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ABSTRACT
The increasing amount of side information associated with
the items in E-commerce applications has provided a very
rich source of information that, once properly exploited and
incorporated, can significantly improve the performance of
the conventional recommender systems. This paper focuses
on developing effective algorithms that utilize item side in-
formation for top-N recommender systems. A set of sparse
linear methods with side information (SSLIM) is proposed,
which involve a regularized optimization process to learn a
sparse aggregation coefficient matrix based on both user-
item purchase profiles and item side information. This ag-
gregation coefficient matrix is used within an item-based rec-
ommendation framework to generate recommendations for
the users. Our experimental results demonstrate that SSLIM
outperforms other methods in effectively utilizing side infor-
mation and achieving performance improvement.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; J.7 [Computer
Applications]: Computers in other systems—Consumer
products

Keywords
Recommender system, Sparse Linear Methods, Side infor-
mation

1. INTRODUCTION
Top-N recommender systems have been widely used in E-

commerce applications to recommend ranked lists of items
so as to help the users in identifying the items that best fit
their personal tastes. Over the years, various algorithms for
top-N recommendation have been developed [12]. The con-
ventional top-N recommendation algorithms primarily fo-
cus on utilizing user-item purchase profiles to generate rec-
ommendations. Such algorithms can be categorized into
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two classes: collaborative filtering methods and model-based
methods. Collaborative filtering methods typically build
neighborhood for each user/item by considering the similar-
ities of the purchase patterns among users/items from their
profiles, and then recommend new items from the neigh-
borhood. Model-based methods learn to explain the user-
item purchase patterns using a specific model. For instance,
the most popular matrix factorization (MF) methods present
users and items in a common latent space such that the user-
item purchase patterns can be explained by the user-item
similarities in the space. Recently, a sparse linear method
(SLIM) [10] has been developed that leverages the advan-
tages of the above two classes of methods and achieves both
better prediction accuracy and run-time performance than
the state-of-the-art methods.

With the increased availability of additional information
associated with the items (e.g., product reviews, movie plots,
etc), referred to as side information, there is a greater in-
terest in taking advantage of such information to improve
the quality of conventional top-N recommender systems. As
a result, a number of approaches have been developed from
Machine Learning (ML) and Information Retrieval (IR) com-
munities for incorporating side information. Such approaches
include hybrid methods [5], matrix/tensor factorization [14,
8], and other regression methods [1].

In this paper, we propose a set of Sparse Linear Methods
that utilize the item Side information (SSLIM) for top-N
recommendation. These methods include collective SLIM

(cSLIM), relaxed collective SLIM (rcSLIM), side information
induced SLIM (fSLIM) and side information induced double
SLIM (f2SLIM). The key idea behind these methods is to
learn linear models that are constrained and/or informed
by the relations between the item side information and the
user-item purchase profiles so as to achieve better recom-
mendation performance. We conduct a comprehensive set
of experiments on various datasets from different real ap-
plications. The results show that SSLIM produces better
recommendations than the state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2,
a brief review on related work is presented. In Section 3,
the definitions and notations are provided. In Section 4 and
Section 5, the methods are described. In Section 6, the ma-
terials used for experiments are presented. In Section 7, the
results are presented. Finally in Section 8 are the discussions
and conclusions.

2. RELATED WORK



Various methods have been developed to incorporate side
information in recommender systems. Most of these meth-
ods have been developed in the context of the rating predic-
tion problem, whereas the top-N recommendation problem
has received less attention. In the rest of this section we
review some of the best performing schemes for both the
rating prediction and top-N recommendation problems.

The first category of these methods is based on latent fac-
tor models. In [14], Singh et al proposed the collective ma-
trix factorization method for both rating prediction and top-
N recommendation, which collectively factorizes user-item
purchase profile matrix and item-feature content matrix into
a common latent space such that the two types of informa-
tion are leveraged via common the item factors. Agarwal
et al [1] proposed regression-based latent factor models for
rating prediction, which use features for factor estimation.
In their method, the user and item latent factors are es-
timated through independent regression on user and item
features, and the recommendation is calculated from a mul-
tiplicative function on user and item factors. Yang et al [16]
developed a joint friendship and interest propagation model
for top-N recommendation, in which the user-item interest
network and the user-user friendship network (side infor-
mation on users) are jointly modeled through latent user
and item factors. User factors are shared by the interest
network approximation component and the friendship net-
work approximation component so as to enable information
propagation. They demonstrated the their model is a gener-
alization of Singh et al [14], Koren [9] and Agarwal et al [1].

Methods using tensor factorization (TF) have also gained
popularity. Karatzoglou et al [8] considered the user-item-
feature relation as a tensor, and they proposed to use regu-
larized TF to model the relations between the three sets of
entities for rating prediction. TF can be considered as a gen-
eralization of MF, in which the relations among all the modes
(i.e., users, items and features) are jointly learned. Rendle
et al [11] also treated user-item-feature as a tensor, and they
factorized all pairwise interactions in the tensor (i.e, items
vs users, items vs context features, users vs context features)
rather than the entire tensor for rating prediction.

Another category of algorithms that utilize side infor-
mation is based on networks. Gunawardana et al [6] pro-
posed unified Boltzmann machines for top-N prediction, in
which user-item profile information and side information are
treated as homogeneous features, and interaction weights be-
tween such features and user actions are learned in a coher-
ent manner so as to reflect how well such features can predict
user actions. Campos et al [3] combined content-based and
collaborative-filtering based recommendations with Bayesian
networks, which are composed of item nodes, user nodes and
item feature nodes. During predictions, content information
is propagated from purchased items to non-purchased items
via feature nodes, and purchase information is propagated
from other users to the user of concern via item nodes. Then
the two parts are combined to make recommendations.

3. DEFINITIONS AND NOTATIONS
In this paper, the symbols u, t, and f (|f | = l) will be used

to denote the users, items and item side information vectors,
respectively. Individual users and items will be denoted us-
ing different subscripts (i.e., ui, tj). The side information
vector for item tj will be denoted by fj . The size of user set
and item set are denoted by m and n, respectively.

The user-item purchase profile is represented by a binary
m×n matrix M , in which the (i, j) entry (denoted by mi,j)
is 1 if user ui has ever purchased item tj , otherwise it is
marked as 0. The i-th row of M , denoted by mT

i , represents
the purchase profile of user ui on all items. The j-th column
of M , denoted by mj , represents the purchase profile of
item tj from all users. The side information on all items is
represented by an l × n matrix F . The j-th column of F
represents the side information vector of item tj (i.e., fj).

All vectors (e.g., mT
i and fj) are represented by bold lower-

case letters and all matrices (e.g., M and F ) are represented
by upper-case letters. Row vectors are represented by having
the transpose supscriptT, otherwise by default they are col-
umn vectors. Approximation relation is denoted using∼ and
approximation value is denoted by heading a ∼ head. The
matrix/vector notations are used instead of user/item/side
information if no ambiguity is raised.

4. SLIM: SPARSE LINEAR METHODS
In this paper, we focus on incorporating item side informa-

tion within the Sparse LInear Method (SLIM) that we pro-
posed previously [10]. In SLIM, the recommendation score
on an urn-purchased item tj of a user ui (denoted by m̃ij)
is calculated as a sparse aggregation of the items that have
been purchased by ui, that is,

m̃ij = mT
i sj , (1)

where mij = 0 and sj is a size-n sparse vector of aggregation
coefficients. Thus, the model can be presented as

M ∼MS, (2)

where S is an n×n sparse matrix of aggregation coefficients,
whose j-th column is sj as in Equation 1, and each row m̃T

i of
M̃ = MS represents the recommendation scores on all items
for user ui. The top-N recommendations for ui are obtained
by sorting ui’s non-purchased items based on their scores in
m̃T
i in decreasing order and recommending the top-N items.
The SLIM method views the purchase activity of user ui

on item tj in M (i.e., mij) as the ground-truth item rec-
ommendation score. It learns the n × n sparse matrix S
in Equation 2 as the minimizer for the following regularized
optimization problem:

minimize
S

1

2
‖M −MS‖2F +

β

2
‖S‖2F + λ‖S‖1

subject to S ≥ 0

diag(S) = 0,

(3)

where ‖S‖1 =
∑n
i=1

∑n
j=1 |sij | is the entry-wise `1-norm of

S, and ‖ · ‖F is the matrix Frobenius norm. In Equation 3,
MS is the estimated matrix of recommendation scores (i.e.,

M̃) by the sparse linear method as in Equation 2. The non-
negativity constraint is applied on S such that the learned
S corresponds to positive aggregations over items. The con-
straint diag(S) = 0 is also applied so as to avoid trivial
solutions (i.e., the optimal S is an identity matrix such that
an item always recommends itself). In addition, the con-
straint diag(S) = 0 ensures that mij is not used to compute
m̃ij . In order to learn a sparse S, SLIM introduces the `1-
norm of S as a regularizer in Equation 3. It is well known
that `1-norm regularization introduces sparsity into the so-
lutions [15]. The matrix S learned by SLIM is referred to



as SLIM’s aggregation coefficient matrix. Extensive experi-
ments in [10] have shown that SLIM outperforms the state-
of-the-art top-N recommendation methods.

5. SLIM WITH SIDE INFORMATION
SLIM provides a general framework in which only the ag-

gregation coefficient matrix S is needed for efficient top-N
recommendations, and this matrix is learned from the user-
item purchase profiles. In this section, we present four differ-
ent extensions of SLIM that are designed to incorporate side
information about the items in order to further improve the
qualify of the recommendations.

5.1 Collective SLIM
The first approach assumes that there exist correlations

between users’ co-purchase behaviors on two items and the
similarity of the two items’ intrinsic properties encoded in
their side information. In order to enforce such correlations,
this approach imposes the additional requirement that both
the user-item purchase profile matrix M and the item side
information matrix F should be reproduced by the same
sparse linear aggregation. That is, in addition to satisfying
M ∼MS, the coefficient matrix S should also satisfy

F ∼ FS. (4)

This is achieved by learning the aggregation coefficient ma-
trix S as the minimizer to the following optimization prob-
lem:

minimize
S

1

2
‖M −MS‖2F +

α

2
‖F − FS‖2F

+
β

2
‖S‖2F + λ‖S‖1

subject to S ≥ 0,

diag(S) = 0,

(5)

where ‖F − FS‖2F measures how well the aggregation coeffi-
cient matrix S fits the side information. The parameter α
is used to control the relative importance of the user-item
purchase information M and the item side information F
when they are used to learn S. Note that in this method,
the side information is actually used to regularize the orig-
inal SLIM method (i.e., via adding the regularization term
α
2
‖F − FS‖2F into Equation 3). The recommendations are

generated in exactly the same way as in SLIM. That is, the
recommendation score for user ui on item tj is calculated as
m̃ij = mT

i sj . Since the matrix S is learned from both M
and F collectively by using F to regularize the original SLIM
method, this approach is referred to as collective SLIM and
denoted by cSLIM.

The solution to the optimization problem in Equation 5 is
identical to the solution of an optimization problem in the
same form as in Equation 3 with M in Equation 3 replaced
by M ′ = [M,

√
αF ]T.

5.2 Relaxed cSLIM
The second approach also tries to reproduce the item side

information using a sparse linear method as in cSLIM, but it
uses an alternative approach for achieving this. Specifically,
it uses an aggregation coefficient matrix Q to reproduce F
as

F ∼ FQ, (6)

where Q is not necessarily identical to S as in Equation 2.
Thus, this method is a relaxation from cSLIM. However, the
two aggregation coefficient matrices S and Q are tied by
requiring that Q should not be significantly different from S
(i.e., S ∼ Q). The matrix S and the matrix Q in Equation 6
are learned as the minimizers of the following optimization
problem:

minimize
S,Q

1

2
‖M −MS‖2F +

α

2
‖F − FQ‖2F

+
β1
2
‖S −Q‖2F +

β2
2

(‖S‖2F + ‖Q‖2F )

+λ(‖S‖1 + ‖Q‖1)

subject to S ≥ 0, Q ≥ 0,

diag(S) = 0, diag(Q) = 0,

(7)

where the parameter β1 controls how much S and Q are al-
lowed to be different from each other. Similar to cSLIM, this
method regularizes the original SLIM using item side infor-
mation by adding the two regularization terms α

2
‖F −FQ‖2F

and β1
2
‖S −Q‖2F and the recommendations are generated in

the same way as in SLIM. Since this method is a relaxation
from cSLIM, it is refereed to as relaxed collective SLIM and
denoted by rcSLIM.

The optimization problem in Equation 7 can be solved
via an approach alternating on solving S and Q. In each
iteration, one variable is fixed and the problem becomes a
regularized optimization problem with respect to the other
variable, and it can be solved using a similar approach of
stacking matrices as in Section 5.1. The solution of cSLIM is
used as the initial value of S.

5.3 Side Information Induced SLIM
An alternative way to learn the aggregation coefficient

matrix S of SLIM is to represent S as a function in the item
feature space and thus it captures the feature-based relations
of the items. One option of achieving this is to use the item-
item similarity matrix calculated as FFT, that is, the ag-
gregation coefficient from one item to another is calculated
as the dot-product of their feature vectors (i.e., item-item
feature similarity). However, in this way, the aggregation
coefficient matrix is not customized to the user-item pur-
chase profiles M at all, and thus a SLIM with such aggrega-
tion coefficient matrix can fit M very poorly. Another way
is to learn a weighting matrix W such that the aggregation
coefficient value sij can be represented as a linear combina-
tion of item ti’s feature fi weighted by item tj ’s personalized
weighting vector wj over individual item features, that is,
sij = fT

i wj and wj is W ’s j-th column. In this way, the
coefficient matrix S can be represented as a weighted linear
combination of the item features F using W , that is,

S = FTW. (8)

Such weighting matrix W can be learned as the minimizer
of the following optimization problem:

minimize
W

1

2
‖M −M(FTW −D)‖2F

+
β

2
‖W‖2F + λ‖FTW‖1

subject to W ≥ 0

D = diag(diag(FTW )),

(9)



where D = diag(diag(FTW )) is a diagonal matrix with the
corresponding diagonal values from FTW . D is subtracted
from FTW so as to ensure that mij is not used to compute
m̃ij , and this is equivalent to the constraint diag(S) = 0
in Equation 3. In this method, the recommendation score
for user ui on item tj is calculated as m̃ij = mT

i (FTwj−dj),
where wj and dj is the j-th column of W and D, respec-
tively. Since this method explicitly specifies the aggregation
coefficient matrix S as a function of the item side informa-
tion F , it is referred to as side information induced SLIM

and denoted by fSLIM.
The optimal solution to the optimization problem in Equa-

tion 9 is W ∗ = [w1,w2, · · · ,wj , · · · ,wn], where wj is the
optimal solution to the following problem:

minimize
wj

1

2
‖mj −MFT

−jwj‖2F +
β

2
‖wj‖2F + λ‖cwj‖1

subject to wj ≥ 0,

where cp =
∑n
k=1 fpk, and F−j is a matrix with F ’s j-th

column set to 0.

5.4 Side Information Induced Double SLIM
SLIM and fSLIM have their own advantages. SLIM learns

the aggregation coefficient matrix S purely from purchase
profiles such that it better fits the user-item purchase infor-
mation. fSLIM forces the aggregation coefficient matrix S to
be expressed in the item feature space and therefore it cap-
tures useful information from the item features. SLIM and
fSLIM can be coupled within one method so as to leverage
both their advantages and better learn from purchase pro-
files and side information concurrently. One way to combine
SLIM and fSLIM is to have the user-item purchase profile M
reproduced by both SLIM and fSLIM as

M ∼MS +M(FTW −D), (10)

where the S and W matrices can be learned as the minimiz-
ers of the following optimization problem:

minimize
S,W

1

2
‖M −MS −M(FTW −D)‖2F

+
β

2
(‖S‖2F + ‖W‖2F ) + λ(‖S‖1 + ‖FTW‖1)

subject to S ≥ 0,W ≥ 0,

diag(S) = 0, D = diag(diag(FTW )).

(11)

In this method, the recommendation score for user ui on
item tj is calculated as m̃ij = mT

i sj+mT
i (FTwj−dj), where

wj and dj is the j-th column of W and D, respectively.
This method is a combination of SLIM and fSLIM and thus
it is refereed as side information reduced double SLIM and
denoted by f2SLIM.

That the optimal solution of W in the problem in Equa-
tion 11 is identical to the first l rows of the optimal solution
W ′ to the problem in Equation 9 with F replaced by [F, I]T

where I is an n×n identity matrix, andD′ = diag((F ′)TW ′),
whereas the optimal S is the last n rows of W ′.

6. EXPERIMENTAL METHODOLOGY

6.1 Datasets
We evaluated the performance of different methods on the

following real datasets: ML100K, NF, CrossRef, Lib, BBY, and
Yelp, whose characteristics are summarized in Table 1.

ML100K The ML100K dataset corresponds to movie rat-
ings and was obtained from the MovieLens research project.
The movie plots were fetched from the IMDb database and
the words that appear in at least 5 plots are used as the
movie side information.

NF The NF dataset is a subset extracted from the Netflix
Prize dataset. The item side information was generated as
in the ML100K dataset. Only the movies hat were rated by
10-30 users were selected.

CrossRef The CrossRef dataset was obtained from cross-
ref.org, and contains scientific articles and lists of article ci-
tations. All the articles (i.e., references) that have DOI links
and are cited by at least 50 other articles were first selected.
Then the articles which cite more than 3 of such references
were selected. In this way, an article-reference dataset is
constructed, in which the articles (the references) are anal-
ogous to the users (the items). The words in the reference
titles are used as side information. The top-N recommenda-
tion on CrossRef dataset becomes a task to recommend a
reference for a certain article.

Lib The Lib dataset was obtained from the University of
Minnesota libraries, and contains the library users and their
viewed articles. From the entire library records, the users
who viewed at least 5 different articles and the articles that
were viewed by at least 10 users were collectively selected
to construct an user-article matrix. The words in the article
titles are used as the article side information. The top-N
recommendation on Lib is to recommend an article to a
user.

BBY The BBY dataset is a subset of the BestBuy user-
product rating and review dataset from BestBuy website
(https://developer.bestbuy.com/documentation/archives). The
products that were reviewed by at least 5 users and the
users who reviewed at least 2 such products were collectively
selected so as to construct the dataset. The side information
for each item was the text of all the reviews of that item.

Yelp The Yelp dataset is a subset of the academic version
of Yelp user-business rating and review dataset downloaded
from Yelp (http://www.yelp.com/academic dataset). The users
who reviewed at least 3 businesses and the corresponding
businesses were selected to construct the dataset. The side
information for each item was constructed from the reviews
in a way similar to the BBY dataset.

For the original rating datasets (i.e., ML100K, NF, BBY,
Yelp), the multivariate rating values were converted to 1’s.

6.2 Evaluation Methodology & Metrics
We applied 5-time Leave-One-Out cross validation to eval-

uate the performance of different methods. In each run, each
of the datasets is split into a training set and a testing set
by randomly selecting one of the non-zero entries of each
user and placing it into the testing set. The evaluation is
conducted by comparing the size-N (by default N = 10)
recommendation list for each user and the item of that user
in the testing set.

The recommendation quality is measured by the Hit Rate
(ZR) and the Average Reciprocal Hit-Rank (ARHR) [4]. ZR
is defined as follows,

HR =
#hits

#users
, (12)

where #users is the total number of users, and #hits is
the number of users whose item in the testing set is rec-
ommended (i.e., hit) in the size-N recommendation list. A



Table 1: The Datasets Used in Evaluation

dataset
purchase information side information

#users #items #nnzs rsize csize density desc #ftr #nnz srsize scsize sdensity

ML100K 943 1,682 100,000 106.0 59.5 6.30% plots 2,327 46,915 27.9 20.2 1.20%
NF 3,086 6,909 128,134 41.5 18.6 0.60% plots 5,941 200,148 29.0 33.7 0.49%
CrossRef 84,260 23,458 466,068 5.5 19.9 0.02% titles 5,677 149,839 6.4 26.4 0.11%
Lib 13,843 12,123 103,428 7.47 8.53 0.06% titles 9,991 86,065 7.1 8.6 0.07%
BBY 127,285 7,330 162,451 1.3 22.2 0.02% reviews 9,686 1,912,444 260.9 197.4 2.7%
Yelp 13,574 6,896 89,608 6.6 13.0 0.10% reviews 10,305 330,865 48.0 32.1 0.47%

Columns corresponding to purchase information and side information show the dataset statistics for historical profile matrix M and side information matrix F , re-
spectively. Under purchase information, column corresponding to #users, #items and #nnzs show the number of users, items and non-zero values in each dataset,
respectively. Column corresponding to rsize, csize and density shows the average row density, the average column density and the matrix density, respectively. Under
side information, column corresponding to desc shows the side information types. Column corresponding to #ftr and #nnz show the dimensionality of side information
and the number of non-zero values in the side information, respectively. Column corresponding to srsize, scsize and sdensity show the average row density, the average
column density and the density of the side information matrix, respectively.

second measure for evaluation is ARHR, which is defined as
follows:

ARHR =
1

#users

#hits∑
i=1

1

pi
, (13)

where if an item of a user is hit, p is the position of the item
in the ranked recommendation list. ARHR is a weighted
version of HR and it measures how strongly an item is rec-
ommended, in which the weight is the reciprocal of the hit
position in the recommendation list.

6.3 Side Information Representation
Besides the learning capability of the SSLIM methods, the

representation of the side information can impact the overall
performance. Since the side information in our datasets is
text (e.g., movie plots, product reviews, etc), we investigated
different text representations. In all of these schemes, the
text of the side information was preprocessed to eliminate
stop words and each word was converted to its stem1.

Binary Representation (Fb) In this scheme, the text
of the side information is represented using the bag-of-words
model, and the frequency of each word is set to one. The
reason for the binarization is that typically the text for an
item is short, and there are not many informative words
occurring multiple times, and thus a binarized vector is al-
most same as the original count vector. In addition, since
the user-item profile M is binary, intuitively the item-item
coefficient matrix Q learned from a binary feature matrix F
should be comparable to the aggregation coefficient matrix
S learned from M in terms of the values. In this case, the
regularization using Q on S (i.e., the β1

2
‖S − Q‖2F term in

rcSLIM) can be more effective.
Normalized TFIDF Representation (Ftfidf) For the meth-

ods that directly learn from the item text (fSLIM and f2SLIM),
it is essential that the text presentation encodes how impor-
tant a word is in the text. For this purpose, a normalized
TFIDF scheme is adopted. The TFIDF scheme [13] is widely
used for weighting words in text mining. After the TFIDF

scheme is applied on the feature vectors, the feature vectors
are normalized to unit length.

Normalized TFIDF Representation with Feature Se-
lection (Ftfidf fs) Another representation scheme is a modi-
fication of Ftfidf by using feature selection. For each feature
vector, the words were sorted in decreasing order accord-
ing to their weights in the TFIDF representation. Then the
highest weighted words were selected until cumulatively they
contribute to 90% of the vector length.

1http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/doc2mat-
1.0.tar.gz

Normalized TFIDF Binary Representation with Fea-
ture Selection (Ftfidf fs b) The last side information repre-
sentation scheme is a compromise of Fb and Ftfidf fs, that is,
it converts all the values that are calculated from Ftfidf fs to
binary. This scheme tries to use only the words that are con-
sidered as important by Ftfidf fs and meanwhile still retain the
advantages of the binary representations.

6.4 Comparison Methods
Singh et al [14] proposed the collective matrix factoriza-

tion (CMF) method for relational learning as follow:

minimize
U,V,W

1

2
‖M − UV ‖2F +

α

2
‖F −WV ‖2F

+
β

2
(‖U‖2F + ‖V ‖2F + ‖W‖2F ),

(14)

where U is an m × k user factor from M , W is an l × k
feature factor from F , and V is an k×n item factor which is
collectively learned from both M and F . Particularly, k �
min(m,n, l). CMF and cSLIM are similar in the sense that a
common matrix is learned from both M and F concurrently.
However, they are fundamentally different methods. The
cSLIM method conforms to linear methods and it models the
top-N recommendation process as an aggregation on items.
On the contrary, CMF models the recommendation process in
a low-dimension latent space.

Thu et al [7] proposed a weighted regularized matrix fac-
torization (WRMF) method for top-N recommendation, which
weights the purchase and nonpurchase activities in M dif-
ferently using a weighting matrix C as follows:

minimize
U,V

1

2
‖C ◦ (M − UV )‖2F +

β

2
(‖U‖2F + ‖V ‖2F ). (15)

Inspired by this weighting method, we combined WRMF

with CMF so as to have a collective weighted regularized ma-
trix factorization method, denoted by CWRMF, as follows:

minimize
U,V,W

1

2
‖C ◦ (M − UV )‖2F +

α

2
‖F −WV ‖2F

+
β1
2
‖U‖2F +

λ

2
‖V ‖2F +

β2
2
‖W‖2F ,

(16)

in which M and F are still collectively factorized but errors
from M are weighted differently by C. We use WRMF and
CWRMF as the comparison algorithms in the experiments. In
addition, we use another two collaborative filtering meth-
ods for comparison purposes. The itemkNN method is a
widely used item-based collaborative filtering method pro-
posed in [4]. The itemSI method is a modification of itemkNN,
in which the item similarities are calculated as a linear com-
bination of the similarity values calculated from itemkNN and



Table 3: Performance Improvement over SLIM

feature itemSI CWRMF cSLIM rcSLIM fSLIM f2SLIM

Fb 0.973 0.674 1.095 1.048 0.818 1.008
Ftfidf 0.988 0.674 1.090 1.062 0.877 1.026
Ftfidf fs 0.974 0.707 1.090 1.063 0.873 1.027
Ftfidf fs b 0.970 0.707 1.113 1.069 0.828 1.012
avg 0.976 0.690 1.097 1.061 0.849 1.018

Each value in the first four rows is calculated as the geometric mean of HR
ratios of the corresponding method over SLIM over all the datasets, given the
corresponding feature representation scheme used. The values in the last row
is calculated as the geometric mean of HR ratios of the corresponding method
over SLIM over all the datasets and all the feature presentation schemes.

the cosine similarity values calculated from side information
weighted by a parameter α.

7. RESULTS

7.1 Overall Performance
Table 2 presents the detailed results of the SSLIM meth-

ods (cSLIM, rcSLIM, fSLIM and f2SLIM), the three meth-
ods without side information (itemkNN, WRMF and SLIM) and
another two methods that utilize side information (itemSI
and CWRMF), with respect to different side information rep-
resentation schemes (Fb, Ftfidf , Ftfidf fs and Ftfidf fs b). For the
methods itemkNN, WRMF andSLIM, Fno is used in Table 2 to
denote that side information is not used.

Table 2 shows that SLIM outperforms the other methods
that do not utilize side information (i.e., itemkNN and WRMF)
on all the datasets except BBY. For the BBY dataset, WRMF per-
forms the best. This conforms to the conclusions as in [10],
and thus we use SLIM as the baseline to further evaluate all
the methods that utilize side information.

Table 3 summarizes the overall performance of the dif-
ferent methods that utilize side information, with respect
to SLIM. Irrespective of the feature representation scheme,
cSLIM, rcSLIM and f2SLIM perform better than SLIM with
average improvement 9.7%, 6.1% and 1.8%, respectively (the
last row in Table 3). This demonstrates that side informa-
tion contains useful information, and proper incorporation
of side information into the recommender systems can bring
significant performance improvement.

The methods itemSI, fSLIM and CWRMF perform worse
than SLIM. The itemSI method is a trivial extension of
itemkNN and it does not involve any learning. fSLIM is a
method that learns directly from the side information. The
performance of fSLIM indicates that this method may not be
able to pick out and highly weight the individual features in
the item side information that are most relevant to the rec-
ommendations. CWRMF is the worst one and even worse than
itemSI. This may be related to the discussion on CMF as
in Agarwal et al [2], that is, when the side information is
sparse, CMF may not work well.

Comparing the gains that can be obtained by utilizing side
information across the different datasets, we see that they
are not uniform. For the two movie datasets (ML100K and
NF), the side information provides minimal benefits, whereas
the gains achieved from the other datasets is substantial. We
believe that this is due to the fact that the side information
used for the movie datasets was quite generic, and does not
contain sufficient information.

7.2 Side Information Representation
Table 3 shows that the performance of the side informa-
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Figure 1: Recommendations for Different N Values

tion representation schemes depends on the recommenda-
tion methods. For cSLIM, which uses side information for
regularization, the binary feature representations (Fb and
Ftfidf fs b) lead to better performance than the multivariate
feature representations (Ftfidf and Ftfidf fs). This may be due
to the fact that the binary features are treated homoge-
neously as the user-item purchase data and thus they can
regularize the learning process effectively. However, for the
methods fSLIM and f2SLIM, which involve direct learning
from side information, Ftfidf and Ftfidf fs result in better per-
formance than the binary ones, since they differentiate the
importance of features within the representations. In gen-
eral, fSLIM and f2SLIM prefer the feature representations
that encode word importance, so even the binary represen-
tation Ftfidf fs b, which has feature selection applied, also out-
performs Fb, which does not differentiate features at all.

7.3 Recommendation on Different Top-N
Figure 1 presents the performance of SLIM and SSLIM

methods (except fSLIM since it performs poorly) for top-
N recommendation with different values of N . The Ftfidf fs b

side information representation is used for all the methods.
For all the datasets, cSLIM consistently outperforms SLIM

and other SSLIM methods on all N values (except N = 25
for dataset ML100K and N = 15 for dataset NF). The rcSLIM

method is the second competitive methods over all N values.
The f2SLIM method shows performance that is comparable
to SLIM and in some cases (i.e., N = 25 for ML100K, all the N
values for BBY) it outperforms SLIM. It performs consistently
worse than SLIM only on Yelp.

7.4 Density Studies on the Purchase Data
To understand how the density of the dataset impacts the

gains that can be obtained by utilizing side information, we



Table 2: Performance Comparison on All the Datasets

feature method
ML100K NF CrossRef

params HR ARHR params HR ARHR params HR ARHR

Fno

itemkNN 10 - - - 0.287 0.124 300 - - - 0.043 0.015 300 - - - 0.404 0.212
WRMF 5 50 1 - 0.327 0.133 5 400 2 - 0.045 0.017 1 400 10 - 0.352 0.169
SLIM 2 2 - - 0.343 0.147 5 0.5 - - 0.045 0.018 5 0.5 - - 0.408 0.211

Fb

itemSI 200 0.5 - - 0.262 0.116 200 0.5 - - 0.042 0.016 200 0.5 - - 0.416 0.218
CWRMF 1 0.5 50 1 0.327 0.139 1 0.5 200 2 0.028 0.009 1 2 200 2 0.168 0.080
cSLIM 0.5 10 1 - 0.344 0.148 0.1 10 1 - 0.047 0.017 1 5 0.1 - 0.429 0.224
rcSLIM 0.1 5 1 2 0.344 0.147 5 10 10 1 0.047 0.017 5 10 5 0.5 0.421 0.218
fSLIM 10 0.5 - - 0.303 0.130 10 0.1 - - 0.030 0.011 2 0.1 - - 0.287 0.139
f2SLIM 10 1 - - 0.343 0.146 5 0.1 - - 0.046 0.017 5 0.1 - - 0.410 0.211

Ftfidf

itemSI 200 0.1 - - 0.261 0.120 300 0.5 - - 0.043 0.016 200 0.5 - - 0.416 0.218
CWRMF 1 0.5 50 1 0.327 0.139 1 0.5 200 2 0.028 0.009 1 2 200 2 0.168 0.080
cSLIM 2 5 5 - 0.344 0.147 0.5 10 1 - 0.047 0.017 2 5 0.1 - 0.426 0.220
rcSLIM 1 2 2 2 0.345 0.147 0.5 10 2 1 0.047 0.018 5 10 5 0.1 0.422 0.217
fSLIM 2 0.1 - - 0.317 0.134 5 0.1 - - 0.035 0.011 2 0.1 - - 0.292 0.141
f2SLIM 5 5 - - 0.341 0.147 10 0.5 - - 0.046 0.017 5 0.1 - - 0.413 0.212

Ftfidf fs

itemSI 200 0.5 - - 0.260 0.118 50 0.5 - - 0.042 0.015 200 0.5 - - 0.416 0.218
CWRMF 1 1 50 1 0.325 0.125 1 2 200 1 0.031 0.010 1 2 200 2 0.174 0.082
cSLIM 2 5 5 - 0.344 0.147 1 10 1 - 0.047 0.017 2 5 0.1 - 0.425 0.220
rcSLIM 1 2 2 2 0.345 0.147 1 10 10 0.1 0.047 0.017 5 10 5 0.1 0.422 0.217
fSLIM 2 0.1 - - 0.317 0.133 5 0.1 - - 0.034 0.012 2 0.1 - - 0.292 0.141
f2SLIM 5 5 - - 0.343 0.148 10 5 - - 0.046 0.017 5 0.1 - - 0.413 0.212

Ftfidf fs b

itemSI 200 0.1 - - 0.262 0.121 50 0.5 - - 0.042 0.015 200 0.5 - - 0.416 0.218
CWRMF 1 1 50 1 0.325 0.125 1 2 200 1 0.031 0.010 1 2 200 2 0.174 0.082
cSLIM 0.5 5 2 - 0.346 0.151 0.5 5 0.5 - 0.047 0.018 1 5 0.1 - 0.429 0.223
rcSLIM 5 10 10 0.1 0.344 0.149 5 10 2 1 0.047 0.019 5 10 5 0.1 0.425 0.220
fSLIM 20 1 - - 0.312 0.134 10 0.1 - - 0.029 0.011 2 0.1 - - 0.287 0.139
f2SLIM 10 1 - - 0.347 0.151 10 1 - - 0.046 0.017 5 0.1 - - 0.410 0.211

feature method
Lib BBY Yelp

params HR ARHR params HR ARHR params HR ARHR

Fno

itemkNN 10 - - - 0.385 0.247 200 - - - 0.070 0.032 100 - - - 0.257 0.092
WRMF 0.5 200 10 - 0.361 0.221 0.5 100 10 - 0.124 0.062 5 50 10 - 0.327 0.131
SLIM 5 0.5 - - 0.407 0.266 10 0.1 - - 0.119 0.064 20 0.1 - - 0.348 0.147

Fb

itemSI 300 0.5 - - 0.407 0.258 100 2 - - 0.151 0.068 300 1 - - 0.321 0.127
CWRMF 1 2 200 2 0.278 0.162 1 0.5 50 2 0.095 0.041 1 0.5 50 2 0.244 0.100
cSLIM 1 5 0.1 - 0.443 0.283 0.1 20 0.1 - 0.165 0.081 0.1 20 0.5 - 0.361 0.154
rcSLIM 5 10 2 0.5 0.439 0.288 5 10 10 0.5 0.139 0.079 2 10 10 0.5 0.338 0.144
fSLIM 2 0.1 - - 0.358 0.233 10 0.1 - - 0.107 0.055 10 0.1 - - 0.319 0.137
f2SLIM 5 0.5 - - 0.408 0.267 10 0.1 - - 0.127 0.068 10 0.5 - - 0.332 0.138

Ftfidf

itemSI 300 0.5 - - 0.407 0.258 100 2 - - 0.163 0.072 200 1 - - 0.318 0.127
CWRMF 1 2 200 2 0.278 0.162 1 0.5 100 1 0.095 0.041 1 0.5 50 2 0.244 0.100
cSLIM 2 5 0.1 - 0.436 0.280 2 50 0.1 - 0.169 0.087 2 50 0.1 - 0.351 0.147
rcSLIM 5 10 2 0.1 0.434 0.286 5 10 10 0.1 0.152 0.081 5 10 10 0.1 0.338 0.143
fSLIM 2 0.1 - - 0.367 0.236 2 0.1 - - 0.115 0.059 10 0.1 - - 0.353 0.148
f2SLIM 5 0.5 - - 0.410 0.266 20 0.1 - - 0.132 0.069 20 0.1 - - 0.354 0.148

Ftfidf fs

itemSI 300 0.5 - - 0.408 0.257 200 2 - - 0.159 0.069 300 1 - - 0.308 0.120
CWRMF 1 2 200 2 0.286 0.167 1 2 100 1 0.102 0.044 1 2 50 2 0.260 0.103
cSLIM 2 5 0.1 - 0.436 0.280 2 50 0.1 - 0.169 0.087 2 50 0.1 - 0.351 0.147
rcSLIM 5 10 1 0.5 0.435 0.286 5 10 10 0.1 0.152 0.081 5 10 10 0.1 0.338 0.143
fSLIM 2 0.1 - - 0.367 0.236 2 0.1 - - 0.115 0.059 10 0.1 - - 0.353 0.148
f2SLIM 5 0.5 - - 0.410 0.267 20 0.1 - - 0.132 0.069 20 0.1 - - 0.354 0.148

Ftfidf fs b

itemSI 300 0.5 - - 0.407 0.257 100 2 - - 0.153 0.068 300 1 - - 0.311 0.120
CWRMF 1 2 200 2 0.286 0.167 1 2 100 1 0.102 0.044 1 2 50 2 0.260 0.103
cSLIM 1 5 0.1 - 0.446 0.284 0.1 50 0.1 - 0.180 0.090 0.5 20 0.1 - 0.360 0.156
rcSLIM 5 10 2 0.1 0.441 0.287 5 10 10 0.1 0.154 0.085 2 10 10 0.1 0.340 0.144
fSLIM 2 0.1 - - 0.358 0.234 20 0.1 - - 0.109 0.057 20 0.1 - - 0.338 0.141
f2SLIM 5 0.5 - - 0.407 0.267 10 0.1 - - 0.127 0.069 20 0.1 - - 0.337 0.139

The parameters represented for each method are as follows, respectively: itemkNN and itemSI: the number of neighbors k, and weighting parameter α; SLIM: the `2-norm
regularization parameter β and the `1-norm regularization parameter λ as in [10]; cSLIM and rcSLIM: the weighting parameter on side information regularizer α, the `2-
norm regularization parameter β (β1 and β2) and the `1-norm regularization parameter λ as in Equation 5 and 7; fSLIM and f2SLIM: the `2-norm regularization parameter
β and the `1-norm regularization parameter λ as in Equation 9 and 11; WRMF: the regularization parameter β, the number of latent dimensions k and the weight on non-
zero values c as in [7]; CWRMF: the weighting parameter on side information α, the regularization parameter λ, the number of latent dimensions k and the weight on non-
zero values c as in Equation 15; Columns corresponding to HR and ARHR present the hit rate and average reciprocal hit-rank, respectively. N in this table is 10.

performed a series of experiments in which we removed some
of the user-item purchase profile data as follows. For each
dataset, we always keep the testing set and side information
unchanged, but randomly select a certain percentage (de-
fined as density factor) of non-zero values from each user so
as to construct training sets of different information density.
Figure 2 presents the results from different recommendation
methods on the datasets. The results in these figures are
relative to the performance achieved by SLIM at the same

density level.
These results show that in general, cSLIM and rcSLIM

lead to more significant performance gains when the user-
item purchase profiles are sparser. This indicates that when
the user-item purchase data is sparse, cSLIM and rcSLIM

are more effective in exploiting and incorporating side infor-
mation and lead to more accurate top-N recommendations.
Note that for the dataset ML100K and NF, performance im-
provement from incorporating side information is hardly ob-
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Figure 2: Density Studies

served. As discussed in Section 7.1, we believe that this is
due to the low quality of the side information.

8. CONCLUSIONS
This paper focused on incorporating side information into

the sparse linear methods (SLIM) for top-N recommender
systems. We developed four different approaches that incor-
porate side information during the estimation of SLIM’s ag-
gregation coefficient matrix. Our experiments showed that
the developed methods lead to measurable improvements
over the original SLIM methods that relied solely on user-
item purchase profiles.
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