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ABSTRACT In this article, we review the recent development for in silico Structure-Activity-Relationship
(SAR) models using machine-learning techniques. The review focuses on the following topics:
machine-learning algorithms for computational SAR models, single-target-oriented SAR methodologies,
Chemogenomics, and future trends. We try to provide the state-of-the-art SAR methods as well as the most
up-to-date advancement, in order for the researchers to have a general overview at this area. Drug Dev
Res, 2010. r 2010 Wiley-Liss, Inc.
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INTRODUCTION

Small organic molecules, by binding to different
proteins, can be used to modulate (inhibit/activate)
protein function for therapeutic purposes and to
elucidate the molecular mechanisms underlying biolo-
gical processes. This chemical genetics approach
[Tolliday et al., 2006; Kawasumi and Nghiem, 2007]
of perturbing living biological systems has been gaining
momentum because it provides key advantages over
the approaches based on molecular genetics. However,
experimental high-throughput screening (HTS) tech-
niques [Jona and Snyder, 2003; Bulseco and Wolf,
2003; Inglese et al., 2006] for identifying compounds
that bind selectively and with high affinity to the
various protein targets are hindered by a number of
problems associated with hit identification and limited
chemical diversity [Oprea and Gottfries, 2001; Lipinski
and Hopkins, 2004; Dobson, 2004]. Therefore, in silico
methods that computationally study the relationship
between compound structures and their properties
against protein targets have distinguished themselves
by their efficiency and accuracy, and have quickly
become popular options for initial hit compound

identification. Such methods are formalized as in silico
Structure-Activity-Relationship (SAR) modeling.

The pioneering work of Hansch et al. [1962, 1963],
which demonstrated that the biological activity of a
chemical compound can be mathematically expressed as
a function of its physicochemical properties, led to the
development of in silico quantitative methods for
modeling SARs. Since that work, many different
approaches have been developed for building SAR
models [Bravi et al., 2000; Agrafiotis et al., 2007]. These
in silico models have become an essential and effective
tool for computationally predicting the biological activity
of a compound against a certain protein target from its
molecular structures. They play a critical role in drug and
chemical probe discovery by informing the initial
screens, design, and optimization of compounds with
the desired biological properties in an efficient fashion.
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In this article, we discuss the SAR modeling
problem formulation, challenges, and approaches. We
give a short review on most recent advances of in silico
SAR modeling from two aspects. The first is single-
target oriented schemes, e.g., the conventional SAR
methods. We discuss machine learning and data mining
techniques that are particularly developed and applied
for single-target-based SAR model learning. The
second aspect is domain (i.e., biological and chemical)
knowledge incorporation, which falls within the cate-
gory of chemogenomics and is able to produce more
sophisticated and powerful SAR models by utilizing
binding information from protein families. In the end,
we give a brief discussion on the methods that may go
beyond current state-of-the-art methodologies.

CHARACTERISTICS AND CHALLENGES FOR
IN SILICO SAR MODELS

The typical setup for in silico SAR model learning
is as follows. Given a set of compounds from
experimental results (e.g., bioactivity assays), which
show a certain level of binding affinity against a protein
target under consideration, a computational SAR
model is built from such compounds so that the model
learns/captures the structural properties of the com-
pounds that are causally related to their bioactivity.
This in silico SAR model is then applied to predict the
bioactivity of unseen compounds. The above setting of
in silico SAR model learning falls into the standard
setting of supervised learning. Supervised learning is a
machine-learning technique, which learns knowledge
from fully labeled/annotated data [Kotsiantis, 2007].
Therefore, in principle existing supervised learning
algorithms could be applied directly on chemical data.
However, in silico SAR modeling problem has its
special characteristics and challenges such that extra
care needs to be taken in order to better tackle the
problem with supervised learning. Such features
include the following aspects.

Compound Representation

Compound representation is a popular topic in
chemical information learning. In order to computa-
tionally learn knowledge from compounds or proteins,
the first step is to represent such instances in a
meaningful format that encodes compound properties
so that computational algorithms can manipulate them
and learn knowledge from them. Many in silico SAR
methods represent compounds using various descrip-
tors, as they represent a convenient and computation-
ally efficient way to capture key characteristics of the
compounds’ structures. These descriptors include
physicochemical property descriptors [Bravi et al.,

2000; Bajorath, 2002], topological descriptors derived
from the molecular graph of a compound [Daylight;
MDL; Deshpande et al., 2005; Wale et al., 2007;
Rogers et al., 2005], and 2D and 3D pharmacophore
descriptors that capture interactions important to
protein-ligand binding [Sheridan et al., 1996; Davies,
1996; Stiefl et al., 2006]. Among them, hashed 2D
descriptors corresponding to subgraphs of various sizes
and types (e.g., paths, trees, rings) are the most
common descriptors and include the fingerprints from
Daylight Inc. and Chemaxon Inc. and the extended
connectivity fingerprints [Hert et al., 2004]. A good
review on compound representation is Wale et al.
[2010]. For many compound representations, they may
suffer from very high feature dimensionality and thus
the curse of dimensionality. Due to this, dimension
selection and reduction methods can be applied
explicitly or implicitly.

Sparse Active Compound Set

Sparse active compound set means that compared
to the entire chemical space, labeled compounds (i.e.,
active and inactive compounds), with respect to the
target under consideration, only occupy an extreme
small subspace. This leads to two outcomes. The first is
that many times we may not have a rich set of training
information to build a very representative model from.
For example, some confirmatory assays only verify less
than 20 compounds, which may not allow a learning
algorithm to learn sufficient knowledge from. SAR
models learned from such small compound sets may
suffer from low quality, and therefore model quality
improvement becomes a challenge in in silico SAR
model learning. The second outcome is that there exists
a large set of unlabeled data (i.e., compounds that are
not known to be either active or inactive due to limited
experimental facilities and/or restricted screening
libraries), which, once well explored, potentially give
additional useful information for better model learning.
This leaves a huge space for semi-supervised learning
(i.e., a machine learning technique that learns knowl-
edge from both fully labeled/annotated data and not
labeled/annotated data [Zhu, 2005]) methodology to be
applied in this domain.

Co-Existence of Biological Space

Co-existence of biological space with chemical
space can be another source of information for SAR
models, since SAR models learn the relationship
between chemicals and a certain biological. Biological
space is well structured because proteins can be
evolutionarily related such that they form different
protein families [Kunin et al., 2003]. Given this, it is
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expected that information from biologicals can serve as
auxiliary knowledge.

MACHINE LEARNING ALGORITHMS FOR
CONVENTIONAL IN SILICO MODELS

Over the years, many machine-learning algo-
rithms have been developed and applied to build
conventional single-target-oriented in silico SAR models.
Such algorithms contribute as a significant component
for SAR model learning.

Support Vector Machines (SVMs) [Vapnik, 1998]
are widely applied learning algorithms to do classifica-
tion and regression (SVR) [Smola and Olkopf, 1998] for
SAR modeling. The main idea of SVM is to construct a
maximum-margin hyperplane that linearly separates
the two classes of training instances in a certain (high
or infinite dimensional) space. The hyperplane is then
used to classify new instances by looking at which side
of the hyperplane the new instances fall within in the
space. The instances are mapped to this space through
a kernel, which is positive semidefinite and intuitively
can be considered as a similarity measure. The
advantage of such kernel methods is that they directly
give the instance similarity within that mapped space
without asking the users to explicitly design such space
or understanding the structure of the space. SVMs
achieve the stated-of-the-art performance among
current classification methods in many application
domains, and for SAR model learning, they are also
the most popular and successful options [Darnag et al.,
2010; Byvatov et al., 2003; Deshpande et al., 2005;
Wale et al., 2007].

Partial Least-Squares (PLS) regression [Rosipal
and Krämer, 2006a] is an early but still popular
technique for SAR model learning, originally devel-
oped for chemometrics [Otto, 2007]. The main idea of
PLS is to model the response relationship between
compound structures and compound bioactivities by
projecting them into a latent space, where a subset of
compound structures (principal components) best
describe compound bioactivities in a linear manner
[Hasegawa and Funatsu, 2000; Rosipal and Krämer,
2006b; Roy and Roy, 2008; Zhou et al., 2007]. PLS has
proven to be useful in situations where the number of
compound structural features is much greater than the
number of bioactivity values and high multicollinearity
among the variables exists, both of which are common
for SAR. Recently there are modified PLS methods for
SAR modeling [Bennett et al., 2003; Rosipal and
Krämer, 2006b], in which kernel partial least squares
(kernel PLS) is a kernel method for PLS that
introduces on-linear mapping through kernels [Lapinsh
et al., 2005; Deng et al., 2004]. Many other learning
algorithms are applcable for SAR modeling and include

Neural Networks (NN) [Tetko et al., 2001; Livingstone
and Manallack, 2003; Guha and Jurs, 2005], Decision
Tree [Sussman et al., 2003], Recursive Partitioning
[Chen et al., 1998; Rusinko et al., 1999; An and Wang,
2001], Linear Discriminant Analysis (LDA) [Otto,
1999], Bayesian models [Xia et al., 2004; Mccallum
and Nigam, 1998], and Random Forest [Zhang and
Aires-de Sousa, 2007; Breiman, 2001]. Hughes-Oliver
et al. [2008] implement and compare many popular
learning methods for SAR modeling.

In recent years, a new class of kernel-based
techniques has been developed that builds SAR models
by operating directly on the molecular graphs [Raymond
and Willett, 2002; Kashima et al., 2003; Le et al., 2003,
2004; Ralaivola et al., 2005; Menchetti et al., 2005].
These kernels are computed by using powers of
adjacency matrices [Kashima et al., 2003; Ralaivola
et al., 2005], Markov random walks on the underlying
graphs [Kashima et al., 2003; Ralaivola et al., 2005],
optimal assignment between atoms and bonds of two
graphs [Froehlich et al., 2005; Kozaz et al., 2007],
maximum common subgraph [Raymond and Willett,
2002; Le et al., 2003, 2004], and weighted substructure
matching [Menchetti et al., 2005]. The advantage of
these techniques is that they determine the similarity
between compound pairs by directly analyzing their
molecular graphs and eliminate the step of descriptor
generation. However, such methods are inherently
less descriptive as it is hard to identify the different
features of the molecular graphs that might be
important for activity.

Another class of methods builds SAR models by
operating directly on the structure of the chemical
compounds and automatically identifying a small
number of chemical substructures that relate to their
biological activity using approaches based on inductive
logic programming [King et al., 1992; Muggleton and
De Raedt, 1994; King et al., 1996] (e.g., Golem
[Muggleton and Feng, 1992] and WARMR [King
et al., 2001; Dehaspe et al., 1998]). The high
computational requirement of these approaches led
to the development of various heuristic methods
[Klopman, 1998; Gonzalez et al., 2001; Matsuda
et al., 2002; Nicolaou et al., 2002] that either restrict
the search space or the type of rules being discovered.
However, the savings in computational time of such
restrictions come at the expense of failing to identify
the best rules in the cases in which the critical
substructures are not just linear chains [Deshpande
et al., 2005; Wale et al., 2007].

CHEMOGENOMICS FOR IN SILICO SAR MODELS

A different aspect of current SAR modeling is
what information can be utilized for an SAR model
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construct a protein target and how it can be used.
Conventional (single-target-oriented) SAR modeling
usually uses information from the target itself (i.e., its
sequence, structures, etc.) and information from its
own experimentally determined compounds (i.e.,
compound weight, compound structure, etc.).

A new perspective, chemogenomics [Frye, 1999;
Caron et al., 2001; Klabunde, 2007; Harris and Stevens,
2006; Guba, 2006; Rognan, 2007; Gaither, 2007] takes
advantage of the concept of protein family, and utilizes
information from proteins that belong to a family as
additional knowledge so as to build better SAR models.
In this way, the lack of known ligands for a given target
can be compensated by the availability of known
ligands for other targets. Chemogenomics has been
becoming a prominent methodology for SAR learning
[Klabunde, 2007; Rognan, 2007; Strömbergsson and
Kleywegt, 2009].

Chemogenomics

Chemogenomics-based approaches leverage SAR
information from proteins within a same family as a
new target. These proteins share key characteristics
with the new target and their SAR information is used
in order to filter libraries for focused screening to aid in
the identification of active compounds for the new
target [Caron et al., 2001; Bredel and Jacoby, 2004;
Harris and Stevens, 2006; Guba, 2006; Rognan, 2007;
Gaither, 2007]. Chemogenomics methods usually
organize the members of a family into groups such
that within each group ligands have similar binding
patterns and key characteristics of the ligand-binding
sites are conserved (e.g., similar amino acid composi-
tion, physicochemical properties, or structures). For a
new protein, the most relevant group is usually
identified by comparing the ligand-binding part of the
sequence or structure to that of the proteins in each
group.

One of the early efforts in this area has been the
work of Frye [1999] who proposed the SARAH
framework for organizing proteins in each family based
on their SAR similarity to create SAR homologous
clusters. Frye’s work advocated that such clusters will
help in establishing correlations between sequence
conservation and SAR homology, thus, making it
possible to predict the cluster membership of a new
protein based on its sequence. Since then, there have
been a number of Chemogenomics efforts that have
primarily focused on kinases [Vieth et al., 2004; Hu
et al., 2005; Birault et al., 2006; Kellenberger et al.,
2006; Hoppe et al., 2006], and GPCRs [Jacoby et al.,
1999; Jacoby, 2001; Frimurer et al., 2005; Surgand
et al., 2006]. Some of these approaches identify the
right subset of family members using similarity search,

either with respect to sequence [Frimurer et al., 2005;
Surgand et al., 2006] or structure [Hu et al., 2005;
Kellenberger et al., 2006; Hoppe et al., 2006], whereas
other approaches employ machine-learning techniques
to estimate and analyze the ligand-target affinity within
each family [Bock and Gough, 2002, 2005; Vieth et al.,
2004; Jacob and Vert, 2008]. Even though chemoge-
nomics-based approaches have been successfully used
to identify lead compounds [Nguyen et al., 2003;
Eguchi et al., 2003; Klabunde and Jger, 2006; Martin
et al., 2007], the methods that were developed are to a
large extent specific to kinases and GPCRs and have a
significant manual component. Moreover, the quality of
the focused libraries that they create is a function of the
diversity in the original library.

Machine-Learning Methods for Chemogenomics-
Based SAR Models

Over the past few years, various chemogenomics-
based in silico approaches have been developed that
differ on how they formulate the chemogenomics
framework so as to fit the available information into the
framework and learn knowledge from there system-
atically. Basically, there are two components that these
methods need to deal with. The first one is data
representation, which includes representing informa-
tion involved in both biological space and chemical
space, and their known relationship. The second is the
learning algorithms to explore/learn biological-chemi-
cal relationship for SAR. Of course, these two aspects
are closely correlated since data representation has to
fit and better serve learning schemes, but we discuss
them independently for the sake of simplicity.

Data Representation for Chemogenomics-Based SAR

Data representation for Chemogenomics-based
SAR can be different from single-target-oriented
methods, if protein properties are involved in learning.
In this case, the Chemogenomics-based data repre-
sentation requires three ingredients of efforts. The first
is the features for the targets (e.g., protein structures
[Lindström et al., 2006], amino acid sequence [Jacob
and Vert, 2008], binding site descriptors [Strömbergsson
et al., 2008; Deng et al., 2004], etc.). This part is
new from conventional single-target oriented SAR
methods, but has already been well studied in
structural biology independently, and thus in principle
a good feature representation from their studies can be
applied directly for chemogenomics. The second is
ligand representation that is in single-target SAR
learning. A novel yet critical requirement is on explicit
target-ligand complex/relationship representation (i.e.,
representing the binding event/relationship between
biologicals and chemicals). In chemogenomics-based
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methods, the complexes are represented/modeled by
protein-ligand fingerprints [Weill and Rognan, 2009],
protein and ligand descriptor concatenation [Bock and
Gough, 2005], protein space and ligand space tensor
product and kernel fusion [Jacob and Vert, 2008],
among others.

Machine-Learning Algorithms for Chemogenomics-
Based SAR

Machine-learning algorithms for chemoge-
nomics-based SAR learn models from target-ligand
relationship, not from only targets or ligands in
isolation. Since there are two parties involved in
chemogenomics-based methods (i.e., proteins and
compounds), their relationship is handled in different
styles. The first processes the two parties step by step.
Klabunde and Jager [2006] first identify the family
(e.g., GPCR) or subfamily information (e.g., purinergic
GPCR), and then pool together the ligands for all
family proteins and learn a family-level SAR model
from the ligands. SAR models learned from such a
fashion are never specific to a certain single protein
target, but actually for the entire family. Such
methodology is superior to other chemogenomics-
based methods (discussed later) mostly in efficiency,
but the model learned may become too general and
noisy, if not problematic, when the diversity of ligands
targeting at different proteins within a family reaches
above a certain threshold. In effect, ligand diversity is
highly desired for drug discovery. Another concern
would be that ligands for an entire family may suffer
from low selectivity. An alternative on such a problem
was implemented by Frimurer et al. [2005], where
protein targets were clustered based on ligand binding
site similarity, and then cluster-level SAR models were
learnt.

A different approach to utilize protein family and
ligand information is to directly couple them into
protein-ligand pairs, and models are learned from such
pairs. Bock and Gough [2005] proposed a support
vector regression method to predict compound activity
against orphan GPCRs using target-ligand complexes,
which are represented by concatenating target repre-
sentation and compound representation. Targets were
represented by their physicochemical properties of
their primary structures (i.e., surface tension, iso-
electric point, accessible surface area, etc.) and
compounds were described using a 2-D molecular
connectivity matrix supplemented by chemical proper-
ties, and the matrix factorized using singular value
decomposition (SVD) with singular values are used to
represent the compounds. Erhan et al. [2006] showed
how the same concept can be cast in the framework of
Neural Networks (NNs) and Support Vector Machines

(SVMs). In particular, they show that a given set of
receptor descriptors can be combined with a given set
of ligand descriptors in a computationally efficient
framework, offering in principle a large flexibility in the
choice of the receptor and ligand descriptors. Similarly,
in Strömbergsson et al. [2008], 3D structures of
proteins around binding sites were used to describe
proteins and then used to support vector regression to
train a model and predict enzyme-ligand interactions.
Jacob and Vert [2008] proposed a set of kernels on
protein-ligand complexes and then used SVMs for
chemogenomics-based SAR learning demonstrating
that such methods introduce significant improvement
over conventional methods.

Multi-Task Learning (MTL)

Multi-Task Learning (MTL) [Caruana, 1993;
Evgeniou et al., 2005; Bonilla et al., 2007] is a
machine-learning methodology that can learn multiple
related tasks simultaneously within a single model by
implicitly transferring knowledge across different tasks
to boost general performance. A key requirement for
the applicability of multi-task learning is that the tasks
under consideration are related and share a common
representation. There has been theoretical proof
showing that MTL improves performance and is of
interest to the chemoinformatics community as it
naturally conforms to the structures of chemoge-
nomics-based methodology. For the latter, multiple
proteins from a same family, with respect to the target
under consideration, and their ligands are used
simultaneously for a single SAR model learning. This
can be considered as a multi-task learning system, in
which each protein and its own ligands correspond to a
single learning task. Since the proteins are related (they
are from a same family and share common character-
istics), chemogenomics-based methods learn all such
tasks in parallel and collaboratively family-related
information in terms of ligand binding properties can
be transferred and shared across multiple proteins.
Kernel methods in Jacob and Vert [2008] are essentially
examples of multi-task learning. Erhan et al. [2006]
predicted target-ligand interactions inside a family of
targets by employing Collaborative Filtering (CF)
[Goldberg et al., 1992] technology, a specific form of
multi-task learning, by applying Neural Networks (NN)
and a kernel-based ordinal regression method named
JRank in which a set of new kernels on targets and
compounds (i.e., identity kernel, Gaussian kernel,
correlation kernel, and quadratic kernel) are also
developed. Geppert et al. [2009] designed 6 methods
to predict compound activity, including linearly combining
multiple linear SVM models and multi-task SVM models.
Nigsch et al. [2008] applied Laplacian-modified Naı̈ve
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Bayesian classifier and a perceptron-like learning
algorithm called Winnow [Nigsch and Mitchell, 2008]
to perform multi-class classification to predict ligand-
target interactions. They augmented the features of
compounds by creating an additional so-called Ortho-
gonal Sparse Bigrams (OSBs) from original features.
Weill and Rognan [2009] proposed a novel protein-
ligand fingerprint and then applied Random Forest
(RF) and Naı̈ve Bayesian (NB) to perform interactions
between GPCRs and their ligands, an effect that multi-
tasks learning in a chemogenomic framework with the
fingerprint being generated by concatenating the
GPCR cavity descriptor and GPCR ligand descriptor.

PERSPECTIVES ON THE FUTURE

Given the maturity of various data mining and
machine-learning techniques on large-scale real-life
problems over the years, as well as the advanced
knowledge and experimental testing/validation on
system biology and chemical medicine, the question
now becomes what will be the next step for current in
silico SAR model learning strategies? Over the years, a
number of methods have been developed for improv-
ing accuracy of SAR models. One major effort is to
utilize possible additional information from what has
been learned beyond the known ligands of the targets
under consideration. The inspiration is that it is very
typical in domains of biology and chemistry that
unlabeled data (e.g., compounds whose druggablity is
unknown, proteins whose binding site structures are
uncertain, etc.) are always overwhelmingly dominating,
whereas labeled information is always extremely sparse,
leaving considerable space for computational techni-
ques to take the major rule on information learning and
utilization. One early method adopted approaches
based on active learning and iteratively expanded the
set of training compounds used for learning SAR
models [Warmuth et al., 2003]. In this approach,
experimentally determined ligands for the target were
used to build an initial SVM-based SAR model.
Unlabeled compounds close to the decision boundary
of the SVM model were then selected and treated as
additional positive training examples for learning a new
SVM model. This process was repeated multiple times
until the performance of the learned model cannot be
improved further. A critical challenge of active learning
is that such strategies suffer from the incestuous training
bias problem (i.e., when the newly added data are
actually not precisely predicted, this introduces signifi-
cant noise so as to make the predictions intractable).

Until now, single-target-oriented SAR model
learning and chemogenomics-based methods have
been dominating and considered as standard in silico
SAR methodology. A very natural attempt is to go

beyond the concept of ‘‘protein family’’ and consider
the entire biological space. The main idea is that if
proteins even from different families somehow share
some similarities in terms of their binding site
structures and ligand similarities, and so on, then they
can be used to learn each other’s SAR models [Ning
et al., 2009]. These authors first identify a set of related
proteins from entire biological space with respect to
the protein under consideration, and utilize such
proteins and their known ligands as an additional
complementary source of information to build a SAR
model for the target protein. The key difference of this
methodology from conventional chemogenomics is that
it is not restricted by protein families and thus explores
a larger space so as to increase the possibility of finding
the most informative and related protein-ligand inter-
actions. From this perspective, chemogenomics can be
considered as a special case of Ning et al.’s [2009]
methodology. Ning et al. [2009] developed different
measures for related protein selection based on protein
sequence similarity and binding ligand similarity, which
was then applied to multi-task, semi-supervised learn-
ing from label propagation and classifier ensembles
[Swanson and Tsai, 2003; Shen and Chou, 2006] so as
to utilize related proteins and their ligands for better
SAR model learning. These methods achieve better
results than chemogenomics schemes. There is insuffi-
cient literature discussing methods that go beyond
protein families for SAR modeling, Nonetheless, we
believe that intuitively there would be subtle signals,
not well identified or understood, that are shared
across different proteins, given that protein-ligand
binding interaction is very local to the protein-binding
sites, and the underlying principles of natural evolution
should illuminate studies as to how to collaboratively
explore biological and chemical space. With the further
development of protein structure crystallography and
chemical screening methods, we may expect to gain
better understanding from both biological and chemi-
cal space so as to improve connectivity.
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