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Abstract—This paper focuses on developing effective and
efficient algorithms for top-N recommender systems. A novel
Sparse LInear Method (SLIM) is proposed, which generates top-
N recommendations by aggregating from user purchase/rating
profiles. A sparse aggregation coefficient matrix W is learned
from SLIM by solving an `1-norm and `2-norm regularized
optimization problem. W is demonstrated to produce high-
quality recommendations and its sparsity allows SLIM to generate
recommendations very fast. A comprehensive set of experiments
is conducted by comparing the SLIM method and other state-of-
the-art top-N recommendation methods. The experiments show
that SLIM achieves significant improvements both in run time
performance and recommendation quality over the best existing
methods.
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I. INTRODUCTION

The emergence and fast growth of E-commerce have signif-
icantly changed people’s traditional perspective on purchasing
products by providing huge amounts of products and detailed
product information, thus making online transactions much
easier. However, as the number of products conforming to
the customers’ desires has dramatically increased, the problem
has become how to effectively and efficiently help customers
identify the products that best fit their personal tastes. In par-
ticular, given the user purchase/rating profiles, recommending
a ranked list of items for the user so as to encourage additional
purchases has the most application scenarios. This leads to the
widely used top-N recommender systems.

In recent years, various algorithms for top-N recommen-
dation have been developed [1]. These algorithms can be
categorized into two classes: neighborhood-based collabora-
tive filtering methods and model-based methods. Among the
neighborhood-based methods, those based on item neigh-
borhoods can generate recommendations very fast, but they
achieve this with a sacrifice on recommendation quality. On
the other hand, model-based methods, particularly those based
on latent factor models incur a higher cost while generating
recommendations, but the quality of these recommendations
is higher, and they have been shown to achieve the best
performance especially on large recommendation tasks.

In this paper, we propose a novel Sparse LInear Method
(SLIM) for top-N recommendation that is able to make high-
quality recommendations fast. SLIM learns a sparse coefficient
matrix for the items in the system solely from the user

purchase/rating profiles by solving a regularized optimization
problem. Sparsity is introduced into the coefficient matrix
which allows it to generate recommendations efficiently. Fea-
ture selection methods allow SLIM to substantially reduce
the amount of time required to learn the coefficient matrix.
Furthermore, SLIM can be used to do top-N recommenda-
tions from ratings, which is a less exploited direction in
recommender system research.

The SLIM method addresses the demands for high quality
and efficiency in top-N recommender systems concurrently, so
it is better suitable for real-time applications. We conduct a
comprehensive set of experiments on various datasets from dif-
ferent real applications. The results show that SLIM produces
better recommendations than the state-of-the-art methods at a
very high speed. In addition, it achieves good performance in
using ratings to do top-N recommendation.

The rest of this paper is organized as follows. In Section II,
a brief review on related work is provided. In Section III,
definitions and notations are introduced. In Section IV, the
methods are described. In Section V, the materials used for
experiments are presented. In Section VI, the results are
presented. Finally in Section VII are the discussions and
conclusions.

II. RELATED WORK

Top-N recommender systems are used in E-commerce appli-
cations to recommend size-N ranked lists of items that users
may like the most, and they have been intensively studied
during the last few years. The methods for top-N recom-
mendation can be broadly classified into two categories. The
first category is the neighborhood-based collaborative filtering
methods [2]. For a certain user, user-based k-nearest-neighbor
(userkNN) collaborative filtering methods first identify a set
of similar users, and then recommend top-N items based on
what items those similar users have purchased. Similarly, item-
based k-nearest-neighbor (itemkNN) collaborative filtering
methods first identify a set of similar items for each of the
items that the user has purchased, and then recommend top-N
items based on those similar items. The user/item similarity is
calculated from user-item purchase/rating matrix in a collab-
orative filtering fashion with some similarity measures (e.g.,
Pearson correlation, cosine similarity) applied. One advantage
of the item-based methods is that they are efficient to generate
recommendations due to the fact that the item neighborhood
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is sparse. However, they suffer from low accuracy since there
is essentially no knowledge learned about item characteristics
so as to produce accurate top-N recommendations.

The second category is model-based methods, particularly
latent factor models as they have achieved the state-of-the-art
performance on large-scale recommendation tasks. The key
idea of latent factor models is to factorize the user-item matrix
into (low-rank) user factors and item factors that represent
user tastes and item characteristics in a common latent space,
respectively. The prediction for a user on an item can be
calculated as the dot product of the corresponding user factor
and item factor. There are various Matrix Factorization (MF)-
based methods proposed in recent years for building such
latent factor models. Cremonesi et al [3] proposed a simple
Pure Singular-Value-Decomposition-based (PureSVD) matrix
factorization method, which describes users and items by the
most principle singular vectors of the user-item matrix. Pan
et al [4] and Hu et al [5] proposed a Weighted Regularized
Matrix Factorization (WRMF) method formulated as a regu-
larized Least-Squares (LS) problem, in which a weighting
matrix is used to differentiate the contributions from observed
purchase/rating activities and unobserved ones. Rennie [6]
and Srebro [7] proposed a Max-Margin Matrix Factorization
(MMMF) method, which requires a low-norm factorization of
the user-item matrix and allows unbounded dimensionality for
the latent space. This is implemented by minimizing the trace-
norm of the reconstructed user-item matrix from the factors.
Sindhwani et al [8] proposed a Weighted Non-Negative Matrix
Factorization (WNNMF) method, in which they enforce non-
negativity on the user and item factors so as to lend “part-
based” interpretability to the model. Hofmann [9] applied
Probabilistic Latent Semantic Analysis (PLSA) technique for
collaborative filtering, which has been shown equivalent to
non-negative matrix factorization. PLSA introduces a latent
space such that the co-occurrence of users and items (i.e.,
a certain user has purchased a certain item) can be rendered
conditionally independent. Koren [10] proposed an intersect-
ing approach between neighborhood-based method and MF. In
his approach, item similarity is learned simultaneously with a
matrix factorization so as to take advantages of both methods.

Top-N recommendation has also been formulated as a
ranking problem. Rendle et al [11] proposed a Bayesian
Personalized Ranking (BPR) criterion, which is the maximum
posterior estimator from a Bayesian analysis and measures the
difference between the rankings of user-purchased items and
the rest items. BPR can be well adopted for item knn method
(BPRkNN) and MF methods (BPRMF) as a general objective
function.

III. DEFINITIONS AND NOTATIONS

In this paper, the symbols u and t will be used to denote
the users and items, respectively. Individual users and items
will be denoted using different subscripts (i.e., ui, tj). The
set of all users and items in the system will be denoted by U
(|U| = m) and T (|T | = n), respectively. The entire set of
user-item purchases/ratings will be represented by a user-item
purchase/rating matrix A of size m × n, in which the (i, j)

entry (denoted by aij) is 1 or a positive value if user ui has
ever purchased/rated item tj , otherwise the entry is marked as
0. The i-th row of A represents the purchase/rating history of
user ui on all items T , and this row is denoted by aT

i . The
j-th column of A represents the purchase/rating history of all
users U on item tj and this column is denoted by aj .

In this paper, all vectors (e.g., aT
i and aj) are represented

by bold lower-case letters and all matrices (e.g., A) are
represented by upper-case letters. Row vectors are represented
by having the transpose supscriptT, otherwise by default they
are column vectors. A predicted/approximated value is denoted
by having a ∼ head. We will use corresponding matrix/vector
notations instead of user/item purchase/rating profiles if no
ambiguity is raised.

IV. SPARSE LINEAR METHODS FOR Top-N
RECOMMENDATION

A. SLIM for Top-N Recommendation

In this paper, we propose a Sparse LInear Method (SLIM)
to do top-N recommendation. In the SLIM method, the recom-
mendation score on an un-purchased/-rated item tj of a user
ui is calculated as a sparse aggregation of items that have
been purchased/rated by ui, that is,

ãij = aT
i wj , (1)

where aij = 0 and wj is a sparse size-n column vector of
aggregation coefficients. Thus, the model utilized by SLIM can
be presented as

Ã = AW, (2)

where A is the binary user-item purchase matrix or the
user-item rating matrix, W is an n × n sparse matrix of
aggregation coefficients, whose j-th column corresponds to
wj as in Equation 1, and each row ãT

i of Ã (ãT
i = aT

i W )
represents the recommendation scores on all items for user
ui. Top-N recommendation for ui is done by sorting ui’s non-
purchased/-rated items based on their recommendation scores
in ãT

i in decreasing order and recommending the top-N items.

B. Learning W for SLIM

We view the purchase/rating activity of user ui on item tj in
A (i.e., aij) as the ground-truth item recommendation score.
Given a user-item purchase/rating matrix A of size m×n, we
learn the sparse n×n matrix W in Equation 2 as the minimizer
for the following regularized optimization problem:

minimize
W

1
2
‖A−AW‖2

F +
β

2
‖W‖2

F + λ‖W‖1

subject to W ≥ 0
diag(W ) = 0,

(3)

where ‖W‖1 =
∑n

i=1

∑n
j=1 |wij | is the entry-wise `1-norm

of W , and ‖ · ‖F is the matrix Frobenius norm. In Equa-
tion 3, AW is the estimated matrix of recommendation scores
(i.e., Ã) by the sparse linear model as in Equation 2. The
first term 1

2‖A − AW‖2
F (i.e., the residual sum of squares)

measures how well the linear model fits the training data, and
‖W‖2

F and ‖W‖2
1 are `F -norm and `1-norm regularization
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terms, respectively. The constants β and λ are regularization
parameters. The larger the parameters are, the more severe the
regularizations are. The non-negativity constraint is applied
on W such that the learned W represents positive relations
between items, if any. The constraint diag(W ) = 0 is also
applied so as to avoid trivial solutions (i.e., the optimal W is
an identical matrix such that an item always recommends itself
so as to minimize 1

2‖A−AW‖2
F ). In addition, the constraint

diag(W ) = 0 ensures that aij is not used to compute ãij .

1) `1-norm and `F -norm Regularizations for SLIM : In
order to learn a sparse W , we introduce the `1-norm of W
as a regularizer in Equation 3. It is well known that `1-norm
regularization introduces sparsity into the solutions [12].

Besides the `1-norm, we have the `F -norm of W as another
regularizer, which leads the optimization problem to an elastic
net problem [13]. The `F -norm measures model complexity
and prevents overfitting (as in ridge regression). Moreover,
`1-norm and `F -norm regularization together implicitly group
correlated items in the solutions [13].

2) Computing W: Since the columns of W are independent,
the optimization problem in Equation 3 can be decoupled into
a set of optimization problems of the form

minimize
wj

1
2
‖aj −Awj‖2

2 +
β

2
‖wj‖2

2 + λ‖wj‖1

subject to wj ≥ 0

wj,j = 0,

(4)

which allows each column of W to be solved independently.
In Equation 4, wj is the j-th column of W and aj is
the j-th column of A, ‖ · ‖2 is `2-norm of vectors, and
‖wj‖1 =

∑n
i=1 |wij | is the entry-wise `1-norm of vector wj .

Due to the column-wise independence property of W , learn-
ing W can be easily parallelized. The optimization problem
of Equation 4 can be solved using coordinate descent and soft
thresholding [14].

3) SLIM with Feature Selection: The estimation of wj

in Equation 4 can be considered as the solution to a regularized
regression problem in which the j-th column of A is the
dependent variable to be estimated as a function of the
remaining n − 1 columns of A (independent variables). This
view suggests that feature selection methods can potentially
be used to reduce the number of independent variables prior
to computing wj . The advantage of such feature selection
methods is that they reduce the number of columns in A,
which can substantially decrease the overall amount of time
required for SLIM learning.

Motivated by these observations, we extended the SLIM
method to incorporate feature selection. We will refer to
these methods as fsSLIM. Even though many feature selection
approaches can be used, in this paper we only investigated
one approach, inspired by the itemkNN top-N recommendation
algorithms. Specifically, since the goal is to learn a linear
model to estimate the j-th column of A (i.e., aj), then the
columns of A that are the most similar to aj can be used
as the selected features. As our experiments will later show,
using the cosine similarity and this feature selection approach,

leads to a method that has considerably lower computational
requirements with minimal quality degradation.

C. Efficient Top-N Recommendation from SLIM

The SLIM method in Equation 2 and the sparsity of W en-
able significantly faster top-N recommendation. In Equation 2,
aT

i is always very sparse (i.e., the user usually purchased/rated
only a small fraction of all items), and when W is also sparse,
the calculation of ãT

i can be very fast by exploiting W ’s
sparse structure (i.e., applying a “gather” operation along W
columns on its non-zero values in the rows corresponding to
non-zero values in aT

i ). Thus, the computational complexity to
do recommendations for user ui is O(nai

×nw + N log(N)),
where nai is the number of non-zero values in aT

i , and nw

is the average number of non-zero values in the rows of W .
The N log(N) term is for sorting the highest scoring N items,
which can be selected from the potentially nai×nw non-zeros
entries in ãT

i in linear time using linear selection.

D. SLIM vs Existing Linear Methods
Linear methods have already been used for top-N recom-

mendation. For example, the itemkNN method in [2] has a
linear model similar to that of SLIM. The model of itemkNN
is a knn item-item cosine similarity matrix S, that is, each
row sT

i has exactly k nonzero values representing the cosine
similarities between item tj and its k most similar neighbors.
The fundamental difference between itemkNN and SLIM’s
linear models is that the former is highly dependent on the
pre-specified item-item similarity measure used to identify
the neighbors, whereas the later generates W by solving
the optimization problem of Equation 3. In this way, W
can potentially encode rich and subtle relations across items
that may not be easily captured by conventional item-item
similarity metrics. This is validated by the experimental results
in Section VI that show the W substantially outperforms S.

Rendle et al [11] discussed an adaptive k-Nearest-Neighbor
method, which used the same model as in itemkNN in [2]
but adaptively learn the item-item similarity matrix. How-
ever, the item-item similarity matrix in [11] is fully dense,
symmetric and has negative values. W is different from
Rendle et al’s item-item similarity matrix in that, in addition
to its sparsity which leads to fast recommendation and low
requirement for storage, W is not necessarily symmetric due
to the optimization process and thus allows more flexibility
for recommendation.

Paterek [15] introduced a linear model for each item for
rating prediction, in which the rating of a user ui on an item tj
is calculated as the aggregation of the ratings of ui on all other
items. They learned the aggregation coefficients (equivalent to
W ) by solving an `2-norm regularized least squares problem
for each item. The learned coefficients are fully dense. The
advantage of SLIM over Paterek’s method is that `1-norm
regularization is incorporated during learning which enforces
W to be sparse, and thus, the most informative signals are
captured in W while noises are discarded. In addition, SLIM
learns W from all purchase/rating activities so as to better fuse
information, compared to Paterek’s method, which only uses
a certain set of purchase/rating activities.
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TABLE I: The Datasets Used in Evaluation
dataset #users #items #trns rsize csize density ratings

ccard 42,067 18,004 308,420 7.33 17.13 0.04% -
ctlg2 22,505 17,096 1,814,072 80.61 106.11 0.47% -
ctlg3 58,565 37,841 453,219 7.74 11.98 0.02% -
ecmrc 6,594 3,972 50,372 7.64 12.68 0.19% -
BX 3,586 7,602 84,981 23.70 11.18 0.31% 1-10
ML10M 69,878 10,677 10,000,054 143.11 936.60 1.34% 1-10
Netflix 39,884 8,478 1,256,115 31.49 148.16 0.37% 1-5
Yahoo 85,325 55,371 3,973,104 46.56 71.75 0.08% 1-5

Columns corresponding to #users, #items and #trns show the number of users,
number of items and number of transactions, respectively, in each dataset.
Columns corresponding to rsize and csize show the average number of trans-
actions for each user and on each item (i.e., row density and column density
of the user-item matrix), respectively, in each dataset. Column corresponding
to density shows the density of each dataset (i.e., density = #trns/(#users ×
#items)). Column corresponding to ratings shows the rating range of each
dataset with granularity 1.

E. Relations between SLIM and MF Methods

MF methods for top-N recommendation have a model

Ã = UV T, (5)

where U and V T are the user and item factors, respectively.
Comparing MF model in Equation 5 and the SLIM method
in Equation 2, we can see that SLIM’s model can be considered
as a special case of MF model (i.e., A is equivalent to U and
W is equivalent to V T)

U and V T in Equation 5 are in a latent space, whose dimen-
sionality is usually specified as a parameter. The “latent” space
becomes exactly the item space in Equation 2, and therefore,
in SLIM there is no need to learn user representation in the
“latent” space and thus the learning process is simplified. On
the other hand, U and V T are typically of low dimensionality,
and thus useful information may potentially get lost during the
low-rank approximation of A from U and V T. On the contrary,
in SLIM, since information on users are fully preserved in A
and the counterpart on items is optimized via the learning,
SLIM can potentially give better recommendations than MF
methods.

In addition, since both U and V T in Equation 5 are typically
dense, the computation of aT

i requires the calculation of each
ãij from its corresponding dense vectors in U and V T. This
results in a high computational complexity for MF methods
to do recommendations, that is, O(k2 × n) for each user,
where k is the number of latent factors, and n is the number
of items. The computational complexity can be potentially
reduced by utilizing the sparse matrix factorization algorithms
developed in [16], [17], [18]. However, none of these sparse
matrix factorization algorithms have been applied to solve top-
N recommendation problem due to their high computational
costs.

V. MATERIALS

A. Datasets

We evaluated the performance of SLIM methods on eight
different real datasets whose characteristics are shown in Ta-
ble I. These datasets can be broadly classified into two
categories.

The first category (containing ccard, ctlg2, ctlg3 and
ecmrc [2]) was derived from customer purchasing transactions.
Specifically, the ccard dataset corresponds to credit card pur-
chasing transactions of a major department store, n which each
card has at least 5 transactions. The ctlg2 and ctlg3 datasets
correspond to the catalog purchasing transactions of two major
mail-order catalog retailers. The ecmrc dataset corresponds
to web-based purchasing transactions of an e-commerce site.
These four datasets have only binary purchase information.

The second category (containing BX, ML10M, Netflix
and Yahoo) contains multi-value ratings. All the ratings are
converted to binary indications if needed. In particular, the
BX dataset is a subset from the Book-Crossing dataset1, in
which each user has rated at least 20 items and each item
has been rated by at least 5 users and at most 300 users.
The ML10M dataset corresponds to movie ratings and was
obtained from the MovieLens2 research projects. The Netflix
dataset is a subset extracted from the Netflix Prize dataset3

such that each user has rated 20 – 250 movies, and each movie
is rated by 20 – 50 users. Finally, the Yahoo dataset is a subset
extracted from Yahoo! Music user ratings of songs, provided
as part of the Yahoo! Research Alliance Webscope program4.
In Yahoo dataset, each user has rated 20 – 200 songs, and
each music has been rated by at least 10 users and at most
5000 users.

B. Evaluation Methodology & Metrics
We applied 5-time Leave-One-Out cross validation

(LOOCV) to evaluate the performance of SLIM methods. In
each run, each of the datasets is split into a training set and a
testing set by randomly selecting one of the non-zero entries
of each user and placing it into the testing set. The training set
is used to train a model, then for each user a size-N ranked
list of recommended items is generated by the model. The
evaluation is conducted by comparing the recommendation
list of each user and the item of that user in the testing set.
In the majority of the results reported in Section VI, N is
equal to 10. However, we also report some limited results for
different values of N .

The recommendation quality is measured by the Hit Rate
(HR) and the Average Reciprocal Hit-Rank (ARHR) [2]. HR
is defined as follows,

HR =
#hits

#users
, (6)

where #users is the total number of users, and #hits is the
number of users whose item in the testing set is recommended
(i.e., hit) in the size-N recommendation list. A second measure
for evaluation is ARHR, which is defined as follows:

ARHR =
1

#users

#hits∑
i=1

1
pi

, (7)

where if an item of a user is hit, p is the position of the item in
the ranked recommendation list. ARHR is a weighted version

1http://www.informatik.uni-freiburg.de/∼cziegler/BX/
2http://www.grouplens.org/node/12
3http://www.netflixprize.com/
4http://research.yahoo.com/Academic Relations
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of HR and it measures how strongly an item is recommended,
in which the weight is the reciprocal of the hit position in the
recommendation list.

For the experiments utilizing ratings, we evaluate the per-
formance of the methods by looking at how well they can
recommend the items that have a particular rating value. For
this purpose, we define the per-rating Hit Rate (rHR) and
cumulative Hit Rate (cHR). The rHR is calculated as the hit
rate on items that have a certain rating value. cHR is calculated
as the hit rate on items that have a rating value which is no
lower than a certain rating threshold.

Note that in the top-N recommendation literature, there exist
other metrics for evaluation. Such metrics include area under
the ROC curve (AUC), which measures relative positions of
true positives and false positives in an entire ranked list.
Variances of AUC can measure the positions in top part of a
ranked list. Another popular metric is recall. However, in top-
N recommendation scenario, we believe HR and ARHR are
the most direct and meaningful measures, since the users only
care if a short recommendation list has the items of interest or
not rather than a very long recommendation list. Due to this
we use HR and ARHR in our evaluation.

All the algorithms compared in Section VI are implemented
in C. All the experiments are done on a Linux cluster with 6-
core Intel Xeon X7542 “Westmere” processors at 2.66 GHz.

VI. EXPERIMENTAL RESULTS

In this section, we present the performance of SLIM methods
and compare them with other popular top-N recommendation
methods. We present the results from two sets of experiments.
In the first set of experiments, all the top-N recommendation
methods use binary user-item purchase information during
learning, and thus all the methods are appended by -b to
indicate binary data used (e.g., SLIM-b) if there is confusion. In
the second set of experiments, all the top-N recommendation
methods use user-item rating information during learning, and
correspondingly they are appended by -r if there is confusion.

We optimized all the C implementations of the algorithms
to make sure that any time difference in performance is due to
the algorithms themselves, and not due to the implementation.
For all the methods, we conducted an exhaustive grid search
to identify the best parameters to use. We only report the
performance corresponding to the parameters that lead to the
best results in this section.

A. SLIM Performance on Binary data

1) Comparison Algorithms: We compare the performance
of SLIM with another three categories of top-N recommen-
dation algorithms. The first category of algorithms is the
item/user neighborhood-based collaborative filtering methods
itemkNN, itemprob and userkNN. Methods itemkNN and
userkNN are as discussed in Section II and Section IV-E.
Method itemprob is similarity to itemkNN except that instead
of item-item cosine similarity, it uses modified item-item
transition probabilities. These methods are engineered with
various heuristics for better performance5.

5http://glaros.dtc.umn.edu/gkhome/suggest/overview

The second category of algorithms is the MF methods,
including PureSVD and WRMF as discussed in Section II.
Note that both PureSVD and WRMF use 0 values in the user-
item matrix during learning. PureSVD is demonstrated to
outperform other MF methods in top-N recommendation using
ratings [3], including the MF methods which treat 0s as missing
data. WRMF represents the state-of-the-art matrix factorization
methods for top-N recommendation using binary information.

The third category of algorithms is the methods which rely
on ranking/retrieval criteria, including BPRMF and BPRkNN as
discussed in Section II and Section IV-E. It is demonstrated
in [11] that BPRMF outperforms other methods in top-N recom-
mendation in terms of AUC measure using binary information.

2) Top-N Recommendation Performance: Table II shows
the overall performance of different top-N recommendation
algorithms. These results show that SLIM produces recommen-
dations that are consistently better (in terms of HR and ARHR)
than other methods over all the datasets except ML10M (SLIM
has HR 0.311 on ML10M, which is only worse than BPRkNN
with HR 0.327). In term of HR, SLIM is on average 19.67%,
12.91%, 22.41%, 50.80%, 13.42%, 14.32% and 12.95% better
than itemkNN, itemprob, userkNN, PureSVD, WRMF, BPRMF
and BPRkNN, respectively, over all the eight datasets. Similar
performance gains can also be observed with respect to
ARHR. Among the three MF-based models, WRMF and BPRMF
have similar performance, which is substantially better than
PureSVD on all datasets except ML10M and Netflix. BPRkNN
has better performance than MF methods on large datasets (i.e.,
ML10M, Netflix and Yahoo) but worse than MF methods on
small datasets.

In terms of recommendation efficiency, SLIM is comparable
to itemkNN and itemprob (i.e., the required times range in
seconds), but considerably faster than the other methods (i.e.,
the required times range in minutes). The somewhat worse
efficiency of SLIM compared to itemkNN is due to the fact that
the resulting best W matrix is denser than the best performing
item-item cosine similarity matrix from itemkNN. PureSVD,
WRMF and BPRMF have worse computational complexities (i.e.,
linear to the product of the number of items and the dimen-
sionality of the latent space), which is validated by their high
recommendation run time. BPRkNN produces a fully dense
item-item similarity matrix, which is responsible for its high
recommendation time.

In terms of the amount of time required to learn the
models, we see that the time required by itemkNN/itemprob
is substantially smaller than the rest of the methods. The
amount of time required by SLIM to learn its model, relative
to PureSVD, WRMF, BPRMF and BPRkNN, varies depending on
the datasets. However, even though SLIM is slower on some
datasets (e.g., ML10M and Yahoo), this situation can be easily
remediated by the feature-selection-based fsSLIM as will be
discussed later in Section VI-A3.

One thing that is surprising with the results shown in Ta-
ble II is that the MF-based methods are sometimes even worse
than the simple itemkNN, itemprob and userkNN in terms
of HR. For example, BPRMF performs worse for BX, ML10M,
Netflix and Yahoo. This may because that in the BPRMF
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TABLE II: Comparison of Top-N Recommendation Algorithms

method ccard ctlg2
params HR ARHR mt tt params HR ARHR mt tt

itemkNN 50 - 0.195 0.145 0.54(s) 1.34(s) 10 - 0.222 0.108 33.78(s) 1.19(s)
itemprob 50 0.2 0.226 0.154 0.97(s) 1.24(s) 10 0.5 0.222 0.105 47.86(s) 0.99(s)
userkNN 150 - 0.189 0.122 0.06(s) 14.84(s) 50 - 0.204 0.106 0.37(s) 48.45(s)
PureSVD 3500 10 0.101 0.058 42.89(m) 2.65(h) 1300 10 0.196 0.099 3.95(m) 18.46(m)
WRMF 250 15 0.230 0.150 4.01(h) 9.14(m) 300 10 0.235 0.114 20.42(h) 5.49(s)
BPRMF 350 0.3 0.238 0.157 1.29(h) 6.64(m) 400 0.1 0.249 0.123 9.72(h) 3.14(m)
BPRkNN 1e-4 0.01 0.208 0.145 2.38(m) 8.15(m) 0.001 0.001 0.224 0.104 1.28(h) 22.03(m)
SLIM 5 0.5 0.246 0.170 17.24(m) 13.57(s) 5 2.0 0.272 0.140 7.24(h) 26.98(s)
fsSLIM 100 0.5 0.243 0.168 4.97(m) 4.45(s) 100 1.0 0.282 0.149 10.92(m) 5.00(s)
fsSLIM 50 0.5 0.244 0.169 2.40(m) 3.34(s) 10 0.5 0.262 0.138 4.21(m) 2.01(s)

method ctlg3 ecmrc
params HR ARHR mt tt params HR ARHR mt tt

itemkNN 300 - 0.544 0.313 0.55(s) 6.66(s) 300 - 0.218 0.125 0.06(s) 0.54(s)
itemprob 400 0.3 0.558 0.322 0.87(s) 7.62(s) 30 0.2 0.245 0.138 0.09(s) 0.12(s)
userkNN 350 - 0.492 0.285 0.11(s) 19.18(s) 400 - 0.212 0.119 0.01(s) 0.78(s)
PureSVD 3000 10 0.373 0.210 1.11(h) 4.28(h) 1900 10 0.186 0.110 3.67(m) 3.22(m)
WRMF 420 20 0.543 0.308 14.42(h) 50.67(m) 270 15 0.242 0.133 3.22(h) 13.60(s)
BPRMF 300 0.5 0.541 0.283 1.49(h) 13.66(m) 350 0.1 0.249 0.128 4.00(m) 12.76(s)
BPRkNN 0.001 1e-4 0.542 0.304 6.20(m) 20.28(m) 1e-5 0.010 0.242 0.130 1.02(m) 13.53(s)
SLIM 3 0.5 0.579 0.347 1.02(h) 16.23(s) 5 0.5 0.255 0.149 11.10(s) 0.51(s)
fsSLIM 100 0.0 0.546 0.292 12.57(m) 9.62(s) 100 0.5 0.252 0.147 16.89(s) 0.32(s)
fsSLIM 400 0.5 0.570 0.339 14.27(m) 12.52(s) 30 0.5 0.252 0.147 5.41(s) 0.16(s)

method BX ML10M
params HR ARHR mt tt params HR ARHR mt tt

itemkNN 10 - 0.085 0.044 1.34(s) 0.08(s) 20 - 0.238 0.106 1.97(m) 8.93(s)
itemprob 30 0.3 0.103 0.050 2.11(s) 0.22(s) 20 0.5 0.237 0.106 1.88(m) 7.49(s)
userkNN 100 - 0.083 0.039 0.01(s) 1.49(s) 50 - 0.303 0.146 2.26(s) 34.42(m)
PureSVD 1500 10 0.072 0.037 1.91(m) 2.57(m) 170 10 0.294 0.139 1.68(m) 1.72(m)
WRMF 400 5 0.086 0.040 12.01(h) 29.77(s) 100 2 0.306 0.139 16.27(h) 1.59(m)
BPRMF 350 0.1 0.089 0.040 8.95(m) 12.44(s) 350 0.1 0.281 0.123 4.77(h) 5.20(m)
BPRkNN 1e-4 0.010 0.082 0.035 5.16(m) 42.23(s) 0.001 1e-4 0.327 0.156 15.78(h) 1.08(h)
SLIM 3 0.5 0.109 0.055 5.51(m) 1.39(s) 1 2.0 0.311 0.153 50.98(h) 41.59(s)
fsSLIM 100 0.5 0.109 0.053 36.26(s) 0.63(s) 100 0.5 0.311 0.152 37.12(m) 17.97(s)
fsSLIM 30 1.0 0.105 0.055 16.07(s) 0.18(s) 20 1.0 0.298 0.145 14.26(m) 8.87(s)

method Netflix Yahoo
params HR ARHR mt tt params HR ARHR mt tt

itemkNN 150 - 0.178 0.088 24.53(s) 13.17(s) 400 - 0.107 0.041 21.54(s) 2.25(m)
itemprob 10 0.5 0.177 0.083 30.36(s) 1.01(s) 350 0.5 0.107 0.041 34.23(s) 1.90(m)
userkNN 200 - 0.154 0.077 0.33(s) 1.04(m) 50 - 0.107 0.041 18.46(s) 3.26(m)
PureSVD 3500 10 0.182 0.092 29.86(m) 21.29(m) 170 10 0.074 0.027 53.05(s) 11.18(m)
WRMF 350 10 0.184 0.085 22.47(h) 2.63(m) 200 8 0.090 0.032 16.23(h) 50.05(m)
BPRMF 400 0.1 0.156 0.071 43.55(m) 3.56(m) 400 0.1 0.093 0.033 10.36(h) 47.28(m)
BPRkNN 0.01 0.01 0.188 0.092 10.91(m) 6.12(m) 0.01 0.001 0.104 0.038 2.60(h) 4.11(h)
SLIM 5 1.0 0.200 0.102 7.85(h) 9.84(s) 5 0.5 0.122 0.047 21.30(h) 5.69(m)
fsSLIM 100 0.5 0.202 0.104 6.43(m) 5.73(s) 100 0.5 0.124 0.048 1.39(m) 41.24(s)
fsSLIM 150 0.5 0.202 0.104 9.09(m) 7.47(s) 400 0.5 0.123 0.048 2.41(m) 1.72(m)

Columns corresponding to params present the parameters for the corresponding method. For methods itemkNN and userkNN, the
paramesters are number of neighbors, respectively. For method itemprob, the parameters are the number of neighbors and transition
parameter α. For method PureSVD, the parameters are the number of singular values and the number of iterations during SVD. For
method WRMF, the parameters are the dimension of the latent space and the weight on purchases. For method BPRMF, the parameters
are the dimension of the latent space and learning rate, respectively. For method BPRkNN, the parameters are the learning rate and
regularization parameter λ. For method SLIM, the parameters are `2-norm regularization parameter β and `1-norm regularization
parameter λ. For method fsSLIM, the parameters are the number of neighbors and `1-norm regularization parameter λ. Columns
corresponding to HR and ARHR present the hit rate and average reciprocal hit-rank, respectively. Columns corresponding to mt
and tt present the time used by model learning and recommendation, respectively. The mt/tt numbers with (s), (m) and (h) are time
used in seconds, minutes and hours, respectively. Bold numbers are the best performance in terms of HR for each dataset.

paper [11], the authors evaluated the entire AUC curve to
measure if the interested items are ranked higher than the
rest. However, a good AUC value does not necessarily lead
to good performance on top-N of the ranked list. In addition,
in the case of PureSVD, the best performance is achieved when
a rather larger number of singular values is used (e.g., ccard,
ctlg3, BX and Netflix).

3) fsSLIM Performance: Table II also presents the results
for the SLIM version that utilizes feature selection (rows
labeled as fsSLIM). In the first set of experiments we used

the item-item cosine similarity (as in itemkNN) and for each
column of A selected its 100 other most similar columns
and used the m × 100 matrix to estimate the coefficient
matrix in Equation 3. The results are shown in the first
fsSLIM row in Table II. In the second set of experiments
we selected the most similar columns of A based on item-
item cosine similarity or item-item probability similarity (as
in itemprob), whichever performs best, and corresponding
number of columns. The results of these experiments are
shown in the second fsSLIM row.
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There are three important observations that can be made
from the fsSLIM results. First, the performance of fsSLIM is
comparable to that of SLIM for nearly all the datasets. Second,
the amount of time required by fsSLIM to learn the model is
much smaller than that required by SLIM. Third, using fsSLIM
to estimate W , whose sparsity structure is constrained by
the itemkNN/itemprob neighbors, leads to significantly better
recommendation performance than itemkNN/itemprob itself.
This suggests that we can utilize feature selection to improve
the learning time without decreasing the performance.

4) Regularization Effects in SLIM : Figure 1 shows the
effects of `1-norm and `2-norm regularizations in terms of
recommendation time (which directly depends on how sparse
W is.) and HR on the dataset BX(similar results are observed
from all the other datasets). Figure 1 demonstrates that as
greater `1-norm regularization (i.e., larger λ in Equation 3)
is applied, lower recommendation time is achieved, indicating
that the learned W is sparser. Figure 1 also shows the
effects of `1-norm and `2-norm regularizations together for
recommendation quality. The best recommendation quality is
achieved when both of the regularization parameters β and λ
are non-zero. In addition, the recommendation quality changes
smoothly as the regularization parameters β and λ change.

5) SLIM for the Long-Tail Distribution: The long-tail effect,
which refers to the fact that a disproportionally large number
of purchases/ratings are condensed in a small number of items
(popular items), has been a concern for recommender systems.
Popular items tend to dominate the recommendations, making
it difficult to produce novel and diverse recommendations.

TABLE III: Performance on the Long Tail of ML10M

method ML10M long tail
params HR ARHR mt tt

itemkNN 10 - 0.130 0.052 1.59(m) 4.62(s)
itemprob 10 0.5 0.126 0.051 1.65(m) 4.04(s)
userkNN 50 - 0.162 0.069 2.10(s) 20.43(m)
PureSVD 350 70 0.224 0.096 2.98(m) 10.45(m)
WRMF 100 2 0.232 0.097 23.15(h) 1.74(m)
BPRMF 300 0.01 0.240 0.102 22.63(h) 8.56(m)
BPRkNN 0.001 1e-4 0.239 0.098 15.72(h) 36.42(m)
SLIM 1 5.0 0.256 0.106 57.55(h) 47.69(s)
fsSLIM 10 5.0 0.255 0.105 25.37(m) 9.57(s)
fsSLIM 100 4.0 0.255 0.105 58.32(m) 19.32(s)

1% most popular items are eliminated from ML10M. Params have same
meanings as those in Table II.

Since while constructing the BX, Netflix and Yahoo
datasets, we eliminated the items that are purchased/rated
by many users, these datasets do not suffer from long-tail
effects. The results presented in Table II as they relate to these
datasets demonstrate that SLIM is superior to other methods
in producing non-trivial top-N recommendations when no
significantly popular items are present.

The plot in Figure 2 demonstrates the long-tail distribution
of the items in ML10M dataset, in which only 1% of the items
contribute 20% of the ratings. We eliminate these 1% most
popular items and use the remaining ratings for all the top-N
methods during learning. The results are presented in Table III.
These results show that the performance of all methods is
notably worse than the corresponding performance in Table II
in which the “short head” (i.e., corresponding to the most
popular items) is present. However, SLIM outperforms the
rest methods. In particular, SLIM outperforms BPRkNN even
though BPRkNN does better than SLIM as in Table II when
the popular items are presented in ML10M. This conforms to
the observations based on BX, Netflix and Yahoo results, that
SLIM is resistant to the long-tail effects.

6) Recommendation for Different Top-N: Figure 3 shows
the performance of the methods for different values of N
(i.e., 5, 10, 15, 20 and 25) for BX, ML10M, Netflix and Yahoo
datasets. Table IV presents the performance difference between
SLIM and the best of the other methods in terms of HR on the
four datasets. For example, 0.012 in Table IV for BX when
N = 5 is calculated as the difference between SLIM’s HR and
the best HR from all the other methods on BX when top-5
items are recommended. The performance difference between
SLIM and the best of the other methods are higher for smaller
values of N across the datasets BX, ML10M and Netflix.
Figure 3 and Table IV demonstrate that SLIM produces better
than the other methods when smaller number of items are
recommended. This indicates that SLIM tends to rank most
relevant items higher than the other methods.

7) Sparsity Pattern of W : We use ML10M as an example
to illustrate what SLIM is learning. The item-item similarity
matrix S constructed from itemkNN and the W from SLIM
are shown in Figure 4. Note that in Figure 4, the S matrix
is obtained using 100 nearest neighbors. The density of the
matrices produced by itemkNN and SLIM is 0.936% and
0.935%, respectively. However, their sparsity patterns are
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TABLE IV: Performance Difference on Top-N Recommendations

dataset N
5 10 15 20 25

BX 0.012 0.006 0.000 0.000 0.001
ML10M 0.000 -0.016 -0.013 -0.018 -0.021
Netflix 0.013 0.012 0.008 0.005 0.003
Yahoo 0.009 0.015 0.015 0.016 0.017

Columns corresponding to N shows the performance (in
terms of HR) difference between SLIM and the best of the
rest methods on corresponding top-N recommendatons.

different. First, the S matrix has non-zero item-item similarity
values that are clustered towards the diagonal, while W has
non-zero values that are more evenly distributed. Second,
during recommendation, on average 53.60 non-zero values in
S contribute to the recommendation score calculation on one
item for one user, whereas in case of W , on average 14.79
non-zero values make contributions, which is 1/3 as that in S.

W recovers 31.8% of the non-zero entries in S (those entries
have larger values than average) and it also discovers new
non-zero entries that are not in S. The newly discovered item-
item similarities contribute to 37.1% of the hits from W . This

(a) S from itemkNN (b) W from SLIM

Fig. 4: Sparsity Patterns for ML10M (dark for non-zeros)

suggests that W , even though it is also very sparse, recovers
some subtle relations that are not captured by item-item cosine
similarity measure, which brings performance improvement.
In SLIM, item tk that are co-purchased with item tj also
contributes to the similarity between item tj and another item
ti, even tk has never been co-purchased with ti. Furthermore,
treating missing values as 0s helps to generalize. Including all
missing values as 0s in wj vector in Equation 4 help smooth
out item similarities and help incorporate the impacts from
dissimilar/un-co-purchased items. The above can be shown
theoretically by the coordinate descent updates (proof omitted
here).

8) Matrix Reconstruction: We compare SLIM with MF
methods by looking at how it reconstructs the user/item
purchase matrix. We use BPRMF as an example of MF methods
since it has the typical properties that most of the state-of-the-
art MF methods have. We focused on ML10M, whose matrix A
has a density of 1.3%. The reconstructed matrix ÃSLIM = AW
from SLIM has a density 25.1%, whose non-zero values have
a mean of 0.0593. For those 1.3% non-zero entries in A, ÃSLIM

recovered 99.1% of them and their mean value is 0.4489 (i.e.,
7.57 times of the non-zero mean). The reconstructed matrix
ÃBPRMF = UV T is fully dense, with 13.1% of its values greater
than 0 with mean of 1.8636, and 86.9% of its values less than
0 with a mean of -2.4718. For those 1.3% non-zero entries in
A, ÃBPRMF has 97.3% of them as positive values with a mean of
4.7623 (i.e., 2.56 times of positive mean). This suggests that
SLIM recovers A better than BPRMF since SLIM recovers more
non-zero entries with relatively much larger values.

B. SLIM Performance on Ratings

1) Comparison Algorithms: We compare the performance
of SLIM with PureSVD, WRMF and BPRkNN. In SLIM, the W
matrix is learned by using the user-item rating matrix A as
in Equation 2. PureSVD also uses the user-item rating matrix
for the SVD calculation. In WRMF, the ratings are used as
weights following the approach suggested in [5]. We modified
BPRkNN such that in addition to raking rated items higher than
non-rated items, they also rank high-rated items higher than
low-rated items. We will use the suffix -r after each method
to explicitly denote that a method utilizes rating information
during the model construction. Similarly, we will use the suffix
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-b in this section to denote that a method utilizes binary
information as in Section VI-A for comparison purpose.

2) Top-N Recommendation Performance on Ratings: We
compare SLIM-r with PureSVD-r, WRMF-r and BPRkNN-r on
the BX, ML10M, Netflix and Yahoo datasets for which rating
information is available. In addition, we also evaluated SLIM-b,
PureSVD-b, WRMF-b and BPRkNN-b on the four datasets, for
which the models are still learned from binary user-item
purchase matrix but the recommendations are evaluated based
on ratings.

Figure 5 presents the results of these experiments. The first
column of figures show the rating distribution of the four
datasets. The second column of figures show the per-rating
hit rates (rHR) for the four datasets. Finally, the third column
of figures show the cumulative hit rates (cHR) for the four
datasets. In Figure 5, the binary top-N models correspond to
the best performing models of each method as in Table II. The
results from top-N models using ratings are selected based on
the cHR performance on rating 6, 6, 3 and 3 for the datasets,
respectively.

The results in Figure 5 show that all the -r methods tend
to produce higher hit rates on items with higher ratings.
However, the per-rating hit rates of the -b methods have
smaller dynamics across different ratings. This is because
during learning, high-rated items and low-rated items are not
differentiated in the -b methods. In addition, the -r methods
outperform -b methods in terms of rHR on high-rated items.
In particular, -r methods consistently outperform -b methods
on items with ratings above the average across all the datasets.

Figure 5 also shows that the SLIM-r consistently outper-
forms the other methods in terms of both rHR and cHR
on items with higher ratings over all the four datasets. In
particular, it outperforms PureSVD-r in terms of cHR, which
is demonstrated in [3] to be the best performing methods
for top-N recommendation using ratings. This indicates that
incorporating rating information during learning allows the
SLIM methods to identify more highly-rated items.

VII. DISCUSSION & CONCLUSIONS

A. Observed Data vs Missing Data

In the user-item purchase/rating matrix A, the non-zero en-
tries represent purchase/rating activities. However, the entries
with “0” value can be ambiguous. They may either represent
that the users will never purchase the items, the users may
purchase the items but have not done so, or we do not know
if the users have purchased the items or not or if they will.
This is the typical “missing data” setting and it has been well
studied in recommender systems [4], [8].

In SLIM, we treated all missing data in aj and A in Equa-
tion 4 as true negative(i.e., the users will never purchase
the items). Differentiation of observed data and missing data
in Equation 4 is under development.

B. Conclusions

In this paper, we proposed a sparse linear method for top-
N recommendation, which is able to generate high-quality

top-N recommendations fast. SLIM employs a sparse linear
model in which the recommendation score for a new item
can be calculated as an aggregation of other items. A sparse
aggregation coefficient matrix W is learned for SLIM to make
the aggregation very fast. W is learned by solving an `1-
norm and `2-norm regularized optimization problem such that
sparsity is introduced into W .

We conducted a comprehensive set of experiments and com-
pared SLIM with other state-of-the-art top-N recommendation
algorithms. The results showed that SLIM achieves predic-
tion quality better that the state-of-the-art MF-based methods.
Moreover, SLIM generates recommendations very fast. The
experimental results also demonstrated the good properties of
SLIM compared to other methods. Such properties include that
SLIM is able to have significant speedup if feature selection
is applied prior to learning. SLIM is also resistant to long-tail
effects in top-N recommendation problems. In addition, when
trained using ratings, SLIM tends to produce recommendations
that are also potentially highly rated. Due to these properties,
SLIM is very suitable for real-time top-N recommendation
tasks.
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