules are discovered before (i.e., classified
with higher score than) the molecules of the negative class,
the ROC score will be 1. In a completely random selection
case, the ROC score will be 0.5. In addition to the ROC
score, we also report two measures designed to give an
insight into the highest-ranked compounds. The first measure
is the ROCS50 score, which is the modified version of the
ROC score that indicates the area under the ROC curve up
to the point when 50 negatives have been encountered.®® The
second measure is the percentage of the 100 highest-ranked
test compounds that are true positive molecules. We will
denote this measure by PA100 (positive accuracy in the top
100 compounds). Since in a completely random selection
case the ROC50 score depends on the actual number of
negative-class test instances and PA100 depends on the ratio
of positive-class to negative-class instances, the expected
random values for these measures are given in each table.
We also provide the enrichment factor in the top 100
compounds, which is calculated by dividing the actual PA100
by the expected random PA100 value. Note that, in the case
of cross-validation experiments, the results reported are the
averages over five different folds.

4. RESULTS

4.1. Cross-Validation Performance on the MLSMR
Dataset. Table 4 shows the 5-fold cross-validation perfor-
mance achieved by the RSsvM models on the MLSMR
dataset. Specifically, the results for two different RSsvm
models are presented that differ on the descriptors that they
use for representing the compounds (GF descriptors and
2048-bit fingerprints). In addition, this table shows the
performance achieved by the two baseline approaches
(SMNPsvM and MAXSMSsIM (see section 2.3.3)), and an
approach that simply produces a random ordering of the test
compounds. To ensure that the performance numbers of all
schemes are directly comparable, the numbers reported for
the baseline and random approaches were obtained by first

Table 4. Cross-Validation Performance on the MLSMR Dataset

method ROC ROC50 PA100“ (enrichment)
RSsvMm (GF descriptors) 0.952 0.276 99.0 (3.9)
RSsvm (2048-bit fingerprints) 0.948 0.208 97.0 (3.8)
SMNPsvM 0.567 0.004 274 (1.1)
MAXSMSIM 0.679 0.007 39.2(1.5)
random 0.500 0.003 25.4 (1.0)

“ The number of true positives among the 100 highest-ranked test
compounds.

evaluating these methods on each of the test folds that were
used by the RSsvM models, and then averaging their
performance over the five folds.

These results show that the two RSsvMm models are quite
effective in predicting the synthetic accessibility of the test
compounds and that their performance is substantially better
than that achieved by the two baseline approaches across
all three performance assessment metrics. The performance
difference of the various schemes is also apparent by looking
at their ROC curves shown in Figure 3. These plots show
that both of the RSsvM models are able to rank over 85% of
the RS™ compounds same or higher than the top 10% ranked
RS™ compounds, which is substantially better than the
corresponding performance of the baseline approaches.
Comparing the two RSsvM models, the results show that GF
descriptors outperform the 2048-bit fingerprints. The per-
formance difference between the two schemes is more
pronounced in terms of the ROC50 metric (0.276 vs 0.208)
and somewhat less for the other two metrics.

Comparing the performance of the two baseline ap-
proaches, we see that they perform quite differently. By using
starting materials as the positive class and natural products
as the negative class, the SMNPsvMm model fails to rank the
compounds in RS™ higher than the RS~ compounds and
achieves an ROC score of just 0.567. The reason for this
poor performance may lie in the fact that natural products
have very complex structures and the model easily learns
how to differentiate between natural products and everything
else, instead of easy-to-synthesize and hard-to-synthesize
compounds. On the other hand, by ranking the molecules
based on their maximum similarity to the starting materials,
MAXSMSIM performs better and achieves an area under the
ROC curve of 0.679. The MAXSMSIM approach also produced
better results in terms of ROC50 and PA100. Nevertheless,
the performance of neither approach is sufficiently good for
being used as a reliable synthetic accessibility filter, because
they achieve very low ROC50 and PA100 values.

4.2. Performance on the Eli Lilly Dataset. Table 5 shows
the performance achieved by the DRsvMm, RSsvM, and the
two baseline approaches on the Eli Lilly dataset, whereas
Figure 4 shows the ROC curves associated with these
schemes. As discussed in section 3.5, the DRsvM and RSsvm
models were trained on compounds that were derived from
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Figure 3. ROC curves for ranking easy-to-synthesize MLSMR (RS™) and hard-to-synthesize MLSMR compounds (RS™), using different

methods/models.

Table 5. Performance on the Eli Lilly Dataset

model ROC ROC50 PA100 (enrichment)
DRsvM 0.888 0.713 100.0 (1.3)
RSsvm 0.782 0.537 100.0 (1.3)
SMNPsvM 0.374 0.058 65.0 (0.8)
MAXSMSIM 0.711 0.378 100.0 (1.3)
MAXDRSIM 0.744 0.443 97.0 (1.2)
random 0.500 0.115 79.2 (1.0)

the MLSMR dataset, and, consequently, these results rep-
resent an evaluation of these methods on a dataset that is
entirely independent from that used to train the respective
models. All the results in this table were obtained using the
GF descriptor representation of the compounds. In addition,
the performance of the random scheme is also presented to
establish a baseline for the ROC50 and PA100 values.

These results show that both DRsvM and RSsvM perform
well and lead to ROC and ROCS50 scores that are consider-
ably higher than those obtained by the baseline approaches.
The DRsvM model achieves the best overall performance
and obtains an ROC score of 0.888 and an ROCS50 score of
0.713. Among the two baseline schemes, MAXSMSIM per-
forms the best (as it was the case on the MLSMR dataset)
and achieves ROC and ROCS50 scores of 0.711 and 0.378,
respectively. The fact that both RSsvM and MAXSMSsim
achieve a PA100 score of 100 but the former achieves a
much higher ROCS50 score, indicate that MAXSMSIM can
easily identify some of the positive compounds, but its
performance degrades considerably when the somewhat
lower-ranked compounds are considered.

To show that the SVM itself contributes to the performance
of the DRsvM method, as opposed to only the training set,
we also computed the performance of a simple method in
which the score of each compound is computed as the
difference of the maximum similarity to the compounds in
the DR* and DR sets. The method is labeled MAXDRSIM
in Table 5. The lower performance of this method, compared
to the DRsvM (and even RSsvm), indicates the advantage of
using SVM, as opposed to the simple similarity to the training
sets. Note that we also computed the performance of the
method based on the maximum similarity to the positive class
(DR™) alone but found its performance to be slightly worse
than that of the MAXDRSIM.

The RSsvMm model achieves the second-best performance;
however, in absolute terms, its performance is considerably
worse than that achieved by DRsvMm and also its own
performance on the MLSMR dataset. These results should
not be surprising as the RSsvM model was trained on positive
and negative compounds that were identified via a retrosyn-
thetic approach based on a small set of reactions. As the
decomposition statistics in Table 1 indicate, only 10.6% of
the EL* compounds can be decomposed in a small number
of steps using that set of reactions. Consequently, according
to the positive- and negative-class definitions used for
training the RSsvMm model, the Eli Lilly dataset contained
only 10.6% positive compounds, which explains RSsvMm’s
performance degradation. However, what is surprising is that,
despite this, RSsvM is still able to achieve good prediction
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Figure 4. ROC curves for ranking the compounds in the Eli Lilly dataset using different methods (vertical line indicates the edge where

ROCS50 is calculated).

performance, indicating that it can generalize beyond the set
of reactions that were used to derive its training set.

4.3. Generalization to New Reactions. A key parameter
of the RSsvM model is the set of reactions that were used to
derive the sets of positive and negative training instances
during the retrosynthetic decomposition. As the discussion
in section 4.2 alluded, one of the key questions on the
generality of the RSsvM-based approach is its ability to
correctly predict the synthetic accessibility of compounds
that can be synthesized by the use of additional reactions.
To answer this question, we performed the following
experiment, which is designed to evaluate RSsvm’s gener-
alizability to new reactions.

First, we selected 20 out of our 23 reactions whose
elimination had an impact on the decomposition tree depth
of the MLSMR compounds and randomly grouped them into
four sets, each having five reactions. Then, for each training
and testing dataset of the 5-fold cross-validation framework
used in the experiments of section 4.1, we performed the
following operations that are presented graphically in Figure
5. For each group of reactions, we eliminated its reactions
from the set of 23 reactions and used the remaining 18
reactions to determine the shortest synthesis path of each
RS™ compound in the training set (RS'-train) based on
retrosynthetic decomposition (see section 2.3.1). This ret-
rosynthetic decomposition resulted in partitioning the RS*-
train compounds into three subsets, referred to as the P*-
train, the P*-train, and the P~ -train. The P'-train subset
contains the compounds that, even with the reduced set of
reactions, still had a synthesis path of length up to 3, the

P*-train subset contains the compounds whose synthesis path
became either 4 or 5, and the P -train subset contains the
compounds whose synthesis path became >5. Thus, the
elimination of the reactions turned the P~ -train compounds
into hard-to-synthesize compounds, from a retrosynthetic
analysis perspective. We then built an SVM model using,
as positive instances, only the molecules in the P*-train and,
as negative instances, the union of the molecules in RS-
train and P™-train. The P*-train subset, which comprised <1%
of the RS™, was discarded. The performance of this model
was assessed by first using the above approach to split the
RS* compounds of the testing set into the corresponding P™-
test, P*-test, and P~ -test subsets, and then creating a testing
set whose positive instances were the compounds in P™-test
and whose negative instances were the compounds in RS™-
test. Note that since the short synthesis paths (i.e., <3) of
the compounds in the P™-test require the eliminated reactions,
this testing set allows us to assess how well the SVM model
can generalize to compounds whose short synthesis paths
depend on reactions that were not used to determine the
positive training compounds.

Table 6 shows the results of these experiments. This table
also lists the reactions in each group and the fraction of all
48 621 easy-to-synthesize molecules in RS™ that became hard
to synthesize after a particular group of reactions was
eliminated in the retrosynthetic decomposition. For com-
parison purposes, this table also shows the performance of
the best-performing baseline method (MAXSMSsIM) and that
of the random scheme. Note that, since a maximal indepen-
dent set of RST is used for training and testing, the
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Table 6. Performance When Extra Reactions Are Used To Determine the Positive Test Compounds

RSsvMm MAXSMSIM Random
reactions in percentage of molecules” PA100 PA100
group group moved to the P™-train ROC ROC50 (Enrichment) ROC ROC50 (enrichment) ROCS50 PA100
1 8,9, 10,20, 21 17.3% 0.557  0.005 22.2(1.3) 0.673  0.002 14.2 (0.8) 0.004 16.8
2 1,3,6,14,15 12.2% 0.752  0.006 27.6 (1.7) 0.668  0.007 34.2(2.0) 0.004 16.7
3 2,7,16, 17,18 14.2% 0.690  0.006 32.6 (1.7) 0.649  0.005 22.2(1.2) 0.004 18.7
4 4,5,11,12, 19 38.6% 0.717  0.004 41.2(1.2) 0.631  0.004 37.4(1.1) 0.004 33.6

“ The percentages refer to all 48 621 easy-to-synthesize compounds. The proportions for the RS™ set after selecting maximal independent set

are slightly different.

percentages of the molecules that became negative in the
latter are slightly different from those for the entire RS™ set,
which explains why the PA100 values for the random scheme
are not proportional to the percentage of molecules that
became negative.

These results show that, as expected, the relative perfor-
mance of the RSsvM model on these test sets decreases when
compared to the results reported in Table 4. This reflects
the considerably harder nature of this classification problem,
because it is designed to test how well RSsvM generalizes
to compounds that can only be synthesized when additional
reactions are used. However, despite this, for three out of
the four reaction groups, RSsvMm is still able to achieve
reasonably good performance, obtaining ROC scores ranging
from 0.690 to 0.752. Also, its performance compares
favorably to the MAXSMsIM scheme for three out of the four
subsets, as it achieves better ROC, ROC50, and PA100
scores. Note that we also assessed the performance of these
models on testing sets whose positive compounds were the
P*-test subsets. The performance achieved by both RSsvm
and MAXSMSIM was comparable to that reported earlier.

4.4. Computational Requirements. An advantage of the
SVM-based synthetic accessibility approach over a similar

approach that is based entirely on retrosynthetic decomposi-
tion is its prediction speed. For example, in our study, during
the cross-validation experiments with the MLSMR dataset,
the RSsvM models were processing ~6700 molecules per
minute. This is significantly better than the retrosynthetic
approaches, which process only several molecules per minute
or less. Generally, the amount of time required by the SVM-
based approach to rank the compounds is proportional to
the size of the model (i.e., the number of support vectors),
which, in turn, depends on the number of the training
compounds and the separability of the positive and negative
classes. Even though its absolute computational performance
will change based on the training set, we expect it to remain
considerably faster than the retrosynthetic-based approach.
The time required to train SVM models depends on the
number of vectors in the training sets. Thus, the RSsvm
model required 86 min for training while the DRsvM model,
which is trained on a larger number of molecules, required
almost 9 h. The classification of the MLSMR molecules into
DR" and DR sets required 69 min to complete. Note that
training set preprocessing and SVM model training are
operations that must be performed only once.
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5. DISCUSSION AND CONCLUSIONS

In this paper, we presented and evaluated two different
approaches for predicting the synthetic accessibility of
chemical compounds that utilize support vector machines to
build models, based on the descriptor representation of the
compounds. These two approaches exhibit different perfor-
mance characteristics and are designed to address two
different application scenarios. The first approach, corre-
sponding to the RSsvM-based models, is designed to identify
the compounds that can be synthesized using a specific set
of reactions and starting materials library, whereas the second
approach, corresponding to the DRsvM-based models, is
designed to provide a more general assessment of synthetic
accessibility that is not tied to any set of reactions or starting
materials databases.

The results presented in section 4.1 showed that the RSsvMm-
based models are very effective in identifying the compounds
that can be synthesized in a small number of steps, using the
set of reactions and starting materials under consideration. As
a result, these models can be used to prioritize the compounds
that will need to be retrosynthetically analyzed to confirm their
synthetic accessibility and identify the desired synthesis path,
and, as such, significantly reduce the amount of time required
by retrosynthetic analysis approaches. In addition, the experi-
ments showed that even when additional reactions and/or
starting materials are required for the synthesis of a compound,
the RSsvM-based models are still able to prioritize a set of
compounds based on their synthetic accessibility (see sections
4.2 and 4.3). However, as expected, the quality of the predictions
are lower in such cases.

The results presented in section 4.2 showed that the
approach utilized by the DRsvM-based model, which auto-
matically identifies from a large diverse library a set of
positive and negative training instances, based on their
similarity to other compounds, leads to an effective synthetic
accessibility prediction model. This approach outperforms
both the baseline approaches and the RSsvMm model, because
the latter is biased toward the set of reactions and starting
materials used to identify its training instances.
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