
Influence in Ratings-Based Recommender Systems:

An Algorithm-Independent Approach

Al Mamunur Rashid George Karypis John Riedl∗

Abstract

Recommender systems have been shown to help users find
items of interest from among a large pool of potentially in-
teresting items. Influence is a measure of the effect of a user
on the recommendations from a recommender system. In-
fluence is a powerful tool for understanding the workings of
a recommender system. Experiments show that users have
widely varying degrees of influence in ratings-based recom-
mender systems. Proposed influence measures have been
algorithm-specific, which limits their generality and compa-
rability. We propose an algorithm-independent definition
of influence that can be applied to any ratings-based recom-
mender system. We show experimentally that influence may
be effectively estimated using simple, inexpensive metrics.

1 Introduction

Sociologists have long tried to characterize the influence
of a person in a social network of many people [1]. Iden-
tifying the influential people can bring twin advantages
to those who study group dynamics: (1) The influen-
tial people can be directly studied, yielding insight since
their choices may be predictive of group choices; or (2)
The influential people may be influenced to change the
behavior of the group. Many social networks are formed
and maintained through informal, qualitative, and un-
observed interactions. Capturing data about these in-
teractions is difficult, and the act of capturing those
data may change the social interactions themselves.

Collaborative Filtering (CF) recommender systems
[2, 3, 4] base their decisions on the opinions of users. In
contrast to other social networks, recommender systems
capture interactions that are formal, quantitative, and
observed. The social network can be analyzed directly
through data already captured in the computer system.

Past research has demonstrated that analyzing the
social network can provide leverage in influencing the
group [5]. The analysis performed in these studies
is based on a deep investigation of the characteristics
of one particular recommender algorithm, the well-
known user-user nearest neighbor algorithm [2]. Careful
analysis of this type has many advantages, but one
key disadvantage: it is tied closely to the details of
the algorithm. In principle, similar techniques could

∗Department of Computer Science & Engineering, Univer-
sity of Minnesota, Minneapolis, MN-55455, {arashid, karypis,
riedl}@cs.umn.edu

be applied to other algorithms, but doing so would
be laborious, and the resulting influence measure only
applies to algorithms that work precisely according to
the details of the analysis. Since many commercial
operators tweak the operation of the recommender in
many ways to fit the needs of their business, this
analysis may not apply in practice. Further, the
resulting measures of influence would be unlikely to
be comparable between different algorithms, since they
have been produced through very different techniques.

A key goal of the present research is to identify a
measure of influence for recommender systems that is
applicable to any ratings-based recommender system,
independent of the particulars of the algorithm. Such a
measure would allow for consistent, black-box analysis
of influence.

2 Related Work

2.1 Recommender Systems. Resnick, et al. [2] in-
troduced an automatic collaborative filtering algorithm
based on a k-nearest neighbors (kNN) algorithm among
users; this algorithm is now called user-user CF. The
user-user algorithm we use in this paper is a version
of the original kNN algorithm, tuned to achieve best
known performance. Sarwar et al. [4] proposed an al-
ternative kNN CF algorithm based on similarity among
items. This variant is often called item-item CF. Breese
et al. [3] have divided a number of CF algorithms into
two classes: memory-based algorithms and model-based
algorithms. Over the years many other algorithms
were proposed including ones based on SVD, cluster-
ing, Bayesian Networks [3]. We focus on the user-user

and item-item algorithms in this paper because they are
the most common in existing systems.

2.2 Social Networks and Influence. A Social net-
work is a form of graph delineating relationships and
interactions among individuals. Finding the important
nodes in such graphs has been an object of interest
to sociologists for a long time. One proposed measure
for importance is centrality [1]. Two examples of “cen-
trality” measures are “degree centrality”, which treats
high degree nodes as important, and “distance central-

ui,m
uN2,m

uN1,m

uN3,m

uN4,m

uN5,m

uN6,m

uN7,m

uNk,m

Figure 1: Showing the notion of in-links for the k closest
neighbors of ui. Here, prediction is being computed for
the (user, item) pair, (ui, m).

ity”, which treats nodes with short paths to many other
nodes as important [1] . Kleinberg’s HITS [6], and Brin
and Page’s PageRank [7] algorithms for ordering nodes
in a graph of web are based on social network principles.

Domingos et al. [5] have studied the problem of
choosing influential users for marketers who wish to
attract attention to their products. They show that
selecting the right set of users for a marketing campaign
can make a big difference. Kempe et al. [8] focus on a
collection of models widely studied in social networks,
as well as the models in [5], under the categories: Linear
Threshold Models, and Independent Cascade Models.

Our research also investigates influence in social
networks. Like Domingos et al. we focus on networks
in recommender systems. We extend their research to
general measures of influence that are independent of
the particular recommender algorithm being used.

3 Defining Influential Users in CF Systems

We first discuss the data used in this project, then an-
alyze a popular CF algorithm to understand a possible
formation process of influential users, and then try dif-
ferent ways to set the definition.

3.1 The Data. We have used a publicly available
dataset from www.grouplens.org. The dataset is a
fraction of the usage data drawn from MovieLens
(www.movielens.org), a CF-based online movie rec-
ommendation system. It contains 6,040 users, 3,593
movies, and about one million ratings on a 5-star scale.
Each user has rated at least 20 movies in the dataset.
We have partitioned this data into training and test sets
by a random 80%/20% split.

3.2 The User-User Algorithm. The most widely
cited and arguably the most commonly used CF algo-

rithm in research is a kNN-based algorithm. In this
scheme the users’ preference data is represented in a
n × m user-item matrix for a system with n users and
m items, where the (i, j)-th entry of this matrix stands
for the user ui’s rating on item j, or null, depending
on whether the user ui has rated the item j, or not,
respectively. The user-user algorithm can be thought
of working in two stages. In the first stage, similari-
ties between every pair of users are computed and are
stored as a model. Although many different formula-
tions are possible for similarity weight calculations, the
GroupLens [2] proposed mechanism is the Pearson cor-
relation coefficient. Accordingly, the similarity weight
between two users, ui, and uj is measured by equation
4.1:

Wij =

∑

k∈I(Rik − Ri)(Rjk − Rj)
√

∑

k∈I(Rik − Ri)2
∑

k∈I(Rjk − Rj)2
(3.1)

where I is the set of items rated by both of the users,
Rik is user ui’s rating on item k, and Ri is the average
rating of ui. Using this similarity metric, the next
step, prediction generation, is carried out as follows.
Prediction on item a for user ui is computed by picking
k nearest users who have also rated item a, and by
applying a weighted average of deviations from the
selected users’ means:

Pia = Ri +

∑k

u=1
(Rua − Ru)Wiu
∑k

u=1
Wiu

(3.2)

3.3 Some Plausible Influence Metrics Based on

Prior Work. We can now propose several influence
metrics. One type of metric is motivated by targeted

marketing. Another type of metric exploits connections
between users based on similarity.

3.3.1 Expected Lift in Profit: Network Values.

This approach, as outlined in [5], is based on the
goal of targeted marketing. In this scheme, users who
can yield the most expected lift in profit by making a
cascading adoption of a product happen, are considered
as influential users. Domingos et al. [5] have applied
this idea on a recommendation system dataset based on
the user-user CF algorithm described in the last section.

The probabilistic model in [5] is based on the
Markov Random Fields, which requires the neighbors be
symmetric; i.e., two users are neighbors to each other
if one of them is a neighbor to the other. The authors
mention that in a kNN-based CF system, this might not
hold. Again, ELP Network Value is tied to a particular
product; more specifically, it is specific to a set of
features of the product being marketed. Translating
this issue into the RS domain, ELP Network Values

are specific to particular genre vectors. Thus a user’s
ELP Network Value will differ for movies with different
genre vectors.

3.3.2 Network Structure: Similarity Links. By
closely observing the process of neighbor-selection, we
notice some network structure that could facilitate in
forming a definition for influential users. Figure 1
demonstrates a situation where the system is computing
a prediction on item m for user ui . In order to do so,
it selects top k neighbors who also have rated the item
m. Now we can imagine directed edges from ui towards
each of the k neighbors.

Equations 4.3 and 4.4 show the updated authority
and hub equations. In order to consider the fact that all
the links may not of same weight, we have incorporated
a weight term similar to [9] to the basic HITS [6]
equations. Here the conditional probability, p(i|j) refers
to the degree of user uj ’s presence indicating user ui’s
presence.

a(i) =
∑

j→i

p(i|j)h(j)Wij(3.3)

h(i) =
∑

i→j

p(j|i)a(j)Wij(3.4)

We can use this modified authority to represent
influence.

The drawback of this scheme of influence, however,
is algorithm dependence: the network structure cap-
tured here is very much algorithm-specific; and, for
other algorithms, the structure might not be as ap-
parent. In order to derive a definition that is generic
enough, yet simple, we use the Hide-one-User approach
discussed next. The fundamental concept with this ap-
proach is figuring out which user causes the largest cu-
mulative change of prediction in the system.

4 Algorithm-Independent Influence

These metrics define influence as the amount of effect
a user has over others via the predictions they receive.
One way to observe this effect is to exclude a user and
measure the net changes in predictions caused by the
removal.
The idea: Let U be the set of available users in the
system, MU be the model built with the preference
data of this set of users. We call NPDui

(Number

of Prediction-Differences) as the number of times the
following expression holds true:

|Pja(MU) − Pja(MU−{Ui})| ≥ δ, ∀j 6= i

Here, Pja(MU) is the prediction on item a for the
user uj using the model MU , δ is a threshold that can be

0

0.2

0.4

0.6

0.8

1

1

10
1

20
1

30
1

40
1

50
1

60
1

70
1

80
1

90
1

10
01

11
01

12
01

13
01

14
01

15
01

Ranks of the users by NUPD

N
or

m
al

iz
ed

N
U

P
D

(a)

0

0.04

0.08

0.12

0.16

0.2

300 301 302 303 305

#of ratings of the selected users

N
or

m
al

iz
ed

 N
U

P
D

(b)

Figure 2: (a) Distribution of influence. (b) NUPD

values of a group of 20 users who have rated almost
the same number of items.

tied with the smallest prediction change perceivable to
the users via the available user interface. As an example,
smallest prediction change a MovieLens user would
notice is 0.5 or a half-star. In essence, the expression
for NPDui

says how many times the predictions would
change beyond some threshold if we build the model
without the user ui. NPDui

is the influence level of
user ui. There is a problem with NPDui

: if the group of
users, who get affected by ui’s removal, need predictions
on many items, ui could exhibit possessing a large
NPDui

. To overcome this problem, we propose another
version of this definition and call it NUPDui

. NUPDui

counts the number of unique users whose predictions’
got changed by at least the threshold amount as we
keep the i-th user out during model-building.

As is evident from the definition of NUPDui
, it is

equally applicable to any CF algorithm, provided that
we have the historical data to compute it from.

Notice that a straightforward computation of
NUPDs can become very expensive; if we are to com-
pute NUPD online or in a regular basis, we need to find
a cheaper way. Section 6 details such an endeavor.

4.1 The Nature of Influence. Figure 2(a) shows
normalized NUPD values of the top 1500 influential
users and highlights the fact that only a handful of
the users possess high influence. This is true for
both authority and NUPD measures. The shapes
demonstrate the power-law or a Zipf-like distribution. A
similar shape is reported in [5] for ELP Network Values.

Note that the correlation between authority and
NUPD is 0.96.

5 Building a Predictive Model

As stated before, NUPD suffers from a drawback: the
computation is quite time consuming. In order to
circumvent this limitation, we seek a predictive model
that can provide users’ influence levels on the fly while

maintaining good accuracy.
Although the correlation coefficient between NUPD

and the number of ratings is 0.75, figure 2(b) shows
that the amount of influence can vary widely between
users who have rated approximately the same number
of movies. This suggests we look for a model that
can account for factors not captured by the number of
ratings.

In the following section we compile a list of quali-
tative factors that seem to affect influence levels.

5.1 Qualitative Factors

Number of ratings: This is the most immediate
factor one would possibly come along with. If a user
rates more items, she has a greater chance to be close
to many users. Moreover, such a user can be useful to
many users who are looking for recommendations for a
wide variety of items.

Degree of agreement with others: This measure
attempts to estimate on average how much a user agrees
to the average opinion of others: 1/k

∑k

a=1
|Ria − Ra|.

This expression computes the extent to which the user
ui’s ratings are swayed from each of the corresponding
item’s average rating.

Rarity of the rated items: This is a measure
very similar to that of the Inverse Document Fre-
quency (IDF), which penalizes frequent items, as they
are considered to have little discriminating power:
1/k

∑

j∈Iui

1/freq(j); where, Iui
is the set of items that

user ui has rated.
Standard deviation in one’s rating: This amounts

to the degree a user’s ratings deviate from her rating-
average. The implication is that a higher standard
deviation contributes a greater value through the term,
(Rik − Ri) in equation 4.1.

Degree of similarity with top neighbors: This is the
average similarity weight of the top k neighbors of a
user ui: 1/k

∑k

j=1
Wij . This factor can be associated

with two opposing implications: users having higher
values from this expression might be able to exert more
effect to be influential; whereas, a user might be easier
to replace if she is very similar to a number of other
users.

Aggregated popularity of the rated items: If the sum
of the popularities of the rated items is high enough,
the user has a greater chance to have overlapped items
with many users.

Aggregated MoviePopularity*Entropy: Entropy of a
movie simply indicates the dispersion of the ratings it
received. Multiplying this with the popularity of the
movie gives a measure that tries to balance between
popularity and variance.

5.2 The Regression Model

We chose to use SVM Regression (SVR) for our mod-
eling. SVMs follow the Structural Risk Minimization
Principle which seeks to minimize an upper bound
on the generalization error rather than the principle
used in most of the learning machines: Empirical Risk
Minimization Principle– minimizing the training error.
Hence, SVMs have been showing better generalization
in many results. Although most of the practical us-
ages for SVMs used to be in classification problems,
SVMs have been extended to solve non-linear regres-
sion problems, mostly because of the introduction of
the ε-insensitive loss function [11]; and the resulting re-
gression method called ε − SV R.

We have tried various kernel functions to perform
the non-linear mapping from the input space to the
feature space. However, the radial basis function (RBF)
produced the best regression result. In order to select
the values of the parameters, C and ε, a cross-validation
approach was carried out.

We have randomly selected 2416 users (40% of
the total) and partitioned them into training and test
sets by a 8:2 split. libsvm[10] was used to generate
regression models using the following: the seven factors
outlined before as predictors (independent variables),
an RBF kernel, ε − SV R, and the parameters, C and
ε. The model gave a squared correlation coefficient of
0.94. Figure 3 shows the prediction performance by
plotting predicted NUPDs against the corresponding
actual NUPDs taken from the test-set. A five-fold
cross validation was carried out to ensure the results’
validity. Table 1 has the regression results as well as a
few statistics of the actual NUPD values in the test set,
averaged over the five folds.

6 Influence in an Item-based Algorithm

We now turn to how the influence picture looks when
using another prediction algorithm in order to see how
algorithm-dependent our measures are.

The item-item Algorithm. The kNN based CF
algorithm proposed in [4] is different in many ways than
the user-based algorithm we have addressed so far. The
algorithm first builds the model by computing item-item
similarities. [4] proposed adjusted cosine measure for
estimating the similarity between two items i, and j:

si,j =

∑

u∈U (Ru,i − Ru)(Ru,j − Ru)
√

∑

u∈U (Ru,i − Ru)2
∑

u∈U (Ru,j − Ru)2

Prediction for the (user, item) pair, (u, i) is computed
as:

∑

all similar items,N (si,N ∗ Ru,N)/
∑

(|si,N |).
We could not employ authority on this algorithm,

as it is not quite straightforward to establish di-

0

100

200

300

400

500

600

700

800

900

1000

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0
1

1
1
1

1
2
1

1
3
1

Test data points

N
U

P
D

 v
al

ue
s

Figure 3: Performance of SVM regression for NUPD
on user-user algorithm. The dotted line shows the
actual values; whereas, the continuous line represents
the predicted values.

rect edges between users. We could not compute
ELP Network Values on this algorithm either, since
ELP Network Values involve the notion of how neigh-

bors affect a user, and corresponding probability com-
putations based on this. However, applying NUPD by
Hide-one-User method was easy. We have estimated
NUPDs for the same set of users we have selected for
the user-based approach. Modeling with ε−SV R gave a
very good performance: squared correlation coefficient
was 0.989.

7 Conclusion

In this paper, we have continued the investigation into
influence in recommenders begun in [5]. We have shown
that how many opinions a user expresses is an important
component of influence, but not the whole story. We
have defined several plausible influence metrics and
shown that in general, they correlate strongly.

We believe our proposed metric, NUPD, is explain-
able both to researchers and operators of recommender
systems. NUPD is also algorithm independent—it ap-
plies to any recommender system algorithm that makes
predictions. NUPD is computationally inefficient. How-
ever, we have demonstrated how to build dataset- and
algorithm-specific regression models that allow for the
rapid, accurate estimation of a user’s influence.

Much remains to be done. Research is needed to
understand how the role of influence changes it. For
instance, when influence is used to help retailers sell
products it may have very different characteristics than
when it is used to encourage community members to
contribute opinions. Another rich area of research is
in interfaces for communicating influence to community

members. The interface is likely to impact both the in-
terpretation of influence and its effectiveness in chang-
ing behavior.

References

[1] S. Wasserman, K. Faust, Social Network Analy-

sis: Methods and Applications, Cambridge University
Press, (1994).

[2] P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom,
and J. Riedl, Grouplens: An open architecture for

collaborative filtering of netnews, in Proceedings of
CSCW 1994, ACM SIG Computer Supported Coop-
erative Work, 1994.

[3] J. S. Breese, D. Heckerman and C. Kadie, Empirical

analysis of predictive algorithms for collaborative filter-

ing, in Proceedings of the Fourteenth Annual Confer-
ence on Uncertainty in AI, July 1998.

[4] B. M. Sarwar, G. Karypis, J. A. Konstan, and J.
Riedl, Item-based collaborative filtering recommenda-

tion algorithms, in Proceedings of the 10th Interna-
tional World Wide Web Conference (WWW10), Hong
Kong, May 2001.

[5] P. Domingos and M. Richardson, Mining the Net-

work Value of Customers, Proceedings of the Seventh
International Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, 2001. ACM Press,
pp. 57–66.

[6] L. Kleinberg. Authoritative sources in a hyperlinked

environment, Journal of the ACM, 46, 1999.
[7] L. Page, S. Brin, R. Motwani, and T. Winograd.

The PageRank citation ranking: Bringing order to the

web, Technical Report, Stanford University, Stanford,
CA. 1998.

[8] D. Kempe, J. Kleinberg, and Tardos, Maximizing

the spread of influence through a social network, in
Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining,
Washington DC, 2003, pp. 137–146.

[9] K. Wang, and M. Y. T. Su, Item Selection by “Hub-

Authority” Profit Ranking, in SIGKDD ’02, Canada.
[10] C. C. Chang, and C. J. Lin, LIBSVM : a library for

support vector machines, 2001.
[11] V. N. Vapnik, The Nature of Statistical Learning

Theory, New York, Springer-Verlag, 1995.

Table 1: Regression results on both CF algorithms
User-User Item-Item

Regression
Performance

MAE 15.26 30.6
Sq. corr. coeff. 0.94 0.99

MSE 1036 2252.6

NUPD
Statistics
in Test Set

Avg. 81.57 405.6
Min 0 0
Max 980 2487

StdDev 123.25 454.6

	Text1: Appears in SIAM 2005 Data Mining Conference

