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Abstract—Adverse drug reactions (ADRs) are a main cause
of hospitalization and deaths worldwide. These unanticipated
episodes are generally infrequent, but almost all existing ADR
signaling techniques are designed to use dataset extracted from
spontaneous reporting systems or employed a predefined type
of information (e.g., drugs), which suffer from failures to detect
unexpected and latent ADRs. In this paper, we propose a novel
Feature-based Similarity model (FS) to detect the potential ADRs
for medical cases using the electronic patient dataset. FS is
tested on the real patient data retrieved from the US Food Drug
Administration that includes 54,070 patients detail information
and 9,567 ADRs records. Our model ranked all ADRs for the
given medical case that combined the information of drugs,
medical conditions, and patient profiles and can be applied in
therapy decision support systems and unexpected ADR warning
systems. The experimental results show that FS outperforms
comparing methods. This paper clearly illustrates the great
potential along the new direction of ADR signal generate from
health care administrative database.

I. INTRODUCTION

An adverse drug reaction (ADR) is a harmful reaction to
a currently administered drug [1]. In the U.S. alone, over 21K
ADRs were reported in 2004 [2], and it is estimated that each
year 6%∼7% of the hospitalized patients develop ADRs [3].
ADRs can lead to a potential of 100,000 deaths, making it the
fourth largest cause of death in the U.S. [4]. Therefore, it is
important to signal and predict a drug’s ADRs from preclinical
screening phase to post-market surveillance.

The ADRs signal algorithms can mainly be categorized in
two broad areas: (1) signal associations between Single-Drug
and ADR (SDA); (2) signal associations between Multiple-
Drugs and ADRs (MDA). In the SDA category, disproportion-
ality analysis (DPA) is the mainly used technique to detect
ADRs signals. DPA methodologies use frequency analysis
of 2 × 2 contingency tables to estimate surrogate measures
of statistical association between specific drug-event com-
binations mentioned in spontaneous reports (SRS), such as
Gamma Poisson Shrinker, Relative reporting ratio, and Report-
ing odds ratio [5]. However, the statistical detection methods
are not effective discover associations of multiple drugs and
ADRs. The ADRs prediction methods in the SDA area can
be categorized into drug-drug interactions (DDIs), protein-
target based, and drug-ADR based. Thomas et al. [6] used
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dependency parsing and combine linguistic information in an
machine learning-based approach to identify DDIs. However,
this methods relies on information about known DDI which
is a significant bottleneck, due to DDIs is usually lacking.
Jacob et al. [7] take pairs of drug-target as inputs for SVMs
with pairwise kernels to predict the association of drug and
target. However the prior knowledge of association between
drugs and proteins are requested. Lin et al. [8] developed
an “external link prediction” approach for predicting new
association of drug-ADR with using two snapshots of data
based on the intersection of SIDER and FAERS. However,
it also needs prior knowledge of specific association between
drugs and ADRs. There have some studies on detecting new
MDA, Caster et al. [9] used bayesian logistic regression on
the WHO SRS to address confounding by co-medication in
ADR surveillance. Harpaz et al. [10] applied association rule
mining with multiple-drugs to signal associations of drugs and
ADRs. However, these methods do not consider patient-profile
(age, gender, and indications), which might cause false positive
problems [11].

The focus of this paper is to develop methods that can
predict the ADRs that a patient may develop given three types
of information: patient profile, medical conditions, and drugs.
For predicting the association between specific case and ADRs
with high probability, we use our model to rank all ADRs
based on the above mentioned information and select the top
n ADRs could be developed by this patient.

This technique can be applied in two scenarios. (1) Ther-
apy Decision Support: almost drugs could cause ADRs for
patient with a certain probability, so the risk-benefit analysis
is necessary whenever a doctor makes a prescription. (2) Early
Warning System: ADR monitor agents like FDA and WHO can
use such a method to detect unexpected ADRs.

To solve the ADRs problem, we developed a method that
borrows the idea from recommender systems and referring to
ADR and medical case as “user” and “item” respectively in
our story. Our aim is to detect credible ADRs for a specific
medical case that consists of patient profile, medical conditions
and drugs information using the administrative database, FDA
Adverse Event Reporting System (FAERS). For achieving
this, we propose the F eature-based Similarity (FS) model
that extends the Feature-based method to the ADR detection
problem to effectively mine the unexpected/potential ADRs.



We evaluate the performance of FS by using a dataset
obtained from FAEAR that contains 9,567 ADRs and 54,070
medical cases. It is compared to the commonly used Naive
Feature-based similarity function, Cosine similarity function
and Popularity-based function. The experimental results show
that FS outperforms other competing methods in term of
prediction quality of ADRs.

The remainder of the paper is organized as follows. Section
2 defines the notation that will be used throughout the paper.
Section 3 describes FS model that is used to learn the model.
Section 4 describes the evaluation methodology and the char-
acteristic of dataset. In section 5, the results and discussion are
provided. Finally, Section 6 provides the concluding remarks.

II. DEFINITIONS AND NOTATIONS

Throughout the paper, all vectors are row vectors and are
represented by bold lower case letters (e.g. fi). We will let
M (n, m) denote the space of real n×m matrices with n rows
and m columns. The ADR and medical case relation matrix is
represented by R. Each row in R corresponds to an ADR and
each column corresponds to an identified medical case. The
rth row of a matrix R is represented as ri. The entries of R
are binary, indicating the ADR is developed by the medical
case. The symbol ri,u represents the score computed by the
FS model.

All ADRs are denoted as the set U with size of nU , and
all medical cases are denoted as the set C with the size of
nC . R+

i represents the set of ADRs that is developed by
Casei.R−i represents the set of ADRs that is not developed by
Casei. Cu represents the set of medical cases that developed
ADRu. Cv represents the set of medical cases that developed
ADRv . Each case has a feature vector that represents some
intrinsic characteristics which compose patient profile, medical
conditions, and drugs. The feature vectors of all cases are
represented as the matrix F whose row fi corresponds to the
Casei. The number of feature vectors is referred to as nF .

III. METHODS

A. FS Model for Adverse Drug Reaction Prediction

Given the information associated with a medical case, a
way of determining if it could develop a particular ADR is
to compare the features describing that medical case against
the features of the known medical cases that have already
developed the ADR. That is, if fi is a vector containing
various features of the medical case under consideration,
and u is a certain ADR, then we can compute a score as∑
k∈Cu

sim(fk,fi), where Cu is the set of historical medical

cases that developed ADR u, and sim(fk,fi) is a function
that measures the similarity between the two medical cases’
feature vectors. The FS method that we developed uses an
approach, initially developed in the context of solving the cold-
start recommendation problem [12], to learn sim(fk,fi).

Specifically, for each ADR it estimates its own similarity
function that is defined as Equation 1.

ri,u = sim(i, u), (1)

where sim(i, u) is the ADR-specific similarity function that
is given by:

sim(i, u) =

l∑
d=1

∑
k∈Cu

mu,d × gsimd(i, k), (2)

where gsimd(·) is the dth global similarity function, l is the
number of global similarity functions, and mu,d is a scalar
that determines how much the dth global similarity function
contributes to the ADR-specific similarity function.

The similarity between two medical cases i and k under
the dth global similarity function gsim(·) is estimated using
the medical cases’ feature vectors as Equation 3.

gsimd(i, k) = wd · (fi � fk)T , (3)

where � is the element-wise Hadamard product operator [13],
fi and fk are the L2 normalized feature vectors of medical
case i and k respectively, wd is a weight vector and each entry
wd,c holds the weight of feature c under gsimd(·). Putting it
all together, the score ri,u of the given medical case i for the
ADR u is given by:

ri,u = sim(i, u) =

l∑
d=1

∑
k∈Cu

mu,d × gsimd(i, k)

=

l∑
d=1

∑
k∈Cu

mu,d ×wd · (fi � fk)T ,

(4)

Notice that the global similarity functions gsimd(·) and
their weight vectors are shared among all ADRs, while each
similarity functions has its own membership vector md that
determines its contribution to the medical case similarity
computations for each ADR. The weight vector wd is or-
thonormal in order to ensure the independence of the different
similarity functions. Since FS incorporates each ADR’s own
set of medical cases while applying the feature weights of
the similarity functions, our model can signal the unexpected
ADRs with high credibility.

The feature weights that are embodied by the similarity
functions can account for the relative importance of different
cases’ features with respect to different ADRs. On the other
hand, in the case of a low-dimensional matrix F where the
number of features is limited. That is, F is a long thin matrix,
which means the number of required similarity functions
can be potentially high as some features can be duplicated
appearing in many cases and accordingly appear in a large
number of ADRs’ records. This in turn results in the need for
multiple similarity functions.

B. Learning for FS Model

FS learns a model Θ = [M ,W ], where W =
[w1,w2, · · · ,wi, · · · ,wl], wi represents parameters of the
similarity functions and M is a |U| × l matrix of “ADRs’
memberships”. Prior to learning the model Θ, we need to
specify the number of global similarity functions that should
be learned. The inputs to the learning process are: matrix R,
matrix F , and number of ADR memberships l that we want
to learn.



The FS model uses the Bayesian Personalized Ranking
(BPR) loss function proposed by Rendle et al. [14]:

Lbpr = −
∑
i∈I

∑
u∈R+

i

v∈R−i

lnσ(ri,u(Θ)− ri,v(Θ)), (5)

where σ(x) is the sigmoid function that increases as x in-
creases. In this paper, x is the relative rank between ADRu

(that develops for the given medical case i) and ADRv (that
does not develop for the given medical case i) estimated as:

ri,uv(Θ) = ri,u(Θ)− ri,v(Θ). (6)

The relative rank ri,uv must be greater than 0, because σ(ri,uv)
increases with ri,uv and the loss function minimizes the
negative of σ(ri,uv) aggregated over all triplets (i, u, v) in the
entire training set. In the learning process of the BPR function,
the ranking score ri,u should be higher than ri,v , as the ranked
scores are used to select the highest n ADRs.

IV. EXPERIMENTS AND EVALUATION

We generated similarity matrices by incorporating the
patient profiles, medical conditions, and drugs. We then check
how well the FS model ranks the ADRs and how much this
performance can be improved by adding similarity matrices to
the interaction matrix.

A. ADRs Data

We evaluated the performance of the FS model on the
large-scaled real-world Quarterly Data extracted from the FDA
Adverse Event Reporting System. We used the latest database
with ASCII format that covers the period from January 1st,
1980 through 2013Q1. The dataset contains 54,070 medical
cases, 738,407 drugs, 454,435 medical conditions, and 9,567
ADRs. Each ADR is associated with a feature vector, whose
elements correspond to the historical medical cases. Each
medical case is associated with three types of feature: patient
profile, indications, and drugs.

B. Competing Methods

Personalized User Modelling Technique: the totally
personalized baseline method that we compare against is
inspired by the ideas from Billsus and Pazzani [15].

(1) CoSim: Cosine-Similarity with user profile is a personalized
neighborhood-based user modeling technique. The score ri,u
for ADRu over the given medical case i is estimated as:

rcos =

nCu∑
k=1

fi · fT
u,k

||fi||2 × ||fu,k||2
, (7)

the n ADRs with highest scores are selected as the ones that
develop for the given medical cases i.

(2) Feature-based Similarity: it is equivalent to FS with
having a single global similarity function and the weight
assigned to each feature is 1.

rdot =

nCu∑
k=1

fi · fT
u,k

|C|
, (8)

where nCu is the number of medical cases that have developed
ADRu, fi is the feature vector of the given medical case, and
fT
u,k is the feature vector of Casek that has developed ADRu.

Popularity-based Similarity: in this case, we calculate the
ADR’s popularity across the medical cases. Then we compute
the intersection of each, given the medical case’s top-n ADR
list:

rpop =
∑
i∈C

|Mi ∩Ni|
|Ni|
|C|

, (9)

where Ni represents the set of actual ADRs that developed for
the given medical case, Mi is n times of Ni be selected from
the top-n ADR list predicted for the given medical case.

C. Evaluation Metric

We propose a new metric to evaluate the signaling quality,
which is defined as:

HitRate@n =

nC∑
i=1

|ADRi ∩ADRp|
|C|

(10)

where ADRi is the set of actual ADRs that developed for
the given medical case, and ADRp is n times of ADRi

that be selected from this medical case’s ranked ADR list.
HitRate@n measures how many selected ADRs from the
medical case’s top n list actually developed. This metric is
estimated for each medical case and averaged over all cases.

D. Experimental Settings

We employed the 5-fold Leave-One-Out-Cross-Validation
(LOOCV) to evaluate the performance of the proposed model.
The FS model is learned on the training set and estimated
over the validation set via the HitRate@n metric. The FS
model contains seven parameters, λw, λu, λv , µreg, µorth,
γu, and γv . At the step of model selection, we tested all
combinations of the following values: {0.0001, 0.001, 0.01}
for λw, {0.001, 0.01} for λu and λv , {0.1 ∼ 0.5} for µreg

and µorth, {0.01, 0.05, 0.1} for γu and γv , {1 ∼ 3} for l.
The relation of model’s parameter selection and the evaluation
performance will be discussed in detail in the next section.

V. PERFORMANCE RESULTS AND DISCUSSION

In this section, we first present the effect of employing
different model parameters on signaling quality of FS. Next,
we compare the results of our model and competing methods.

A. Effects of Model Parameters

In the FS model, penalization parameter µorth is responsi-
ble for orthogonality among the feature weight vector w with

dth membership, and µorth

l∑
d=1
d′ 6=d

(wd ·wT
d′) does not play a role

in the learning process. In this case the penalty parameter µreg

controls the wd’s complexity which plays the key role in the
model learning process. Figure 1 shows how the HitRate@n
(n = 2) varies with λw and µreg associated with the different
number of memberships over the FAER dataset. In general,
µorth should be less than µreg . That is because the number
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(c) l = 3

Fig. 1: Effect of the Learning Rate λw, Penalty Parameter µreg and Number of Membership l for the FAER Dataset

of constraints accompanied with µreg is equals to l while the
number of constraints accompanied with µorth is on the order
of O(l2).

B. Comparison Results

TABLE I: Comparison on HitRate@n with Evaluating l

HitRate@npop HitRate@ncos HitRate@ndot l HitRate@nFS

0.0421128 0.0425058 0.058686

1 0.116384
2 0.116478
3 0.116539
4 0.116489
5 0.116522

We investigate the effect of employing n = 2, in estimating
HitRate@n on the performance over FS and other competing
methods as shown in Table I. For the FS model, we varied
the membership l = [1 ∼ 5] with an increment of 1 and
highlighted the best performance. For the high dimensional
FAER’s dataset, we set parameters as γu = 0.1, γv = 0.1,
λu = 0.001, λu = 0.001, µreg = 0.1, µorth = 0.1, and
λw = 0.0001.

VI. CONCLUSION

We presented a new feature-based similarity model FS for
signaling adverse drug reactions, and propose a new evaluation
metric HitRate@n to evaluate the model. This can help
doctors reduce the risk when prescribing and also can assist
ADR monitor agents or pharmaceutical industries by providing
early warnings for unexpected adverse drug reactions. The key
feature of our approach is to use a neighborhood-based method
in learning Feature-based similarity models. The FS model
learns feature weights with the purpose of stressing the effect
of the features that will lead to better accuracy. The model
was compared against the Personalized Popularity method,
the Simple Feature-based method, and the Cosine Similarity
method, the experimental results show that FS outperforms all
the other methods in terms of signaling quality.
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