A Polynomial Time Approximation Scheme for Rectilinear Steiner Minimum
Tree Construction in the Presence of Obstacles

Jian Liu  Ying Zhao

Eugene Shragowitz George Karypis

Department of Computer Science and Engineering
University of Minnesota
USA

ABSTRACT

One problem in VLSI physical designs is to route multi-
terminal nets in the presence of obstacles. This paper
presents a polynomial time approximation scheme for
construction of a rectilinear Steiner minimum tree in the
presence of obstacles. Given any m rectangular obstacles,
n nodes and € >0, the scheme finds a (1+¢&)-

approximation to the optimum solution in the time

nee, providing an alternative of previous heuristics

Remark: m is assumed to be a constant, otherwise
when we solve the sub-problem in a brute force
manner, we cannot declare that it can be solved in
constant time.

Keywords Rectilinear Steiner Minimum Tree in presence
of obstacles, VLSI routing, PTAS, Guillotine cut,
approximation algorithm.

1. INTRODUCTION

One important issue in VLSI physical design is routing a
net that connects multiple terminals. The routing process
practically is conducted in the presence of obstacles.
These obstacles are occupied by either logic blocks or
wires in the previous routed nets. This problem began to
draw more and more attention [1]{2]. Even in the absence
of obstacles, finding a rectilinear Steiner minimum tree is
NP complete [3]. It implies that finding a RSMT in the
presence of obstacles cannot be solved in polynomial time
exactly since the introduction of obstacles even makes it
more difficult to the find the minimum distance between
two points.

Our paper presents a polynomial time approximation
scheme for construction of a rectilinear Steiner minimum
tree in the presence of obstacles. The rest of the paper is
organized as following. In section 2, the problem
formulation is given. Section 3 provides a preliminary of
Guillotine cut techniques. The algorithms are described in
the Section 4 and the time complexity is analyzed. The
conclusions and future work is addressed in the section 5.
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2. PROBLEM FORMULATION

This problem arises from VLSI routing phase. A net
connecting multiple terminals is expected to be connected
in a shortest tree which avoids obstacles like wires and/or
vias (see Fig. 1). Without any loss of generality, we
assume that all obstacles are rectangles as a rectangular
obstacle can be decomposed into a set of rectangles. In
VLSI layout, the space requirements between the
boundaries of obstacles and nets are applied. Each
rectangular is expanded in four edges with the length d.
After this expansion, the nets are allowed to overlap with
the boundary of obstacles.

The problem is then formulated as following: Given m
rectangular obstacles and n terminals on one plane, the
goal is to find a shortest rectilinear tree that interconnects
the terminals without intersecting the interior of any
obstacle.

In the following sections, we demonstrate such
problems can be solved using the Guillotine-cut technique

[5116].
] [ ]

Figure 1: A rectilinear Steiner Tree in presence of
Obstacles

3. GUILLOTINE CUT PRELIMINARIES

Guillotine-cut technique is a strong approach that
establishes a framework to solve a class of geometric
optimization problems. It has been applied to solve
different problems [8][9]. In the section, the fundamental
ideas of this methodology are summarized as follows. The
guillotine subdivision technique is introduced initially to
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solve rectangular partition problems in [5] [6]. For
simplicity and convenience, notations similar to those in
[10] are used.

Definition m-dark point: Given a partition, a point p
is a horizontal (vertical) m-dark point if the horizontal
(vertical) line passing through p intersects at least m
vertical segments on the left of p (above p) and at least m
vertical segments on the right of p (below p).

Definition m-guillotine cut: A horizontal (vertical)
cut is an m-guillotine cut if it consists of horizontal
(vertical) m-dark points on the cut line.

Let H,_(V,) denotes the sets of all horizontal

(vertical) m-dark points, the following lemma can be
proved.
Lemma 1: There exists either a horizontal line L such

that length(LNH ) <length(LNAV,) or a
vertical line L

length(LN H,,) 2 length(LNV,,)

such that

This lemma implies that there always exists an m-
guillotine cut. As the cost of k-guillotine cut can be
symmetric charged to the k segments left/right sides or
upper/lower sides. The increased cost by added k-
Guillotine cuts is bounded by 1/k of total cost of charged
segment. It also can be proved that there exist such
horizontal (vertical) cut lines passing through the vertices
of the partition, or the midpoints between the vertices.
Based on this lemma, the following theorem can be
further proved.

Theorem 1: Every rectangular partition P can be
modified into an m-guillotine rectangular partition P” with
total length

length(P) < (1+ Y/ length(P)

The above theorem means that any partition can be
transformed into a sequence of k-guillotine cut partition
until it can be the rectangle contains <2k terminals. In this
case, the one optimal solution can be solved in brute force
manner. M guillotine cut features dynamic programming.
If all the possible divisions are explored exhaustively, the
optimal solution is bounded by (l+1/k) OPT. To assure
(1+1/k) <= (1+ &) which is the expected performance
ratio, k> (1/ €) is required.

Based on the m-guillotine techniques, PTASs for
various geometric optimization problems can be solved,
such as TSP, SMT, and K-MST etc. The definition of m-
guillotine cut may vary to accommodate the subject. In
the following text, we demonstrate how this technique can
be applied to solve the above routing problem.

4. ALGORITHM AND COMPLEXITY ANALYSIS

4.1. The existence of PTAS

It is proved in[1] [3][4] that obstacle-avoiding Steiner
trees are solvable on the extended Hanan grids induced by
the input terminals and obstacles. The extended Hanan
grids (Fig. 2) are the vertical and horizontal lines passing
through each terminal and the escape lines bounding each
obstacle. Give n terminals and m obstacles, the size of the
extended Hanan grids can be bounded by O(n+m). As
proved in [1][4], there exists an optimal RSMT only
containing segments on the extended Hanan grids. The
proof can be summarized as a sequence of shifts. If there
are segments that do not lie on the extended Hanan grids,
then these segments can be shifted left or right (up or
down) until they hit the extended Hanan grids and the
resulting RSMT is still an optimal RSMT.
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Figure 2: A rectilinear Steiner Tree in presence of
Obstacles on the Hanan grids

Theorem 2:
The obstacle-avoiding Rectilinear Steiner Tree problem
hasa (1+1/k) PTAS (Polynomial Time Approximation

Scheme).

Proof: Let P be a set of n terminals and let O be a set of m
obstacles in the plane. Let T be an optimal OARSMT for
P and O with length L. Without lose of generality, we
assume that T lies on the extended Hanan Grid. We then
show that T can be modified to be a k-guillotine
OARSMT T’ with the total length less than (1+1/k)L. An
OARSMT can be treated as a rectilinear partition with all
the edges as cut lines. A k-guillotine OARSMT contains a
sequence of k-guillotine cuts that partition the whole area
adaptively until the resulting rectangles only contain one
terminal. The modification of T to T’ are the following.
Each time, we consider the cut lines passing through the
midpoint of the extended Hanan Grids. By lemma 1, there
exists a k-guillotine cut whose length can be
symmetrically charged off to parallel 2k edges in T, in
which each edge is charged off 1/2k of the length. Then
we add all the segments in this k-guillotine cut into T.
Since every edge in T will not be charged more than once
from one direction, the total added length of k-guillotine
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cuts is at most 1/k L. We call the resulting rectilinear
partition E, which contains all the edges in T and all
newly added k-guillotine cuts. Adding new edges to T
may introduce loops. By removing edges to break loops
and adjusting edges to remove non-terminal endpoints, E
can be modified to a feasible OARSMT T’ with length
less then the length of E. Thus, T’ is a k-guillotine
OARSMT with length less than (1+1/k)L.

4.2. Dynamic programming

An optimal k-guillotine OARSMT (obstacle-avoiding
Rectilinear Steiner Minimum Tree) for n terminals and m
obstacles can be found by applying dynamic
programming. The running time of the dynamic
programming is O((n + m) 0%+ 20(,”'")) and the
optimal k-guillotine OARSMT is (1 + 1/k)-approximation
for the OARSMT.

Given an OARSMT problem with n terminals and m
obstacles, we now consider the extended Hanan grids plus
all the midpoint grids. The x and y coordinates of these
grids determine all-possible sub rectangles to find the
optimal solution.

The subproblem of this dynamic programming algorithm
is defined as follows: given a rectangle with boundary
conditions and a connection pattern, compute a minimum
length m-guitlotine obstacle-avoiding rectilinear Steiner
forest, such that the resulting edge set E of the forest is an
m-guillotine partition and connects terminals inside the
rectangle with crosspoints and segments on boundaries,
according to the connection pattern, without passing
through obstacles.

The number of sub rectangles is bounded by O(n+m)4,
since the corners of the boundary box are chosen from the
intersections of the extended Hanan grids plus all the
midpoint grids. The boundary conditions are given in the
following way. For each boundary, there are at most 2k
crosspoints and at most m k-guillotine cut segments,
noticing that k-guillotine subdivision does not increase the
number of obstacles in the either of the sub-problem. One
k-guillotine cut may consist of segments, since there are
obstacles present. Once the crosspoints for the k-
guillotine cut are finalized, the k-guillotine cut segments
are determined by input obstacles. Thus, we only
exhaustively enumerate the possible position of the
crosspoints. The number of possible boundary conditions
can be bounded by O((n+m)*). The connection
pattern is a partition of the crosspoints and k-guillotine
cut segments, such that the crosspoints and k-guillotine
cut segments can be connected within one set without
crossing the connecting edges of other sets. The number
of possible such partitions is O(2°**™) . Thus the total

number of the subproblems is O((n + m)H0%k+my

Remark: when we partition the rectangle into
the two subdivisions, each obstacle either
falls into one of them as whole, or be

partitioned into 2 obstacles, each of them falls

into one subdivisions, the number of
obstacles will not increase for the sub
problems.

The base sub-problem, i.e., rectangles that only contain
less than one terminal, can be solved in a brute force
manner. Other sub-problems can be solved recursively by
splitting the problem into two child problems using k-
guillotine cuts, and optimizing over all choices of m-
guillotine splits. When splitting the problem into two
child problems, connection patterns for the two child
problems are determined with no conflict to the
connection pattern of the original sub-problem. The all-
possible child problems splitting can be seen in the
following steps: choosing a cut line position within the
rectangle, locating at most 2k crosspoints at the cut line,
and determining connection patterns for the child problem
of the crosspoints and at most m k-guillotine cut segments
on the selected m-guillotine cut. Thus, each sub-problem

can be solved in O((n + m) > 290%™y
Combining the number of all-possible sub-problems
O((n+m)®+*2°%*™ Yy and the running time for one

sub-problem O((n + m)**' 2°**™) | we have the total
running  time of this dynamic
algorithm O((n + m)'%*+5 20¢%+my

programming

5. CONCLUSIONS AND FUTURE WORK

Guillotine cuts and portals are two important techniques
in designing PTAS. In this work, we adopt Guillotine cut
technique straightly to solve this problem. Our
approximation scheme only gives a polynomial time
algorithm with respect to the number of terminals. When
we consider the number of obstacles also as the input size,
the running time of the proposed dynamic programming is
not polynomial any more. Our next step research will
focus on eliminating this limitation. Also we will study
how to combine the portals techniques [11] with
guillotine cut to improve the computation complexity.
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