
Parallel Computing 74 (2018) 99–117

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

HPC formulations of optimization algorithms for tensor

completion

Shaden Smith

a , ∗, Jongsoo Park

b , 1 , George Karypis a

a Department of Computer Science & Engineering, University of Minnesota, United States
b Facebook, United States

a r t i c l e i n f o

Article history:

Received 31 December 2016

Revised 29 September 2017

Accepted 2 November 2017

Available online 3 November 2017

Keywords:

Sparse tensor

Tensor completion

Unstructured algorithm

Machine learning

Factorization

Recommender system

a b s t r a c t

Tensor completion is a powerful tool used to estimate or recover missing values in multi-

way data. It has seen great success in domains such as product recommendation and

healthcare. Tensor completion is most often accomplished via low-rank sparse tensor fac-

torization, a computationally expensive non-convex optimization problem which has only

recently been studied in the context of parallel computing. In this work, we study three

optimization algorithms that have been successfully applied to tensor completion: al-

ternating least squares (ALS), stochastic gradient descent (SGD), and coordinate descent

(CCD++). We explore opportunities for parallelism on shared- and distributed-memory

systems and address challenges such as memory- and operation-efficiency, load bal-

ance, cache locality, and communication. Among our advancements are a communication-

efficient CCD++ algorithm, an ALS algorithm rich in level-3 BLAS routines, and an SGD

algorithm which combines stratification with asynchronous communication. Furthermore,

we show that introducing randomization during ALS and CCD++ can accelerate conver-

gence. We evaluate our parallel formulations on a variety of real datasets on a modern su-

percomputer and demonstrate speedups through 16384 cores. These improvements reduce

time-to-solution from hours to seconds on real-world datasets. We show that after our

optimizations, ALS is advantageous on parallel systems of small-to-moderate scale, while

both ALS and CCD++ provide the lowest time-to-solution on large-scale distributed sys-

tems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Many domains rely on multi-way data, which are variables that interact in three or more dimensions, or modes . An

electronic health record is an interaction between variables such as a patient, symptoms, diagnosis, medical procedures,

and outcome. Similarly, how much a customer will like a product is an interaction between the customer, product, and the

context in which the purchase occurred (e.g., date of purchase or location). Analyzing multi-way data can provide valuable

insights about the underlying relationships of the different variables that are involved. Utilizing these insights, a doctor

would be more equipped to provide a successful treatment and a retailer would be able to better recommend products

that meet the customer’s needs and preferences. Tensors are a natural way of representing multi-way data. Tensors are the
∗ Corresponding author.

E-mail addresses: shaden@cs.umn.edu (S. Smith), jongsoo@fb.com (J. Park), karypis@cs.umn.edu (G. Karypis).
1 Jongsoo Park was located at and supported by Intel Parallel Computing Lab at the time of submission.

https://doi.org/10.1016/j.parco.2017.11.002

0167-8191/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.parco.2017.11.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2017.11.002&domain=pdf
mailto:shaden@cs.umn.edu
mailto:jongsoo@fb.com
mailto:karypis@cs.umn.edu
https://doi.org/10.1016/j.parco.2017.11.002

100 S. Smith et al. / Parallel Computing 74 (2018) 99–117

generalization of matrices to more than two modes. Tensor completion is the problem of estimating or recovering missing

values of a tensor. For example, discovering phenotypes in electronic health records is improved by tensor completion due

to missing and noisy data [35] . Similarly, predicting how a customer will rate a product under some context can be thought

of as estimating a missing value in a tensor [26] .

Multi-way data analysis is based on the assumption that the data of interest follows a low-rank model that can be dis-

covered. Tensor factorization is a technique that reduces a tensor to a low-rank representation, which can then be used

by applications or domain experts. The task of tensor completion is often accomplished by first finding a low-rank tensor

factorization for the observed data, and if a low-rank model exists, then using it to predict the unobserved data. A subtle,

but important constraint is that the factorization must only capture the non-zero (or observed) entries of the tensor. The

remaining entries are treated as missing values, not actual zeros as is often the case in other sparse tensor and matrix oper-

ations. This is because a factorization that treats missing entries as zero-valued would simply learn to estimate unobserved

entries as zero.

Tensor completion is challenging on modern processors for two reasons. First, floating point processing rates are much

higher than memory bandwidth. Insufficient memory bandwidth is detrimental because only a small amount of work is

performed for each non-zero, and accessing each non-zero involves many indices. Furthermore, the few computations that

are performed depend on the unstructured sparsity pattern of the observed data, leading to poor cache locality and in-

creased pressure on memory bandwidth. Second, tensors often have a combination of long, sparse modes (e.g., patients or

customers) and short, dense modes (e.g., medical procedures or temporal information). Scalability in the presence of highly

varied mode lengths requires attention to load balance, degree of parallelism, and communication. This challenge is largely

absent in matrix completion, as the number of rows and columns is usually large.

The high performance computing community has addressed scalability challenges with respect to traditional tensor fac-

torizations, for both shared-memory [1,14,18,30,33] and distributed-memory [6,15,31] systems. However, the techniques and

optimizations that underlie these methods cannot be directly applied to the problem of tensor completion due to the treat-

ment of missing entries.

In this work, we explore high performance tensor completion with three popular optimizations algorithms: alternating

least squares (ALS), stochastic gradient descent (SGD), and coordinate descent (CCD++). We explore issues on shared- and

distributed-memory systems such as memory and operation-efficient algorithms, cache locality, load balance, and commu-

nication. Our contributions include:

1. Tensor completion algorithms that scale to thousands of cores despite the presence of highly varied mode lengths.

2. An SGD algorithm that uses a hybrid of stratification and asynchronous updates to maintain convergence at scale.

3. A study of applying randomization to ALS and CCD++, resulting in accelerated convergence and higher quality solutions.

4. An experimental evaluation with several real-world datasets on up to 16384 cores. Our ALS and CCD++ algorithms are

153 × and 21.4 × faster than state-of-the-art parallel methods, respectively. This effectively reduces solution time from

hours to seconds.

5. Publicly available MPI+OpenMP implementations that utilize compressed tensor representations in order to improve

cache locality and reduce memory consumption and the number of FLOPs performed.

In addition, our work shows that depending on the underlying parallel architecture and the characteristics of the desired

solution, the best performing optimization algorithm varies.

The rest of this paper is organized as follows. Section 2 introduces tensor notation and provides a brief background on

approaches for tensor completion. Section 3 reviews optimization methods for tensor completion and existing work on their

parallelization. Section 4 details our HPC formulations of the ALS, SGD, and CCD++ algorithms. Section 5 accelerates the

convergence rates of ALS and CCD++ by including randomization. Section 6 includes experimental methodology and results.

Finally, we provide concluding remarks in Section 7 .

2. Preliminaries

2.1. Tensor notation & factorization

We denote matrices using bold capital letters (A) and tensors using bold capital calligraphic letters (R). A tensor occupies

three or more dimensions, or modes . In future discussions, we focus on three-mode tensors to reduce notational clutter.

However, all of the presented algorithms are general to any number of modes. A tensor has nnz (R) non-zero entries and

is of dimension I × J × K . The entry in position (i, j, k) is written R (i, j, k) . A colon in the place of an index represents all

members of that mode. For example, A (: , f) is column f of the matrix A . A fiber is the result of holding all but one index

constant (e.g., X (i, j, :)) and is the generalization of a row or column of a matrix. A slice is the result of holding all but two

indices constant (e.g., R (i, : , :)) and the result is a matrix. A common operation in tensor algebra is the Hadamard product,

denoted A ∗ B , which performs element-wise multiplication.

The canonical polyadic decomposition (CPD), also known as CANDECOMP or PARAFAC [16] , is a widely-used model for

tensor factorization [4,12,21,26,35,37] . The CPD is popular in domains dealing with large-scale data (e.g., machine learning)

due to its efficient computation and because it is unique under mild assumptions [34] . The CPD models R as a rank- F

matrix for each mode: A ∈ R

I ×F , B ∈ R

J ×F , and C ∈ R

K ×F . Using the CPD, a tensor R can be constructed as a summation of

S. Smith et al. / Parallel Computing 74 (2018) 99–117 101

Fig. 1. The CPD as a sum of outer products.

Table 1

Summary of optimization algorithms for matrix and tensor completion.

Algorithm Complexity Storage Traversals Ref.

ALS O(M(F 2 nnz (R) + IF 3)) O(F 2) M [13,25]

SGD O(MF nnz (R)) O(F) 1 [25,27]

CCD + + O(MF nnz (R)) O(I) MF [13,27]

Complexity is the number of floating-point operations performed in one

epoch. Storage is the amount of memory required to perform the factoriza-

tion, excluding matrix and tensor storage. Traversals is the number of times

the sparsity structure must be traversed in one epoch, excluding checks for

convergence. Ref. provides references for the tensor variant of the algorithm.

References for the matrix variants are found in Section 3 . F is the rank of the

factorization. M is the number of modes in the tensor. I is the length of the

longest mode.

F rank-one tensors (Fig. 1). Domain experts are almost always interested in a low-rank CPD, with a typical value for F being

10 or 50. The CPD can also be written element-wise:

R (i, j, k) =

F ∑

f=1

A (i, f) B (j, f) C (k, f) . (1)

More information on tensor factorization can be found in the survey by Kolda and Bader [17] .

2.2. Tensor completion with the CPD

Tensor completion under the CPD model is written as the following non-convex optimization problem:

min .
A , B , C

1

2

∑

R (: , : , :)

L (i, j, k) 2 +

λ

2

(|| A || 2 F + || B || 2 F + || C || 2 F

)
, (2)

where λ is a parameter for regularization and L (·) is the loss function defined as

L (i, j, k) = R (i, j, k) −
F ∑

f=1

A (i, f) B (j, f) C (k, f) . (3)

Note that Eq. (2) is only defined over the non-zero (or observed) entries of R and Eq. (3) is derived from the element-wise

formulation of the CPD in Eq. (1) .

3. Related work

The non-convexity of Eq. (2) has inspired a substantial amount of research on optimization algorithms that effectively

minimize the objective while being operation- and memory-efficient enough to be used in practice. Three optimization

algorithms have seen particular success due to their efficiency, opportunities for parallelism, and fast convergence. These

methods are summarized in Table 1 and described below.

We follow the convention of the matrix completion community and refer to an epoch as the work performed to update

A, B , and C one time using the training data. We avoid the term iteration in order to emphasize the varying amounts of

work performed and progress made.

3.1. Alternating least squares

ALS is an alternating optimization algorithm that cyclically updates one matrix factor at a time while holding all others

constant. Factor updates are based on the observation that if B and C are treated as constant, solving for a row of A is a

convex optimization problem with a least squares solution.

Illustrated in Fig. 2 , computing A (i, :) accesses all non-zeros in R (i, : , :) and also the rows B (j, :) and C (k, :) for each

non-zero R (i, j, k) . The rows of B and C are used to compute H , a | R (i, : , :) | ×F matrix. If the l th non-zero in R (i, : , :) has
i

102 S. Smith et al. / Parallel Computing 74 (2018) 99–117

Fig. 2. Memory accesses during ALS. Computing A (i, :) (in orange) requires R (i, : , :) and the corresponding rows of B and C .

coordinate (i, j, k), then H i (l, :) = [B (j, :) ∗ C (k, :)] , where ∗ denotes the Hadamard product. Given H i , we can compute A (i, :)

via

A (i, :) ←

(
H

T
i H i + λI

)−1
H

T
i vec (R (i, : , :)) , (4)

where vec (·) rearranges the non-zero entries of its argument into a dense vector. The matrix
(
H

T
i H i + λI

)
is symmetric

positive-definite and so the inversion is accomplished via a Cholesky factorization and forward/backward substitutions. ALS

requires O(F 2 nnz (R)) operations to form all of the H i , and O(F 3) operations per row for the matrix inversions. In to-

tal, O(F 2 nnz (R) + IF 3) operations are performed to update a factor. After computing all rows of A , the other factors are

computed in the same manner.

Parallel ALS algorithms exploit the independence of the I least squares problems and solve them in parallel. ALS was

one of the first optimization algorithms applied to large-scale matrix completion [38] . Recently, a high performance ALS

algorithm for matrix completion on CPUs and GPUs was developed [9] . The algorithm exploits level-3 BLAS opportunities

during the construction of H

T
i H i .

ALS was first extended to tensor completion on shared-memory systems [25] . Shin and Kang presented a distributed-

memory implementation based on the MapReduce paradigm [27] . They use a coarse-grained tensor decomposition which

partitions each mode separately, assigning to each process a set of complete R (i, : , :) , R (: , j, :) , and R (: , : , k) slices. After

a process updates A (i, :) , the new values are broadcasted to all other processes. Karlsson et al. developed a distributed-

memory algorithm for MPI [13] . The distributed-memory algorithm assigns non-zeros to processes without restriction, al-

lowing for nnz (R) parallelism. The added parallelism comes with the cost of communicating partial computations of H

T
i H i

and H

T
i vec (R (i, : , :)) with an all-reduce, requiring O(IF 2) words communicated per process.

3.2. Stochastic gradient descent

The strategy of SGD is to take many small steps per epoch, each based on the gradient at a single non-zero. At each step,

SGD selects one non-zero at random and updates the factorization based on the gradient at R (i, j, k) . Updates are of the

form

A (i, :) ← A (i, :) + η[L (i, j, k) (B (j, :) ∗ C (k, :)) − λA (i, :)] ,

B (j, :) ← B (j, :) + η[L (i, j, k) (A (i, :) ∗ C (k, :)) − λB (j, :)] ,

C (k, :) ← C (k, :) + η[L (i, j, k) (A (i, :) ∗ B (j, :)) − λC (k, :)] ,

where η is a step size parameter. Each update requires O(F) operations, resulting in a complexity of O(F nnz (R)) per epoch.

SGD is parallelized by exploiting the independence of non-zeros whose coordinates are disjoint. The popular stratification -

based SGD method [10] partitions an M -mode tensor into a P M grids for P processes. For example, Fig. 3 shows a case with

M = 3 and P = 3. The grid has P M−1 strata, each corresponding to P blocks in a diagonal line (i.e., { (1 , t 2 , ..., t M

) , (2 , (t 2 + 1)

mod P, ..., (t M

+ 1) mod P) , ..., (P, (t 2 + P − 1) mod P, ..., (t M

+ P − 1) mod P) } for all 1 ≤ t 2 , ..., t M

≤ P). Each epoch comprises

processing P M−1 strata, which covers all the non-zeros of the tensor. Since no two non-zeros in different blocks of a given

stratum share the same index in any mode, P processes can work on P blocks of a stratum in parallel.

Instead of stratification, some parallel SGD methods allow non-zeros with overlapping coordinates to be processed in

parallel. Hogwild [24] , a parallel algorithm for shared-memory systems, exploits the stochastic nature of SGD to have lock-

free parallelism. The concept is simple: process the shuffled non-zeros in parallel without stratification or synchronization

constructs. Due to the sparse nature of the input, race conditions are expected to be rare. When they do occur, the stochas-

tic nature of the algorithm will naturally fix any errors and continue to converge. A similar idea for distributed-memory

systems is asynchronous SGD (ASGD). All non-zeros are processed in parallel, and a few times per epoch processes combine

local updates to overlapped rows via weighted averages. The communication and averaging of local updates are performed

asynchronously [22] .

S. Smith et al. / Parallel Computing 74 (2018) 99–117 103

Fig. 3. Stratified SGD. Colored blocks of non-zeros can be processed in parallel without conflict. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

3.3. Coordinate descent

In contrast to ALS and SGD which update entire factor rows at a time, coordinate descent methods optimize only one

variable at a time. CCD++ is a coordinate descent method originally developed for matrix factorization [36] and later ex-

tended to tensors [13,27] . CCD++ updates columns of A, B , and C in sequence, in effect optimizing the rank-one components

of the factorization. Updates take the form:

A (i, f) ←

αi

λ + βi

, (5)

where

αi =

∑

R (i, : , :)

L (i, j, k) B (j, f) C (k, f) ,

and

βi =

∑

R (i, : , :)

(B (j, f) C (k, f))
2
.

After updating all A (: , f) , the columns B (: , f) and C (: , f) are updated similarly. An important optimization for CCD++ is to

compute L (·) only once each epoch and reuse it for each of the F columns [36] . This can be accomplished without additional

storage by directly updating R each iteration with the current residual. The resulting complexity is O(F (nnz (R) + I + J + K)) ,

which for most datasets is O(F nnz (R)) , matching SGD.

CCD++ is parallelized in the same manner as ALS. All of the αi ’s and β i ’s for a mode are computed independently, again

leading to a coarse-grained decomposition of R [27,36] . After updating a factor column in parallel, the new column factors

are broadcasted to all processes. Karlsson et al. use a non-restrictive decomposition of the tensor non-zeros as in ALS [13] .

Partial products are again aggregated with an all-reduce and new columns are broadcasted. Only the components of the

current column must be communicated, and so in one epoch there are 2 F messages per factor matrix, each of size O(I) .

4. Algorithms for high performance tensor completion

4.1. Efficient loss computation with a compressed sparse tensor

The choice of data structure for representing a sparse tensor affects performance in ways such as memory bandwidth,

number of FLOPs performed, and opportunities for parallelism. The HPC formulations of the various optimization algorithms

that we developed use the compressed sparse fiber (CSF) data structure [30] , illustrated in Fig. 4 . CSF can be thought of as

a generalization of the compressed sparse row data structure for matrices. The CSF data structure represents a tensor as a

forest of I trees, with each mode recursively compressed one after the other and stored in the next level of the tree.

The evaluation of L (·) in Eq. (3) benefits from exploiting the CSF tensor representation. Consider the computation of L (·)
associated with two successive non-zeros:

L (i, j, k) = R (i, j, k) −
F ∑

f=1

A (i, f) B (j, f) C (k, f) ,

L (i, j, k ′) = R (i, j, k ′) −
F ∑

f=1

A (i, f) B (j, f) C (k ′ , f) .

104 S. Smith et al. / Parallel Computing 74 (2018) 99–117

Fig. 4. Data structures for the sparsity pattern of a four-mode tensor. (a) Coordinate format: non-zeros are represented as an uncompressed list. (b)

Compressed sparse fiber (CSF) format: the sparsity structure is recursively compressed and non-zeros are stored as paths from roots to leaves.

We reuse partial results by storing the Hadamard (element-wise) product of A (i, :) and B (j, :) in a row vector v :

v ← A (i, :) ∗ B (j, :)

L (i, j, k) = R (i, j, k) −
F ∑

f=1

v (f) C (k, f) ,

L (i, j, k ′) = R (i, j, k ′) −
F ∑

f=1

v (f) C (k ′ , f) .

This reduces the computation from 2 F nnz (R) multiplications to F nnz (R) + F P , where P is the number of unique R (i, j, :

) fibers. The matricized tensor times Khatri-Rao product (MTTKRP) operation present in ALS uses the same technique for

operation reduction [33] .

4.2. Parallel ALS

We follow the strategy of parallelizing over the rows of A for shared-memory parallel systems. Recall from Eq. (4) that

H i has | R (i, : , :) | rows and F columns. A major challenge when designing ALS algorithms is that if multiple rows of A are

computed at once, the various H i matrices must somehow be represented in memory. However, the collective storage for all

H i prohibitively requires F nnz (R) storage. Another option, and the one used by existing work [13] , is to aggregate rank-1

updates. For each non-zero R (i, j, k) , a rank-1 update with the row vector (B (j, :) ∗ C (k, :)) is accumulated into H

T
i H i . A

naive implementation must aggregate the rank-1 updates for all possible i , requiring IF 2 storage. It was observed that this

storage overhead can be reduced by sorting the tensor non-zeros before processing long modes [13] .

We instead store M CSF representations of R , in which the m th CSF places the m th mode at the top level of the tree

and sorts the remaining ones by length. Since the mode ordering forces all non-zeros in R (i, : , :) to be grouped into the

same tree, we can process all of the non-zeros in R (i, : , :) sequentially and thus only the O(F 2) memory associated with a

single row is allocated. For multicore systems, we parallelize over the rows of A with a memory overhead of only O(F 2) per

thread. The total storage overhead with P threads is (M −1) nnz (R) + P F 2 = O(M nnz (R)) , which is smaller than F nnz (R)

and IF 2 for most problems. We note that this multi-CSF strategy was used in prior work [33] , but was motivated by exposing

parallelism in MTTKRP instead of reducing the size of intermediate data.

The construction of H

T
i H i and H

T
i vec (R (i, : , :)) are performed together during a single pass over the sparsity structure

of R using similar strategies as presented in Section 4.1 . Interestingly, the expression H

T
i vec (R (i, : , :)) is equivalent to

computing one transposed row of the MTTKRP operation, for which operation-efficient CSF algorithms exist [30] .

Accumulating rank-1 updates into H

T
i H i causes O(F 2) data to be accessed for each non-zero and leads to memory-bound

computation. We collect the intermediate Hadamard products formed during MTTKRP into a thread-local matrix of fixed

size. When that matrix fills, or all non-zeros in R (i, : , :) are processed, the thread performs one rank- k update, where k

is the number of rows in the thread-local matrix. We empirically found that a matrix of size 2048 × F is sufficient to see

significant benefits from the BLAS-3 performance. For typical values of F , this equates to storage overheads of up to a few

megabytes per thread.

We follow existing work and use a coarse-grained decomposition in the distributed-memory setting [27] . Coarse-grained

decompositions impose separate 1D decompositions on each tensor mode, eliminating the need to communicate and aggre-

gate partial computations. As a result, the worst-case communication volume is reduced from O(IF 2) to O(IF) per process,

which is the cost of exchanging updated rows of A . Our coarse-grained decomposition uses chains-on-chains partitioning

S. Smith et al. / Parallel Computing 74 (2018) 99–117 105

Fig. 5. Asynchronous SGD strategies for P = 4 processes. (a) S = 1 stratum layers. The longest mode is partitioned and other modes are updated asyn-

chronously. (b) S = 2 stratum layers. The longest mode is partitioned and S teams of P / S asynchronously update at the end of each stratum.

to optimally load-balance the slices of each mode [23] . After partitioning and distributing non-zeros, we use our shared-

memory ALS kernels without modification. After a factor matrix is updated, we use an all-to-all collective communication

to exchange the new rows.

4.3. Parallel SGD

Processing non-zeros in a totally random fashion requires O(nnz (R)) work per epoch to shuffle the non-zeros and results

in random access patterns to the matrix factors. We instead use a more coarse-grained approach and randomize only one

mode of the tensor, i.e., we randomize the processing order of the trees in the CSF structure (Fig. 4) but sequentially access

non-zeros within each tree. This approach reduces the cost of shuffling to O(I) and retains the cache-friendly access pattern

to the matrix factors that is provided by the sorted indices in CSF. Our shared-memory SGD algorithm uses a Hogwild

approach and processes the trees in parallel without synchronization constructs [24] . Choosing which mode to randomize

requires careful consideration, because SGD may not converge if updates are not sufficiently stochastic. This is demonstrated

in Section 6.3 .

In a distributed-memory setting, we refer to a group of blocks in the P M stratification grid (Fig. 3) that share a coordinate

as a stratum layer . For example, blocks of coordinate (i , :, :) are in the i th stratum layer along the first mode. We partition

the grid by first selecting the longest mode and decomposing it in a 1D fashion. Each process is assigned to a unique stratum

layer in the longest mode. This privatizes the largest matrix factor, meaning no processes can produce updates which overlap

with the another process’ local portion. Thus, there will not be any communication associated with the largest mode during

the factorization.

The number of strata increases exponentially with the number of modes. Assuming the number of non-zeros is constant,

and therefore the work per epoch is constant, the average work per stratum that can be processed in parallel decreases

exponentially. Many real-world tensors have modes with skewed dimensions. For example, a tensor of health records will

have significantly more unique patients than unique medical procedures or doctors. The lengths of the dense modes can be

much smaller than the number of available cores. In this case, the amount of parallelism is limited by the shortest mode

(the number of blocks in a stratum equals min (I 1 , ..., I M

), where I m

is the length of m th mode).

In order to address these parallelism challenges, we extend ASGD to tensors, which allows multiple processes to update

the same row of a factor matrix with their local copies. ASGD can trade-off the staleness of factor matrices for increased

parallelism by adjusting the number of copies and the frequency of synchronizing the copies. Our implementation is pa-

rameterized with the number of stratum layers, S , which determines the number of strata as S M−1 . We can set S = P (which

reduces ASGD to the usual stratified SGD) for tensors with a few modes or set S < P for tensors with more modes. When

S < P , since each stratum has only S independent blocks, P / S processes need to update the same range of factor matrices

simultaneously, resulting in up to P / S copies of a factor matrix row. Specifically, we partition an M -mode tensor into a

P × S M−1 grid and assign P mode-1 layers to each process. Then, we group every P / S processes as a team with total S teams.

This process is shown in Fig. 5 .

We partition each factor matrix among P processes, aligning with the grid used for the tensor partitioning. At the begin-

ning of a stratum, each process sends the rows of the factor matrices that it owns to the other processors that need them.

By our construction, a factor matrix row will be sent to one team, thus limiting the number of copies to P / S . Then, each

process goes through the non-zeros of the current stratum it owns, updating the corresponding rows of factor matrices.

After the update, processes send the updated rows back to their owners. Finally, processes compute weighted sums of the

received updated rows, where the weights are the number of non-zeros which updated the particular row. For example,

for a 3-mode tensor R and a given stratum, suppose process p processes 2 non-zeros in a mode-2 slice R (: , i, :) and p
1 2

106 S. Smith et al. / Parallel Computing 74 (2018) 99–117

Fig. 6. The P M -way tiling scheme used in CCD++ for P = 3 threads.

processes 1 non-zeros in the same slice. At the end of the stratum, the owner of i th row computes a weighted sum of the

local copies of i th row of mode-2 factor matrix from p 1 and p 2 , using 2/3 and 1/3 as their weights, respectively. Since we

synchronize the factor matrices every stratum, the number of synchronizations per epoch is S M−1 .

ASGD allows us to alleviate the limited amount of parallelism and frequent communication, the primary challenges of

SGD, especially for high-mode tensors. Still, compared to ALS and CCD++, SGD has higher communication volume, which can

be analyzed as follows. For each stratum, a process receives the rows of factor matrices that correspond to the non-zeros it

needs to process, which equals the sum of number of non-empty slices of each mode except for the first mode (which is

completely privatized). In a worst case (and not an uncommon case for highly sparse tensors), we have only a few non-zeros

per slice, leading to receiving O(F nnz (R p,s)) floating point numbers for each mode for the sub-tensor R p,s processed by

process p at stratum s . Summing over all processes and strata results in O(MF nnz (R)) total communication volume. It is

important to receive only the required factor matrix rows corresponding to non-empty slices to be processed. Otherwise,

the total communication volume will be O

(
S M−2 F

∑ M

m =2 I m

)
as analyzed by Shin and Kang [27] .

4.4. Parallel CCD++

As discussed in Section 3.3 , CCD++ implementations follow a similar parallelization strategy as ALS on shared-memory

systems. Following Eq. (5) , all αi ’s and β i ’s are independent subproblems and can be computed in parallel. However, unlike

ALS, it is not advantageous to use separate CSF representations for each mode in order to extract coarse-grained parallelism.

This is due to the added (M −1) nnz (R) operations that would be required for updating multiple residual tensors. Therefore,

we restrict ourselves to a single tensor and turn to other decomposition strategies.

We leverage the P M -way tiling strategy developed for parallelizing MTTKRP with a single CSF [30] . Shown in Fig. 6 , an M -

dimensional grid is imposed on R , with each dimension having P chunks. This allows P threads to partition any mode of R
into P independent chunks, each consisting of P M−1 tiles. Each mode of R can thus be updated without parallel overheads

such as reductions or synchronization.

Conveniently, because threads access whole layers of tiles at a time, we do not need each of the P M tiles to have a bal-

anced number of non-zeros. Instead, only the layers themselves need to be balanced. We use chains-on-chains partitioning

to determine the layer boundaries in each mode, resulting in load-balanced parallel execution.

In a distributed-memory setting, the communication requirements of CCD++ closely follow those of MTTKRP. A minor

variation comes from CCD++ being a column-major method, and thus we must exchange partial results and updated columns

F times per mode instead of exchanging full rows of size F once per mode. Unlike ALS, exchanging partial results does not

cause a prohibitive amount of communication. We can therefore choose from the recently proposed fine-grained [15] and

medium-grained [31] decompositions for MTTKRP. We opt for the medium-grained decomposition, which imposes an M

dimensional grid over R . The medium-grained decomposition varies from our tiling strategy in that there are only as many

cells in the grid as processes. After distributing R over a grid, our shared-memory parallelization strategy is applied by each

process independently.

4.5. Dense mode replication

ALS and CCD++ parallelize over the dimensions of R . As discussed in Section 4.3 , real-world tensors have skewed mode

lengths. Simply parallelizing over the short, dense modes is insufficient because the number of threads can easily outnumber

the slices. Additionally, the dense modes often have non-zeros that are not uniformly distributed, leading to further load

imbalance.

The issue of dense modes was first addressed by Shao [25] for shared-memory ALS when I < P . Non-zeros are instead

divided among threads and each thread computes a local set of H

T
i H i and H

T
i vec (R (i, : , :)) . A parallel reduction is then

used to combine all partial results before the Cholesky factorization. We adopt this solution in our own ALS implementation

and parallelize directly over non-zeros when the mode is dense. We use the tiling mechanism employed by CCD++ to load

S. Smith et al. / Parallel Computing 74 (2018) 99–117 107

balance non-zeros. The tensor is still stored using CSF, and thus the optimizations to achieve BLAS-3 performance can still

be employed.

CCD++ uses a similar mechanism for handling dense modes. CCD++ only constructs one representation of R which is

already tiled for parallelism. There is no advantage to tiling the dense modes because they will not be partitioned, and so

we use a P M −d -way tiling on a tensor with d dense modes. Each thread then computes local αi and β i and we aggregate

them with a parallel reduction when the mode is dense.

The same decomposition strategies apply to distributed-memory computation. The factors representing dense modes

are replicated on all processes. Instead of doing a coarse- or medium-grained decomposition to establish communication

patterns, a simple all-to-all reduction is used to aggregate partial computations.

5. Improving convergence of ALS and CCD++ via randomization

Non-convex optimization problems such as (2) are susceptible to converging to local minima. Algorithms such as SGD and

randomized block coordinate descent [8,20] have been used with great success because they have the ability to escape local

minima when a deterministic descent algorithm would instead converge. While randomized algorithms typically provide no

guarantees on converging to a globally optimal solution, in practice they often converge faster and arrive at higher quality

local minima than their deterministic counterparts.

The success of these randomized methods motivates the addition of randomization to ALS and CCD++. Careful attention

must be paid in order to avoid introducing additional computation or communication and to maintain the degree of available

parallelism. In the following discussion we refer to the factor matrices as A

(1)
, . . . , A

(M) for notational convenience.

5.1. Randomized ALS

An epoch of ALS traditionally updates A

(1)
, . . . , A

(M) in a cyclic fashion. A cyclic scheme means that A

(m) will always

be updated using the latest A

(m −1)
, which in turn was updated using the latest A

(m −2)
, and so on. Thus, after the fac-

tor matrices are initialized, the optimization process is entirely deterministic. Instead, we propose to introduce mode-level

randomization and apply a random permutation π : { 1 , . . . , M} → { 1 , . . . , M} to the tensor modes each epoch. This random-

ization scheme allows A

(π(m)) to be updated using the latest state of a different mode each epoch.

Mode-level randomization can be implemented with negligible overhead. If each process uses the same reproducible

pseudo-random number generator, then π can be constructed locally by each process and does not need to be communi-

cated. Thus, the only cost of randomization is the construction of π , which is negligible.

5.2. Randomized CCD++

CCD++ presents two opportunities for low-overhead randomization: rank-level and mode-level . Rank-level randomization

updates the F rank-one tensors in a random order instead of cyclically. Within each rank-one optimization, CCD++ can lever-

age mode-level randomization by altering the order of the updates to columns A

(1) (: , f) , . . . , A

(M) (: , f) . Like ALS, the only

overheads associated with randomization are the construction of two permutations of size F and M , both of which are

negligible.

Additional randomized behavior could conceivably be incorporated into ALS and CCD++ by making multiple passes over

the factors and updating random subsets of the rows each time. However, we do not explore this option because it reduces

the degree of available parallelism from the length of the mode to the number of rows in the current block. Moreover, the

already-unstructured communication pattern becomes dynamic due to different sets of rows being updated and communi-

cated each pass.

6. Experimental methodology and results

6.1. Experimental setup

We use the Cori supercomputer at NERSC. Each compute node has 128 GB of memory and is equipped with two sockets

of 16-core Intel Xeon E5-2698 v3 that has 40 MB last-level cache. The compute nodes are interconnected via Cray Aries

with Dragonfly topology. Our ALS, SGD, and CCD++ implementations are made part of the open source tensor factorization

library, SPLATT [29] . We use double-precision floating-point numbers and 64-bit integers. We use the Intel compiler version

16.0.0 with the -xCORE-AVX2 option for instructions available in the Haswell generation of Xeon processors, Cray MPI

version 7.3.1, and Intel MKL version 11.3.0 for LAPACK routines used in ALS. Compute jobs are scheduled with Slurm version

16.05.03. We run one MPI rank per socket (two ranks per node) and one OpenMP thread per core for SGD and CCD++, and

one MPI rank per node for ALS. We use the bold driver heuristic [2] for a dynamic step size parameter in SGD with an initial

value of 10 −3 .

We follow the recommender systems community and use root-mean-square error (RMSE) as a measure of factorization

quality. RMSE was the metric used by the Netflix Prize [3] , where the first algorithm to improve the baseline RMSE by 10%

108 S. Smith et al. / Parallel Computing 74 (2018) 99–117

Table 2

Summary of training datasets.

Dataset NNZ Dimensions Mem. (GB)

Movielens [11] 20M 138K, 27K, 234 0.5

Netflix [3] 80M 480K, 17K, 73 2.4

Outpatient [5] 87M 1.6M, 6K, 13K, 6K, 1K, 192K 4.5

Yahoo! [7] 210M 1M, 625K, 133 6.3

Amazon [19] 1.4B 4.8M, 1.7M, 1.8M 41.5

Patents [28] 2.9B 46, 240K, 240K 85.7

K, M , and B stand for thousand, million, and billion, respectively. NNZ is

the number of non-zeros in the training dataset. Mem. is the memory re-

quired to store the tensor as a list of (coordinate, value) tuples, measured

in gigabytes.

was awarded one million dollars. RMSE is defined as

RMSE =

√ ∑

R (: , : , :) L (i, j, k) 2

nnz (R)
.

Datasets are split into 80% training , 10% validation , and 10% test sets. The training set is used to compute the factorization.

RMSE is computed each epoch using the validation set, and convergence is detected when the RMSE does not improve

for twenty epochs. The final factorization quality is determined by the test set. All algorithms are given the same random

initialization for fairness.

6.2. Datasets

Table 2 summarizes the tensors that we use for evaluation. The reported non-zeros and memory requirements reflect

only that of the training data, because that is the portion of the computation that we focus on in this work. We work with

real-world datasets coming from a variety of domains. Movielens, Netflix and Yahoo! are (user, item, month) product rating

tuples. Values in Movielens and Netflix range from 1 to 5 and Yahoo! values range from 1 to 100. Amazon is formed from

(user, item, word) tuples taken from product reviews. Patents is formed from (year, word, word) pairwise co-occurrences

taken from United States utility patents from years 1969 through 2014. Non-zero R (i, j, k) is equal to log (f jk), where f jk
is the number of times terms j and k appeared in a seven-word window during year i . Outpatient is a six-mode tensor

of (patient, institution, physician, diagnoses, procedure, day) tuples formed from synthetic outpatient Medicare claims. We

selected non-zeros from the original data in order to have three-, four-, five-, and six-mode versions of this dataset with

the same number of non-zeros. The Amazon, Patents, and Outpatient datasets are publicly available in the FROSTT tensor

collection [28] .

Throughout the remaining discussion, we will use appropriate subsets of our datasets based on the subject of the exper-

iment. For example, when discussing convergence properties of the various optimization algorithms, we will focus on the

ratings tensors (i.e., Movielens, Netflix, and Yahoo!) due to them requiring many iterations to converge and their prevalence

in the matrix and tensor completion community. As another example, the synthetic Outpatient tensor converges too quickly

for a convergence study, but has a large number of modes and allows for an evaluation on the scalability for higher order

tensors.

6.3. Intra-method evaluation

6.3.1. ALS

Fig. 7 shows the effects of BLAS-3 routines and dense mode replication while factoring the Yahoo! tensor with F = 10 .

With neither optimization, each ALS epoch takes 359 s on average and we achieve a 22.3 × speedup on 32 cores. BLAS-

3 routines improve the runtime by 9 × , but speedup is reduced to 20.5 × . Finally, by replicating the dense mode across

cores and using a parallel reduction on partial products, we achieve 24.2 × speedup with 32 cores and a resulting 219 ×
improvement over the original serial implementation.

6.3.2. CCD++

Fig. 8 shows the effects of dense mode replication on CCD++. Dense mode replication will not affect serial runtime,

and so we show speedup as we scale the number of threads. Speedup is improved from 4.6 × to 16.2 × due to improved

load balance from mode-replication and also from temporal locality. Note that super-linear speedup is observed, reaching

2.3 × with two cores. The p × p tiling of R for p threads results in a smaller portion of the factor matrices accessed at a

time, improving temporal locality. Interestingly, super-linear speedup was also observed in the original CCD++ evaluation for

matrices [36] .

Despite the improved speedup, CCD++ sees little improvement after 16 cores (one full socket) due to NUMA effects and

the memory-bound nature of the algorithm. Compared to ALS, CCD++ performs a factor of F fewer FLOPs on every non-

zero that is accessed. Additionally, CCD++ being a column-oriented method requires MF passes per epoch over the sparsity

S. Smith et al. / Parallel Computing 74 (2018) 99–117 109

Fig. 7. Effects of ALS optimizations during a rank-10 factorization of the Yahoo! tensor. noopt is a baseline ALS implementation with a CSF data structure.

tile delays rank-1 updates to use the BLAS-3 dsyrk routine. tile+dense includes tile and also dense mode replication.

Fig. 8. Effects of CCD++ optimizations during a rank-10 factorization of the Yahoo! tensor. noopt is a baseline CCD++ implementation with the CSF data

structure. dense uses dense mode replication.

structure of R , compared to M times for ALS and one time for SGD. We show in Section 6.8 that this limitation can be

solved by simply using one MPI process per socket.

6.3.3. SGD

Fig. 9 shows the effects of coarse-grained randomization on SGD convergence. We use a full random traversal of the

tensor as a baseline and compare against two CSF configurations. The first configuration, CSF-S, sorts the modes in non-

decreasing order with the smallest mode placed at the top of the data structure. CSF-S is the default mode ordering used by

SPLATT due to it typically resulting in the highest level of compression [33] . CSF-L sorts the modes in non-increasing order,

with the longest mode placed at the top of the CSF structure. CSF-L effectively trades additional storage for increased ran-

domization and higher degrees of parallelism. CSF-S has the fastest per-epoch runtime but fails to converge. CSF-L exhibits

similar per-epoch convergence compared to the baseline, but the computational savings afforded by the CSF data structure

results in a faster time-to-solution. We therefore use CSF-L as the default in the remaining experiments.

Fig. 10 shows the effects of stratification on convergence. We evaluate three algorithms across two factorizations: fully

asynchronous, fully stratified, and a hybrid algorithm with 16 stratum layers, totaling 256 strata. The hybrid configuration

outperforms both baselines for the rank-10 factorization and converges to a higher quality solution in less time. All three

algorithms are competitive for rank-40, but the hybrid ultimately reaches a lower RMSE.

110 S. Smith et al. / Parallel Computing 74 (2018) 99–117

Fig. 9. Effects of randomization strategy on SGD convergence rate during a serial rank-40 factorization of the Yahoo! tensor. COORD uses complete ran-

domization on a coordinate form tensor. CSF-S randomizes over the shortest mode. CSF-L randomizes over the longest mode.

Fig. 10. Convergence rates for SGD parallelization strategies using 32 compute nodes on the Yahoo! dataset. F denotes the rank of the factorization. S

denotes the number of stratum layers, scaling from fully asynchronous (S1) to fully stratified (S64).

6.4. Communication volume

Fig. 11 shows the average communication volume per epoch. CCD++ consistently has a lower communication volume

than SGD and ALS due to its medium-grained decomposition. The communication volume for SGD increases until four

nodes (eight ranks) are used, and then sharply decreases. The communication volume of SGD scales with the number of

strata used, which we limit to 64. Recall that SGD uses S M−1 strata for an M -mode tensor. Therefore, we see volume in-

crease until we reach the maximum number of strata. From that point communication is limited to within strata, and we

see communication volume decrease. The communication volume of ALS increases until eight nodes and then stays near

constant. ALS uses a coarse-grained decomposition which in the worst case requires each communication of entire factors

per epoch.

6.5. Strong scaling

Fig. 12 shows strong scaling results. For SGD, we again limit the number of strata to 64 which provides a good trade-

off between convergence rate and parallelism. As discussed in the evaluation of communication volume, SGD primarily

introduces overhead until the maximum number of strata is reached, and after that point we begin to overcome the com-

munication overheads. SGD only scales to eight nodes on the Amazon tensor. This is because Amazon is significantly more

sparse than Netflix and Yahoo! and as a result SGD performs less work per stratum, resulting in high communication costs.

ALS is unable to process the Amazon and Patents tensors on as few nodes as SGD and CCD++ due to it requiring three

copies of R during factorization. Neither ALS nor CCD++ are consistently faster per epoch at 32 nodes. CCD++ begins slower

on all datasets but out-scales ALS on all but Yahoo!, which does not have enough non-zeros to effectively parallelize over 64

nodes (2048 cores). The disparity between CCD++ and other algorithms on Amazon is due to its large size being more taxing

on memory bandwidth. CCD++ is able to scale through 512 nodes (16384 cores) on Patents due to its high density, resulting

S. Smith et al. / Parallel Computing 74 (2018) 99–117 111

Fig. 11. Average communication volume per node on the Yahoo! dataset. CCD++ and SGD use two MPI ranks per node and ALS uses one.

in a small amount of communication and memory bandwidth relative to the computational load. ALS is unable to scale

past 32 nodes on Patents due to its short mode lengths, which result in a load-imbalanced coarse-grained decomposition.

The second and third modes are too long to treat as dense (i.e., the storage costs of normal equations are prohibitive). In

contrast, the medium-grained decomposition used by CCD++ is able to find a load balanced distribution on Patents.

6.6. Rank scaling

Fig. 13 shows the effects varying the rank of the factorization. We scale from rank 10 to 80 on the Yahoo! dataset. CCD++

and SGD both have O(F nnz (R)) complexity, so we expect the runtime to increase by 8 × as we scale F . ALS, on the other

hand, has complexity O(F 2 nnz (R) + IF 3) . The F 2 nnz (R) term will dominate in most scenarios because users are interested

in low rank factorizations and because I � nnz (R) for most tensors. Under this assumption, we expect the runtime of ALS

to increase by a factor of 80 2 / 10 2 = 64 .

CCD++ sees the expected linear increase in runtime on both 32 and 1024 cores: 7.9 × and 7.6 × , respectively. SGD scales

sub-linearly and only sees 2.4 × and 4.2 × increases on 32 and 1024 cores, respectively. The sub-linear effects are due to

the way SGD accesses the matrix factors. SGD only ever accesses entire rows of the factors, leading to spatial locality and

vectorized inner loops. We do not see the same effects for CCD++ because it accesses the factors in a strided manner that

is dependent on the sparsity pattern. Additionally, CCD++ must traverse the sparsity pattern of the tensor F times for each

mode, compared to once for SGD. Surprisingly, ALS only sees 9.8 × and 10.1 × increase in runtime at 32 and 1024 cores,

respectively. While the work does increase quadratically, all of the quadratic functions are performed by BLAS-3 routines on

small, dense matrices. The work that depends on the sparsity pattern of R is an MTTKRP operation, which has the same

spatial locality as SGD and a cheaper complexity of O(F nnz (R)) . The BLAS-3 routines will eventually out-scale the cost of

the MTTKRP operation, but factorizations of such a high rank are unlikely to be useful to a domain expert.

6.7. Mode scaling

Fig. 14 shows the scalability of our algorithms on the Outpatient dataset as we increase the number of tensor modes

while keeping the number of non-zeros constant. ALS sees a roughly linear increase in runtime, matching the computational

complexity in Table 1 . The runtime of the sixth mode increases super-linearly, which we attribute to the sixth mode being

longer than most others and ALS having a O(IF 3) complexity component. CCD++ exhibits severe slowdown as the number

of modes is increased. This is due to CCD++ doing MF passes over R per epoch and performing only O(nnz (R)) work per

pass. The memory-bound nature of CCD++ is exaggerated as the number of modes increases. SGD has a nearly constant

runtime due to it only performing one pass over R per epoch, regardless of the number of modes. Additionally, higher-

order tensors such as Outpatient have several dense modes which will exhibit high temporal locality, leaving the system’s

memory bandwidth free for streaming through the single representation of R . SGD appears to be an attractive choice for

higher-order tensors. We cautiously recommend it, however, because situations may arise in which many stratum layers are

required to maintain convergence, negatively impacting performance.

6.8. Comparison against the state-of-the-art

In Fig. 15 we compare our ALS and CCD++ algorithms against the state-of-the-art MPI implementations [13] . We scale

from 1 to 1024 cores on the Yahoo! tensor with F = 10 . We use one MPI rank per node for opt-ALS due to the high speedup

112 S. Smith et al. / Parallel Computing 74 (2018) 99–117

Fig. 12. Strong scaling the optimized ALS, SGD, and CCD++ algorithms. Each node has 32 cores.

Fig. 13. Effects of increasing factorization rank on the Yahoo! dataset.

S. Smith et al. / Parallel Computing 74 (2018) 99–117 113

Fig. 14. Average time per epoch with 16 nodes while scaling the number of modes using the Outpatient dataset.

Fig. 15. Comparison of the presented ALS and CCD++ algorithms (prefixed opt) against the state-of-the-art MPI implementations (prefixed base) on a

rank-10 factorization of the Yahoo! tensor.

it achieves on 32 cores and also due to the high communication volume that comes with a coarse-grained decomposition.

Throughout the comparison we refer to the existing implementations as “base-ALS” and “base-CCD++” and our own as “opt-

ALS” and “opt-CCD++”.

On one core, opt-ALS is 7 × faster than base-ALS due to the BLAS-3 performance. opt-ALS then scales to achieve 353 ×
speedup at 1024 cores, compared to the 13.5 × speedup of base-ALS. The improvements in speedup are due to the coarse-

grained decomposition used by opt-ALS which reduces the communication volume from O(IF 2) to O(IF) words. The differ-

ence in communication requirements is observed in the ratio of communication to computation: base-ALS spends 95% of

the total runtime communicating, compared to opt-ALS which spends 39% of its runtime communicating. opt-ALS is 185 ×
faster than base-ALS when both use 1024 cores.

Serial opt-CCD++ is 2.2 × faster than base-CCD++ due to the operation reduction and improved cache locality resulting

from the CSF data structure. The locality improvements are also present in the ALS results, but due to ALS being a compute-

bound algorithm they are not observed except for very small values of F . On 1024 cores, opt-CCD++ and base-CCD++ achieve

685 × and 74.2 × speedup, respectively. The disparity in speedups is attributed to the large amount of communication

performed by base-CCD++, in which 69% of the total runtime is spent in communication routines. In comparison, opt-CCD++

spends 25% of the total runtime communicating. The medium-grained decomposition used by opt-CCD++ results in a smaller

communication volume than the arbitrary decomposition used by base-CCD++. Communication volume is further reduced

by utilizing sparse communication and only sends an updated value to the processes that require it.

We also note that with the configuration using one MPI rank per socket, opt-CCD++ achieves a 30 × speedup on 32 cores

compared to 16.2 × with a pure OpenMP configuration.

6.9. Convergence

We now evaluate the time-to-solution of ALS, CCD++, and SGD. Fig. 16 shows convergence of our optimized algorithms

using 1, 32, and 1024 cores. SGD is the most successful algorithm in a serial setting. For F = 10 , SGD converges within

1500 s and achieves a quality that takes ALS over twice as long to reach. SGD sees a similar advantage when F = 40 , but

ALS ultimately reaches a higher quality solution shortly after SGD converges.

114 S. Smith et al. / Parallel Computing 74 (2018) 99–117

Fig. 16. Convergence rates for parallel methods on the Yahoo! dataset with factorization ranks 10 (F10) and 40 (F40). Ticks are placed every five epochs.

On a single node, ALS outperforms SGD and CCD++ for both F = 10 and F = 40 . Since ALS has the fastest per-epoch times

in addition to making the most progress per epoch, it is the recommended algorithm for small-to-moderate node counts.

CCD++ is also competitive in the multi-core environment and has the added benefit of having a smaller memory footprint

due to only storing a single copy of R . Trends continue as we move to a large-scale distributed system and ALS narrowly

bests CCD++ for F = 40 . While ALS still converges faster than SGD and CCD++, CCD++ is more scalable in distribute-memory

environments due to its lower communication volume.

S. Smith et al. / Parallel Computing 74 (2018) 99–117 115

Fig. 17. Effects of randomization on ALS and CCD++ convergence during rank-40 factorizations of three datasets. cyclic uses no randomization, mode uses

mode-level, rank uses rank-level, and rank+mode uses both rank- and mode-level randomization.

116 S. Smith et al. / Parallel Computing 74 (2018) 99–117

Fig. 18. The number of non-zero rank-one components (effective rank) during a rank-40 factorization of the Netflix dataset.

6.10. Effects of randomization on ALS and CCD++

We now explore the convergence benefits offered by randomization during ALS and CCD++. Fig. 17 shows the conver-

gence per epoch when applying mode-level randomization to ALS and combinations of mode- and rank-level randomization

to CCD++. In each case, we show both the value of the objective function and the validation RMSE. Observing the objec-

tive function offers insights into the effects on the actual optimization algorithm, whereas observing the validation RMSE

measures the predictive abilities of the resulting model (i.e., its usefulness to a domain specialist).

Both algorithms benefit from randomization on the Movielens dataset. Randomized ALS requires 66% fewer epochs to

arrive at a validation RMSE which is 0.3% lower than cyclic. Likewise, all variations of randomization improve the validation

RMSE of CCD++. The best performance is achieved by rank-level randomization, which converges 16% faster than cyclic and

improves the solution again by 0.3%. The objective function is improved in all cases, and therefore the gains are attributed

to an optimization algorithm which converges more quickly to a better local minimum.

Netflix likewise benefits from randomization in terms of both convergence rate and validation RMSE. Interestingly, mode-

level randomization achieves the best validation RMSE for both ALS and CCD++, but at the same time arrives at the worst

objective value. Randomization allows the optimization algorithm to learn a more general, albeit less optimized solution.

We find that algorithms which use mode-level randomization tend to learn models with empty columns, reducing the

rank of the factorization. We explore this phenomenon in Fig. 18 . We plot the number of non-zero rank-one components,

which refer to as the effective rank of the factorization. ALS and CCD++ learn models with ranks 32 and 25, respectively. The

lower-rank models do not fit the training data as well, and thus have a higher objective value. However, due to their lower

complexity and sufficiently good model of the data, they are able to better predict unknown entries in the validation set.

Lastly, Yahoo! does not benefit from randomization and the algorithms which use mode-level randomization achieve

notably worse objective values and validation RMSEs. The lower-rank factorizations learned via randomization are not able

to capture the training data sufficiently well to result in a predictive model.

7. Conclusions

We explored the design and implementation of three optimization algorithms for tensor completion: ALS, SGD, and

CCD++. We focused on modern architectures with shared- and distributed-memory parallelism. We solved issues such

as memory- and operation-efficiency, cache locality, load balance, and communication. Following our improvements, we

achieve speedups up through 16384 cores and are up to 185 × faster than state-of-the-art parallel methods. We further

improved the convergence rates of ALS and CCD++ by introducing randomization during the optimization procedure.

When comparing algorithms for tensor completion, time-to-solution is the most important detail for end users. We com-

pared convergence rates in three configurations: serial, a multi-core system, and a large-scale distributed system and showed

that no algorithm performs best in all three environments. SGD is most competitive in a serial environment, ALS is recom-

mended for shared-memory systems, and both ALS and CCD++ are competitive on distributed systems. Using our develop-

ments, the time-to-solution on large datasets is reduced from hours to seconds.

S. Smith et al. / Parallel Computing 74 (2018) 99–117 117

Acknowledgments

This work is an extended and revised version of a preliminary conference paper [32] . The authors would like to thank

Mikhail Smelyanskiy for valuable discussions, Jeff Hammond for generously donating computing time at NERSC, and Karlsson

et al. for sharing source code used for evaluation. This work was supported in part by NSF (IIS-0905220 , OCI-1048018 ,

CNS-1162405 , IIS-1247632 , IIP-1414153 , IIS-1447788), Army Research Office (W911NF-14-1-0316), a University of Minnesota

Doctoral Dissertation Fellowship, Intel Software and Services Group, and the Digital Technology Center at the University of

Minnesota. Access to research and computing facilities was provided by the Digital Technology Center and the Minnesota

Supercomputing Institute. This research used resources of the National Energy Research Scientific Computing Center, a DOE

Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-

AC02-05CH11231 .

References

[1] M. Baskaran , B. Meister , N. Vasilache , R. Lethin , Efficient and scalable computations with sparse tensors, in: High Performance Extreme Computing

(HPEC), 2012 IEEE Conference on, IEEE, 2012, pp. 1–6 .

[2] R. Battiti , Accelerated backpropagation learning: two optimization methods, Complex Syst. 3 (4) (1989) 331–342 .
[3] J. Bennett , S. Lanning , The netflix prize, in: Proceedings of KDD Cup and Workshop, vol. 2007, 2007, p. 35 .

[4] J.D. Carroll , J.-J. Chang , Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition,
Psychometrika 35 (3) (1970) 283–319 .

[5] Center for Medicare and Medicaid Services, CMS data entrepreneurs synthetic public use file (DE-SynPUF), 2010.
[6] J.H. Choi , S. Vishwanathan , DFacTo: distributed factorization of tensors, in: Advances in Neural Information Processing Systems, 2014, pp. 1296–1304 .

[7] G. Dror , N. Koenigstein , Y. Koren , M. Weimer , The yahoo! music dataset and kdd-cup’11., in: KDD Cup, 2012, pp. 8–18 .
[8] O. Fercoq , P. Richtárik , Accelerated, parallel, and proximal coordinate descent, SIAM J. Optim. 25 (4) (2015) 1997–2023 .

[9] M. Gates , H. Anzt , J. Kurzak , J. Dongarra , Accelerating collaborative filtering using concepts from high performance computing, in: Big Data (Big Data),

2015 IEEE International Conference on, IEEE, 2015, pp. 667–676 .
[10] R. Gemulla , E. Nijkamp , P.J. Haas , Y. Sismanis , Large-scale matrix factorization with distributed stochastic gradient descent, in: Proceedings of the 17th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2011, pp. 69–77 .
[11] F.M. Harper , J.A. Konstan , The movielens datasets: history and context, ACM Trans. Interact. Intell. Syst. 5 (4) (2016) 19 .

[12] J.C. Ho , J. Ghosh , J. Sun , Marble: high-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization, in: Proceed-
ings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2014, pp. 115–124 .

[13] L. Karlsson , D. Kressner , A. Uschmajew , Parallel algorithms for tensor completion in the CP format, Parallel Comput. 57 (2016) 222–234 .

[14] O. Kaya , B. Uçar , High-Performance Parallel Algorithms for the Tucker Decomposition of Higher Order Sparse Tensors, Ph.D. thesis, Inria-Research
Centre Grenoble–Rhône-Alpes, 2015 .

[15] O. Kaya , B. Uçar , Scalable sparse tensor decompositions in distributed memory systems, in: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ACM, 2015, p. 77 .

[16] H.A.L. Kiers , Towards a standardized notation and terminology in multiway analysis, J. Chemom. 14 (3) (20 0 0) 105–122 .
[17] T.G. Kolda , B.W. Bader , Tensor decompositions and applications, SIAM Rev. 51 (3) (2009) 455–500 .

[18] J. Li , C. Battaglino , I. Perros , J. Sun , R. Vuduc , An input-adaptive and in-place approach to dense tensor-times-matrix multiply, in: Proceedings of the

International Conference for High Performance Computing, Networking, Storage and Analysis, ACM, 2015, p. 76 .
[19] J. McAuley , J. Leskovec , Hidden factors and hidden topics: understanding rating dimensions with review text, in: Proceedings of the 7th ACM Confer-

ence on Recommender Systems, ACM, 2013, pp. 165–172 .
[20] Y. Nesterov , Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM J. Optim. 22 (2) (2012) 341–362 .

[21] D. Nion , N.D. Sidiropoulos , Tensor algebra and multidimensional harmonic retrieval in signal processing for mimo radar, Signal Process. IEEE Trans. 58
(11) (2010) 5693–5705 .

[22] F. Petroni , L. Querzoni , GASGD: stochastic gradient descent for distributed asynchronous matrix completion via graph partitioning., in: Proceedings of

the 8th ACM Conference on Recommender systems, ACM, 2014, pp. 241–248 .
[23] A. Pınar , C. Aykanat , Fast optimal load balancing algorithms for 1d partitioning, J. Parallel Distrib. Comput. 64 (8) (2004) 974–996 .

[24] B. Recht , C. Re , S. Wright , F. Niu , Hogwild: a lock-free approach to parallelizing stochastic gradient descent, in: Advances in Neural Information Pro-
cessing Systems, 2011, pp. 693–701 .

[25] W. Shao , Tensor Completion, Master’s thesis, Universität des Saarlandes Saarbrücken, 2012 .
[26] Y. Shi , A. Karatzoglou , L. Baltrunas , M. Larson , A. Hanjalic , N. Oliver , Tfmap: optimizing map for top-n context-aware recommendation, in: Proceedings

of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, 2012, pp. 155–164 .

[27] K. Shin , U. Kang , Distributed methods for high-dimensional and large-scale tensor factorization, in: Data Mining (ICDM), 2014 IEEE International
Conference on, 2014, pp. 989–994 .

[28] S. Smith, J.W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, G. Karypis, FROSTT: the formidable repository of open sparse tensors and tools, 2017.
[29] S. Smith, G. Karypis, SPLATT: The Surprisingly ParalleL spArse Tensor Toolkit, (http://cs.umn.edu/ ∼splatt/).

[30] S. Smith , G. Karypis , Tensor-matrix products with a compressed sparse tensor, in: Proceedings of the 5th Workshop on Irregular Applications: Archi-
tectures and Algorithms, ACM, 2015, p. 7 .

[31] S. Smith , G. Karypis , A medium-grained algorithm for distributed sparse tensor factorization, 30th IEEE International Parallel & Distributed Processing

Symposium (IPDPS’16), 2016 .
[32] S. Smith , J. Park , G. Karypis , An exploration of optimization algorithms for high performance tensor completion, in: Proceedings of the 2016 ACM/IEEE

conference on Supercomputing, 2016 .
[33] S. Smith , N. Ravindran , N.D. Sidiropoulos , G. Karypis , SPLATT: efficient and parallel sparse tensor-matrix multiplication, International Parallel & Dis-

tributed Processing Symposium (IPDPS’15), 2015 .
[34] J.M. ten Berge , N.D. Sidiropoulos , On uniqueness in candecomp/parafac, Psychometrika 67 (3) (2002) 399–409 .

[35] Y. Wang , R. Chen , J. Ghosh , J.C. Denny , A. Kho , Y. Chen , B.A. Malin , J. Sun , Rubik: knowledge guided tensor factorization and completion for health data
analytics, in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2015, pp. 1265–1274 .

[36] H.-F. Yu , C.-J. Hsieh , S. Si , I. Dhillon , Scalable coordinate descent approaches to parallel matrix factorization for recommender systems, in: 2012 IEEE

12th International Conference on Data Mining, IEEE, 2012, pp. 765–774 .
[37] Q. Zhang , M.W. Berry , B.T. Lamb , T. Samuel , A parallel nonnegative tensor factorization algorithm for mining global climate data, in: Computational

Science–ICCS 2009, Springer, 2009, pp. 405–415 .
[38] Y. Zhou , D. Wilkinson , R. Schreiber , R. Pan , Large-scale parallel collaborative filtering for the netflix prize, in: Algorithmic Aspects in Information and

Management, Springer, 2008, pp. 337–348 .

https://doi.org/10.13039/100000001
https://doi.org/10.13039/100000183
https://doi.org/10.13039/100000015
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0001
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0001
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0001
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0001
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0001
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0002
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0002
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0003
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0003
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0003
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0004
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0004
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0004
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0005
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0005
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0005
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0006
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0006
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0006
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0006
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0006
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0007
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0007
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0007
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0010
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0010
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0010
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0012
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0012
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0012
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0012
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0013
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0013
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0013
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0014
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0014
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0014
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0015
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0015
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0016
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0016
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0016
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0017
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0017
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0017
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0017
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0017
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0017
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0018
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0018
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0018
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0019
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0019
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0020
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0020
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0020
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0021
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0021
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0021
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0022
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0022
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0022
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0023
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0023
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0023
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0023
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0023
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0024
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0024
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0025
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0025
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0025
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0025
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0025
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0025
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0025
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0026
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0026
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0026
http://cs.umn.edu/~splatt/
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0027
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0027
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0027
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0028
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0028
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0028
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0029
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0029
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0029
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0029
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0030
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0030
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0030
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0030
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0030
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0031
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0031
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0031
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0032
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0032
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0032
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0032
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0032
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0032
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0032
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0032
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0032
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0033
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0033
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0033
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0033
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0033
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0034
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0034
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0034
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0034
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0034
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0035
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0035
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0035
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0035
http://refhub.elsevier.com/S0167-8191(17)30184-9/sbref0035

	HPC formulations of optimization algorithms for tensor completion
	1 Introduction
	2 Preliminaries
	2.1 Tensor notation & factorization
	2.2 Tensor completion with the CPD

	3 Related work
	3.1 Alternating least squares
	3.2 Stochastic gradient descent
	3.3 Coordinate descent

	4 Algorithms for high performance tensor completion
	4.1 Efficient loss computation with a compressed sparse tensor
	4.2 Parallel ALS
	4.3 Parallel SGD
	4.4 Parallel CCD++
	4.5 Dense mode replication

	5 Improving convergence of ALS and CCD++ via randomization
	5.1 Randomized ALS
	5.2 Randomized CCD++

	6 Experimental methodology and results
	6.1 Experimental setup
	6.2 Datasets
	6.3 Intra-method evaluation
	6.3.1 ALS
	6.3.2 CCD++
	6.3.3 SGD

	6.4 Communication volume
	6.5 Strong scaling
	6.6 Rank scaling
	6.7 Mode scaling
	6.8 Comparison against the state-of-the-art
	6.9 Convergence
	6.10 Effects of randomization on ALS and CCD++

	7 Conclusions
	 Acknowledgments
	 References

