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Abstract

In recent years the development of computational techniques that
build models to correctly assign chemical compounds to various
classes or to retrieve potential drug-like compounds has been an
active area of research. These techniques are used extensively at
various phases during the drug development process. Many of
the best-performing techniques for these tasks, utilize a descriptor-
based representation of the compound that captures various aspects
of the underlying molecular graph’s topology. In this paper we in-
troduce and describe algorithms for efficiently generating a new set
of descriptors that are derived from all connected acyclic fragments
present in the molecular graphs. In addition, we introduce an ex-
tension to existing vector-based kernel functions to take into ac-
count the length of the fragments present in the descriptors. We
experimentally evaluate the performance of the new descriptors in
the context of SVM-based classification and ranked-retrieval on 28
classification and retrieval problems derived from 17 datasets. Our
experiments show that for both the classification and retrieval tasks,
these new descriptors consistently and statistically outperform pre-
viously developed schemes based on the widely used fingerprint-
and Maccs keys-based descriptors, as well as recently introduced
descriptors obtained by mining and analyzing the structure of the
molecular graphs.

1 Introduction

Discovery, design and development of new drugs is an ex-
pensive and challenging process. Any new drug should not
only produce the desired response to the disease but should
do so with minimal side effects. One of the key steps in the
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drug design process is the identification of the chemical com-
pounds (hit compounds or just hits) that display the desired
and reproducible behavior against the specific biomolecular
target [22]. This represents a significant hurdle in the early
stages of drug discovery. Therefore, computational tech-
niques that build models to correctly assign chemical com-
pounds to various classes or retrieve compounds of desired
class from a database have become popular in the pharma-
ceutical industry.

Over the last twenty years extensive research has been car-
ried out to identify representations of molecular graphs that
can build good classification models or retrieve actives from
a database in an effective way. Towards this goal, a number
of different approaches have been developed that represent
each compound by a set of descriptors that are based on fre-
quency, physiochemical properties as well as topological and
geometric substructures (fragments) [1,3,6,8,13,28–30,36].
Historically, the best performing and most widely used de-
scriptors have been based on fingerprints, which represent
each molecular graph by a fixed length bit-vector derived by
enumerating all bounded length cycles and paths in the graph
(e.g., Daylight [29]), and on sets of fragments that have been
identified a priori by domain experts (e.g., Maccs keys [30]).
However, in recent years, research in the data mining com-
munity has generated new classes of descriptors based on
frequently occurring substructures [8] and selected cycles &
trees [13] that have been shown to achieve promising results.

In this paper, we build on the experience gained from this
earlier work and introduce a new set of fragment-based de-
scriptors that are designed to better capture the underlying
structure of molecular graphs. These descriptors are derived
from all connected acyclic fragments (AF) present in the
graphs and their length (number of bonds) is constrained not
to exceed a user-supplied parameter. We present an efficient
algorithm for finding these descriptors and study their effec-
tiveness for the tasks of building classification models and of
retrieving active compounds from a chemical compound li-
brary. Within the context of these tasks we also study the ef-
fectiveness of different descriptor-based similarity measures
for both deriving kernel functions for SVM-based classifica-
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tion and for ranked-retrieval.
To assess the effectiveness of the new class of descriptors

we perform a comprehensive experimental study using 28
different classification and retrieval problems derived from
17 datasets containing up to 78,995 compounds. Our study
compares the performance achieved by the acyclic fragments
to that achieved by previously developed schemes (finger-
prints [14], Maccs keys [30], frequent sub-structures [8], Cy-
cles & Trees [13]) as well as two subsets of AF, one contain-
ing the fragments that form paths (PF) and the other contain-
ing the fragments that form trees (TF).

Our experiments show that for both the classification and
the retrieval tasks, the AF descriptors consistently and statis-
tically outperform all previously developed schemes. More-
over, a kernel function introduced in this paper that takes into
account the length of the fragments present in the set of de-
scriptors lead to better overall results, especially when used
with the AF descriptors.

The rest of the paper is organized as follows. Section 2
provides some background on the molecular graph represen-
tation of chemical compounds. Section 3 describes the previ-
ously developed descriptors used in our experimental evalua-
tion. Section 4 provides a detailed description of the descrip-
tors introduced in this paper. Section 5 provides a detailed
description of the various kernel functions used. Section 6
contains experimental evaluation of the different descriptors
and also provides some trends and analysis from the experi-
ments. Section 7 provides concluding remarks on this work.

2 Representation of Chemical
Compounds

In this paper we represent each compound by its correspond-
ing molecular graph [19]. The vertices of these graphs cor-
respond to the various atoms (e.g., carbon, nitrogen, oxy-
gen, etc.), and the edges correspond to the bonds between
the atoms (e.g., single, double, etc.). Each of the vertices and
edges has a label associated with it. The labels on the vertices
correspond to the type of atoms and the labels on the edges
correspond to the type of bonds. The vertex labels (atom
typing) and edge labels (bond typing) used in this paper for
all the input chemical graphs and descriptors generated from
them (except fingerprints and Maccs keys) is the default typ-
ing used by Babel [23]. We apply two commonly used struc-
ture normalization transformations [22]. First, we label all
bonds in aromatic rings as aromatic (i.e., a different edge-
label), and second, we remove the hydrogen atoms that are
connected to carbon atoms (i.e., hydrogen-suppressed chem-
ical graphs). To generate fingerprints and Maccs keys we use
the Smiles [29] representation as an input.

3 Overview of Existing Fragment-Based
Descriptor Spaces

In this section, we briefly describe some of the most pop-
ular as well as recently introduced approaches to extract
fragment-based descriptors from molecular graphs.

3.1 Fingerprints

Fingerprints [29] are used to encode structural characteristics
of a chemical compound into a fixed bit vector and are used
extensively for various tasks in chemical informatics. These
fingerprints are typically generated by enumerating all cycles
and linear paths up to a given number of bonds and hashing
each of these cycles and paths into a fixed bit-string. The
specific bit-string that is generated depends on the number of
bonds, the number of bits that are set, the hashing function,
and the length of the bit-string. A desirable property of the
fingerprint-based descriptors is that they encode a very large
number of sub-structures into a compact representation. We
will refer to these descriptors as fp-n where n is the number
of bits that are used.

3.2 Maccs Keys (MK)

Molecular Design Limited (MDL) created the key based fin-
gerprints (Maccs Keys) [30] based on pattern matching of a
chemical compound structure to a pre-defined set of struc-
tural fragments that have been identified by domain experts
[9]. Each such structural fragment becomes a key and oc-
cupies a fixed position in the descriptor space. Therefore,
this approach relies on pre-defined rules to encapsulate the
molecular descriptions a-priori and does not learn them from
the chemical dataset.

This descriptor space is notably different from fingerprint
based descriptor space. Unlike fingerprints, no folding (hash-
ing) is performed on the sub-structures. The advantage of
such an approach over fingerprints is that sub-structures of
arbitrary topology can form a part of the descriptor space.
Moreover, the rules selected encode domain knowledge in a
compact descriptor space. But it also has a disadvantage of
potentially not being able to adapt to the characteristics for
a particular dataset and classification problem. We will refer
to this descriptor space as MK.

3.3 Cyclic patterns and Trees (CT)

Horovath et al [13] developed a method that is based on
representing every compound as a set of cycles and certain
kinds of trees. In particular, the idea is to identify all the bi-
connected components (blocks) of a chemical graph. Once
these blocks are identified, the first set of features is gener-
ated by enumerating up to a certain number of simple cy-
cles (bounded cyclicity) for the blocks. Once the cycles are
identified, all the blocks of the chemical graph are deleted.
The resulting graph is a collection of leftover trees forming
a forest. Each such tree is used as a descriptor. The final
descriptor space is the union of the cycles and leftover trees.
The tree patterns used in this representation are of a specific
topology and size that depends on the position of blocks in
the chemical graph. We will refer to this descriptor space as
CT.
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3.4 Frequent Sub-structures based Descrip-
tor Space (FS)

A number of methods have been proposed in recent years
to find frequently occurring sub-structures in a chemical
graph database [4, 15, 21, 37]. Frequent sub-structures of a
chemical graph database D are defined as all sub-structures
that are present in at least σ|D|% of compounds of the
database, where σ is the minimum frequency requirement
(also called minimum support constraint). These frequent
sub-structures can be used as descriptors for the compounds
in that database. One of the important properties of the sub-
structures generated, like Maccs Keys, is that they can have
arbitrary topology. Moreover, every sub-structure generated
is connected and frequent (as determined by the minimum
support constraint σ).

Descriptor space formed out of frequently occurring sub-
structures depends on the value of σ. Therefore, unlike the
Maccs keys, the descriptor space can change for a particular
problem instance if the value of σ is changed. Moreover, un-
like fingerprints, all frequent subgraphs irrespective of their
size (number of bonds) form the descriptor space. A potential
disadvantage of this method is that it is unclear how to select
a suitable value of σ for a given problem. A very high value
will fail to discover important sub-structures whereas a very
low value will result in combinatorial explosion of frequent
subgraphs. We will refer to this descriptor space as FS.

4 Acyclic, Tree and Path
Fragments (AF, TF, and PF)

A careful analysis of the four descriptor spaces described
in Section 3 illustrate four dimensions along which these
schemes compare with each other and represent some of
the choices that have been explored in designing fragment-
based (or fragment-derived) descriptors for chemical com-
pounds. The first dimension is associated with weather the
fragments are determined directly from the dataset at hand
or they have been pre-identified by domain experts. Maccs
keys is an example of a descriptor space whose fragments
have been determined a priori whereas in all other schemes,
the fragments are determined directly from the dataset. The
second dimension is associated with the topological com-
plexity of the actual fragments. On one side of the spec-
trum, schemes like fingerprints use rather simple topologies
consisting of cycles and paths, whereas at the other end of
the spectrum, the frequent sub-structure-based descriptors al-
low fragments that correspond to arbitrarily connected sub-
graphs. The third dimension is associated with weather or not
the fragments are being precisely represented in the descrip-
tor space. Fingerprint-based descriptors, due to the hash-
ing approach that they use, lead to imprecise representations,
whereas the other three schemes are precise in the sense that
there is a one-to-one mapping between fragments and dimen-
sions of the descriptor space. Finally, the fourth dimension is
associated with the ability of the descriptor space to cover all
(or nearly all) of the dataset. Descriptor spaces created from

fingerprints and cycles & trees are guaranteed to contain frag-
ments or hashed fragments from each one of the compounds.
On the other hand, descriptor spaces corresponding to Maccs
keys and frequent sub-structures may lead to a descriptor-
based representation of the dataset in which some of the
compounds have no (or a very small number) of descriptors.
Descriptor spaces that are determined dynamically from the
dataset, use fragments with complex topologies, lead to pre-
cise representations, and have a high degree of coverage are
expected to perform better in the context of chemical com-
pound classification and retrieval as they allow for a better
representation of the underlying compounds.

In this section we introduce and describe algorithms for
efficient generation of a new descriptor space that we believe
better captures the desired characteristics along the above
four dimensions. This descriptor space consists of all con-
nected acyclic fragments up to a given length l (i.e., number
of bonds) that exist in the dataset at hand. The descriptor
space is determined dynamically from the dataset, the topol-
ogy of the fragments that it allows are trees and paths, leads
to a precise representation, and has 100% coverage. We will
refer to this descriptor space as Acyclic Fragments (AF).

In addition, we also derive two other sets of fragments
from the set of all acyclic fragments. The first, termed as Tree
Fragments (TF), is the collection of all fragments that have
at least one node of degree greater than two. This set forms
all the tree fragments. The second set, called Path Fragments
(PF), is just the set of linear paths where the degree of every
node in every fragment is less than or equal to two. Note that
AF = TF ∪ PF and TF ∪ PF = ∅.

Note that Path Fragments are exactly the same patterns
as the linear paths in fingerprints. Moreover, any frequent
sub-structure based descriptor space is a superset of Acyclic-
Fragments when the minimum support threshold (σ) is low
enough to generate frequent subgraphs having a frequency of
one.

4.1 Efficient Generation of Acyclic Fragments

To generate all connected acyclic fragments, we developed
an algorithm that was inspired by the recursive technique for
generating all the spanning trees of a graph G [34].

Consider an arbitrary edge e of G, and let Se(G) be the set
of spanning trees of G that contain e and S¬e(G) be the set
of all spanning trees of G that do not contain e. It is easy to
see that (i) Se(G)∩ S¬e(G) = ∅ and (ii) Se(G)∪ S¬e(G) is
equal to the set of all spanning trees of G, denoted by S(G).
Now, if S(G/e) denotes an edge contraction operation (i.e.,
the vertices incident on e are collapsed together) then Se(G)
can be obtained from S(G/e) by adding e. If G\e denotes
an edge deletion operation, then S¬e(G) is nothing more than
S(G\e). From the above observations we can come up with
the following recurrence relation for generating S(G)

S(G) =

{
∅, if G does not have any edge

eS(G/e) ∪ S(G\e), otherwise,
(1)
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where e is an arbitrary edge of G, and eS(G/e) denotes the
set of all spanning trees obtained by adding e to each span-
ning tree in S(G/e).

The recurrence relation of Equation 1 can be used to gen-
erate all the connected acyclic fragments of a certain length
l by modifying it in two different ways. These modifications
are needed to ensure that (i) the acyclic fragments that are re-
turned are connected, and (ii) only all the fragments of length
l are returned. The first can be achieved by imposing the con-
straint that the edge e must be incident on a vertex of G that
was obtained via an edge contraction operation, if such a ver-
tex exist. If G does not have any such vertex (i.e., it corre-
sponds to the original graph), then e is selected in an arbitrary
fashion. The length requirement can be ensured by terminat-
ing the recurrence relation when exactly l edges have been
selected. In light of these modifications, the new recurrence
relation that generates all the connected acyclic fragments of
length l, denoted by F (G, l) is given by

F (G, l) =

{
∅, if G has fewer than l edges or l = 0
eF (G/e, l− 1) ∪ F (G\e, l), otherwise,

(2)
where e is satisfies the above constraints.

5 Kernel Functions for chemical com-
pound classification

Given the descriptor space, each chemical compound can be
represented by a vector X whose ith dimension will have a
non-zero value if the compound contains that descriptor and
will have a value of zero otherwise. The value for each de-
scriptor that is present can be either one, leading to a vector
representation that captures presence or absence of the vari-
ous descriptors (referred to as binary vectors) or the number
of times that each descriptor occurs in the compound, leading
to a representation that also captures the frequency informa-
tion (referred to as frequency vectors).

Given the above vector representation of the chemical
compounds, the classification algorithms that we develop in
this paper use support vector machines (SVM) [32] as the un-
derlying learning methodology, as they have been shown to
be highly effective, especially in high dimensional spaces.

One of the key parameters that affects the performance of
SVM is the choice of the kernel function (K), that measures
the similarity between pairs of compounds. Any function
can be used as a kernel as long as, for any number n and
any possible set of distinct compounds {X1, . . . , Xn}, the
n×n Gram matrix defined by Ki,j = K(Xi, Xj) is symmet-
ric positive semidefinite. These functions are said to satisfy
Mercer’s conditions and are called Mercer kernels, or simply
valid kernels.

In this paper we use two different classes of kernel func-
tions that are derived from the widely used RBF kernel
function, and the less widely used Tanimoto coefficient1

1We also experimented with the linear kernel function but the results

[2,3,5,35]. The Tanimoto coefficient was selected because it
is used extensively in cheminformatics and has been shown
to be an effective way to measure the similarity between
chemical compound pairs [36].

Given the vector representation of two compounds X and
Y , the RBF and Tanimoto kernel functions are given by

Krbf(X, Y ) = exp(−‖X − Y ‖
2σ2

) (3)

Ktm(X, Y ) =

M∑
i=1

min(xi, yi)

M∑
i=1

max(xi, yi)
, (4)

where σ is a user supplied parameter and the terms xi and
yi are the values along the ith dimension of the X and Y
vectors, respectively. Note that in the case of binary vectors,
these will be either zero or one, whereas in the case of fre-
quency vectors these will be equal to the number of times the
ith descriptor exists in the two compounds. Moreover, note
that Tanimoto kernel is a valid kernel as it has been shown to
satisfy Mercer’s conditions [28].

One of the potential problems in using the above kernels
with descriptor spaces that contain fragments of different
lengths is that they contain no mechanism to ensure that de-
scriptors of various lengths contribute in a non-trivial way to
the computed kernel function values. This is especially true
for the AF, TF, and PF descriptor spaces in which each com-
pound tends to have a much larger number of longer length
fragments (e.g. length six and seven) than shorter length (e.g.
length two and three). To overcome this problem we modi-
fied the above kernel functions to give equal weight to the
fragments of each length. In the context of the RBF ker-
nel function, this is obtained as follows. Let X l and Y l

be the feature vectors of X and Y with respect to only the
features of length l, and let L be the length of the largest
feature. Then, the length-differentiated RBF kernel function
K∗

rbf(X, Y ) is given by

K∗
rbf(X, Y ) =

1
L

L∑
l=1

Krbf(Xl, Y l). (5)

The length-differentiated kernels for Tanimoto is derived in
a similar fashion. We will refer to these as the length-
differentiated kernel functions, and we will refer to the ones
that do not differentiate between different length fragments
as pooled kernel functions.

In summary, we studied four different flavors for each
kernel functions, one that is binary and pooled, frequency
and pooled, binary and length-differentiated and frequency
and length-differentiated. We will follow the convention
of using the symbols Kb, Kf , K∗

b , and K∗
f to refer to bi-

nary and pooled, frequency and pooled, binary and length-

were worse that either RBF or Tanimoto, so we are not including them here.
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differentiated and frequency, and length-differentiated kernel
functions, respectively.

6 Results

6.1 Datasets

The performance of the different descriptors and kernel func-
tions was assessed on 28 different classification problems
from 17 different datasets.

The size, distribution and compound characteristics of the
28 classification problems are shown in Table 1. Each of
the 28 classification problems is unique in that it has differ-
ent distribution of positive class (ranging from 1% in H2 to
50% in C1), different number of compounds (ranging from
the smallest with 559 compounds to largest with 78,995 com-
pounds) and compounds of different average sizes (ranging
from the 14 atoms per compound to 37 atoms per compound
on an average in C1 and H3 respectively).

Table 1: Properties of classification problems and Datasets.
D N N+ NA NA+ NA− NB NB+ NB−
NCI1 39001 1881 26 34 25 28 37 27
NCI109 39168 1893 26 34 25 28 37 27
NCI123 39497 2885 26 32 25 28 34 27
NCI145 38665 1786 26 34 25 28 37 27
NCI167 78995 9416 21 24 21 22 25 22
NCI220 866 282 24 24 25 26 25 26
NCI33 38649 1500 26 35 25 28 38 27
NCI330 41152 2266 22 28 21 23 30 23
NCI41 26425 1395 26 35 26 28 38 28
NCI47 38922 1840 26 34 25 28 37 27
NCI81 39199 2201 26 33 25 28 36 27
NCI83 26636 2092 26 33 25 28 35 28
H1 42389 1498 27 37 26 29 39 28
H2 41313 422 27 43 26 29 45 28
A1 34836 12376 25 25 25 25 25 25
H3 1498 422 37 43 34 39 45 37
D1 1309 116 24 27 23 25 28 25
D2 1305 112 24 25 23 25 27 25
D3 1501 308 26 36 23 28 38 25
D4 1728 536 26 32 23 28 34 25
P1 567 212 18 17 19 19 18 20
P2 574 164 19 17 19 19 18 20
P3 572 193 18 16 19 19 17 20
P4 559 170 18 17 19 19 17 20
C1 640 320 14 13 15 14 14 15
M1 1596 285 16 14 16 16 15 17
M2 1596 172 16 13 16 16 14 17
M3 1596 88 16 13 16 16 13 17

N is the total number of compounds in the dataset. N+ is the number of positives in
the dataset. NA and NB are the average number of atoms and bonds in each com-
pound. NA+ is the average number of atoms in each compound belonging to the
positive class and NA− is the average number of atoms in each compound belonging
to the negative class. Similarly NB+ and NB− are the corresponding numbers for
bonds. The numbers are rounded off to the nearest integer.

The first dataset is a part of the Predictive Toxicology
Evaluation Challenge [27]. There are four classification
problems one corresponding to each of the rodents MaleRats,
FemaleRats, MaleMice and FemaleMice and will be referred
as P1, P2, P3, and P4.

The second dataset is mutagenicity data from [12]. The
compounds in this dataset are classified as mutagens or non-
mutagens as determined by the Salmonella/microsome assay.
We will refer this dataset as C1.

The third dataset is obtained from the National Cancer
Institutes’s DTP AIDS Anti-viral Screen program [20, 26].
Three classification problems are formulated out of this

dataset. The first problem is designed to classify between
CM+CA and CI; the second between CA and CI, and the
third between CA and CM. We will refer to these problems
as H1, H2, and H3, respectively.

The fourth dataset was obtained from the Center of Com-
putational Drug Discovery’s anthrax project at the University
of Oxford [25]. The classification problem for this dataset is:
given a chemical compound classify it in to one of these two
classes, i.e., will the compound bind the anthrax toxin or not.
This classification problem is referred as A1.

A fifth dataset is provided by Dr. Ian Watson from Eli
Lilly Inc. and is described in [33]. Each drug compound
in this dataset is marked as Oral (O), Topical (T), Absorbent
(A) or Injectable (I) depending on the mode of administra-
tion of that drug. Four classification tasks are defined from
this dataset: between Oral and Absorbent D1, between Oral
and Topical D2, between Oral and Injectable D3 and between
Oral and everything else (Topical + Absorbent + Injectable)
as D3. This dataset is particularly different from the rest, in
that we try to distinguish between the 1728 marketed drugs
with different modes of administration.

Another dataset used in this study is the MAO
(Monoamine Oxidase) dataset [7]. The compounds of this
dataset have been categorized into four different classes (0,
1, 2 and 3) based on the levels of activity, with the lowest
labeled as 0 and the highest labeled as 3. We define three
classification problems based on this dataset: M1 with posi-
tive class compounds as labels 1, 2 and 3 and negative class
as compounds with label 0, M2 with positive class as labels
2 and 3 and negative class compounds as labels 0 and 1, and
finally the last problem M3 with positive class compounds as
label 3 and rest of the compounds in negative class.

The rest of the datasets are derived from the PubChem
website that pertain to the cancer cell lines [24]. Twelve
datasets are selected from the bioassay records for cancer cell
lines. Each of the NCI anti-cancer screens forms a classifi-
cation problem. The datasets that are selected belong to 12
different types of cancer screen. Since there is more than one
screen available for any particular types of cancer (for exam-
ple colon cancer, breast cancer etc.), we decided to use the
screen that had most number of compounds tested on it. The
class labels on these datasets is either active or inactive and
we used the original class labels associated with each com-
pound. Table 2 proves details of the 12 different bioassays
used for this study.

All the datasets required some data cleaning as for some
of the compounds we were unable to generate all of the seven
descriptor spaces. All such compounds were removed from
their respective datasets. This made the sets of compounds
used for different descriptors exactly the same and allowed
objective comparison of the seven descriptor spaces.

6.2 Experimental Methodology

The classification results were obtained by performing a 5-
way cross validation on the dataset, ensuring that the class
distribution in each fold is identical to the original dataset. In
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Table 2: Description of NCI cancer screen datasets.
Name (Bioassay-ID or AID) Description
NCI-H23 (NCI1) Human tumor (Non-Small Cell Lung) cell line growth inhibition assay
OVCAR-8 (NCI109) Human tumor (Ovarian) cell line growth inhibition assay
MOLT-4 (NCI123) Human tumor (Leukemia) cell line growth inhibition assay
SN12C (NCI145) SN12C Renal cell line
Yeast anti-cancer (NCI167) Yeast anti-cancer screen bub3 strain
CD8F1 (NCI220) In Vivo Anticancer Screen Tumor model Mammary Adenocarcinoma
UACC257 (NCI33) Human tumor (Melanoma) cell line growth inhibition assay
P388 in CD2F1 (NCI330) In Vivo Anticancer Screen tumor model P388 Leukemia (intraperitoneal)
PC-3 (NCI41) Human tumor (Prostate) cell line growth inhibition assay
SF-295 (NCI47) Human tumor (Central Nervous System) cell line growth inhibition assay
SW-620 (NCI81) Human tumor (Colon) cell line growth inhibition assay
MCF-7 (NCI83) Human tumor (Breast) cell line growth inhibition assay

each one of the cross validation experiments, the test-set was
never considered and the algorithm used only the training-set
to generate the descriptor space representation and to build
the classification model. The exact same training and test
sets were used in descriptor generation and cross validation
experiments for all the different schemes. For the SVM clas-
sifier we used the SVMLight library [17] with all the default
parameter settings except the kernel.

The performance of the newly developed descriptor
spaces was compared against the descriptors generated by
fingerprints, Maccs Keys, Cycles & Trees, and frequent sub-
structures. For fingerprints, we used Chemaxon’s fingerprint
program called Screen [14]. We experimented using 256-,
512-, 1024-, 2048-, 4196- and 8192-bit length fingerprints.
We used default settings of the two parameters: number of
bonds or maximum length of the pattern generated (up to
seven) and number of bits set by a pattern (three). We found
that 8192-bits produced better results (even though their per-
formance advantage was not statistically significant com-
pared to 2048- and 4196-bit fingerprints). For this reason, we
use 8192-bit fingerprints in all the comparisons against other
descriptors. To generate MDL Maccs keys (166 keys) we
use the MOE suite by Chemical Computing Group [11] For
Cyclic patterns and Trees, we use 1000 as the upper bound on
the number of cycles to be enumerated as described in [13].
To generate frequent sub-structures, we use the FSG algo-
rithm described in [21]. Table 3 contains the values of σ
used for positive and negative classes in each dataset.

In the context of fp-8192 the only kernel applicable is the
binary and pooled (Kb) extension of RBF and Tanimoto ker-
nels. This is because hashed fingerprints are inherently bi-
nary and not provide frequency information. In the context
of MK, only two kernels (Kb and Kf ) are applied. Also for
the RBF kernel, we normalize the vectors to be unit length
prior to learning the SVM models. We found that this nor-
malization lead to somewhat better results.

6.3 Performance Assessment Measures

The classification performance was assessed by computing
the ROC50 values [10], which is the area under the ROC
curve up to the first 50 false positives. This is a much more
appropriate performance assessment measure than traditional
ROC value for datasets with very small positive classes. This
is because for such problem settings, a user will most likely
stop examining the highest scoring predictions as soon as

Table 3: Support values for FS.
Datasets σ−% σ+% Datasets σ−% σ+%
NCI1 5.0 7.0 A1 5.0 3.0
NCI109 4.0 4.0 H3 8.0 8.0
NCI123 4.0 5.0 D1 5.0 10.0
NCI145 4.0 6.0 D2 5.0 32.0
NCI167 2.0 2.0 D3 5.0 10.0
NCI220 5.0 8.0 D4 5.0 12.0
NCI33 4.0 4.0 P1 3.0 3.0
NCI330 4.0 8.0 P2 3.0 3.0
NCI41 4.0 6.0 P3 3.0 3.0
NCI47 4.0 5.0 P4 3.0 3.0
NCI81 5.0 6.0 C1 2.0 2.0
NCI83 4.0 4.0 M1 1.5 1.75
H1 8.0 5.0 M2 1.45 1.5
H2 8.0 8.0 M3 1.25 3.0

he/she starts encountering a certain number of false posi-
tives [10].

We assess the ability of a particular descriptor set to iden-
tify positive compounds in the context of database screening
experiment by looking at the fraction of positive compounds
that were recovered in the top k hits. Specifically, we re-
port the fraction of positives recovered in the top k hits in a
database screening experiment in which every positive com-
pound is used as query. We call this metric normalized hit
rate (NHR) and it is computed as follows. Suppose N is
the number of compounds in a dataset, N+ is the number of
positive (active) compounds in that dataset and hitsk is the
number of positives found in the top k hits over all queries.
Then, the normalized hit rate is given by

NHR =
hitsk

(kN+)
· (6)

To compare the performance of a set of schemes across the
different datasets, we compute a summary statistics that we
refer to as the Average Relative Quality to the Best (ARQB)
as follows: Let ri,j be the ROC50 (NHR) value achieved by
the scheme j on the dataset i, and let r∗i be the maximum (i.e.
the best) ROC50 (NHR) value achieved for this dataset over
all the schemes. Then the ARQB for scheme j is equal to
1
T

(∑
i

ri,j

r∗
i

)
, where T is the number of datasets. An ARQB

value of one indicates that the scheme achieved the best re-
sults for all the datasets compared to the other schemes, and
a low ARQB value indicates a poorly performing scheme.

We used the Wilcoxon’s paired signed-rank test [16] to
compare the statistical significance of any two descriptors
based on the performance measures described above. This
test takes into account not only the sign of differences but
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also magnitude of these differences. It is generally a more
powerful test than student t-test especially for small number
of samples with unknown distributions. A p-value of 0.01 is
used as threshold for all comparisons.

6.4 Sensitivity on the Length of AF Descrip-
tors

To evaluate the impact of the fragment length in the classifi-
cation performance achieved by the AF descriptors, we per-
formed a study in which we varied the maximum fragment
length l from two to seven bonds. The results of this study
are shown in Table 4. These results were obtained using the
K∗

f Tanimoto-based kernel, which as will be shown later, is
one of the best performing kernels.

Table 4: ROC50 results for the Tanimoto K∗
f kernel for dif-

ferent lengths using AF descriptors.
D up to up to up to up to up to up to

l = 2 l = 3 l = 4 l = 5 l = 6 l = 7
NCI1 0.282 0.282 0.297 0.305 0.312 0.317
NCI109 0.266 0.266 0.278 0.285 0.290 0.296
NCI123 0.246 0.246 0.256 0.259 0.264 0.262
NCI145 0.292 0.292 0.306 0.319 0.328 0.334
NCI167 0.061 0.061 0.062 0.064 0.064 0.065
NCI220 0.252 0.252 0.247 0.244 0.240 0.238
NCI33 0.268 0.268 0.289 0.306 0.314 0.318
NCI330 0.327 0.327 0.338 0.343 0.343 0.341
NCI41 0.311 0.311 0.329 0.340 0.350 0.355
NCI47 0.269 0.269 0.284 0.294 0.302 0.305
NCI81 0.269 0.269 0.277 0.286 0.272 0.294
NCI83 0.293 0.293 0.306 0.314 0.316 0.316
H1 0.256 0.256 0.262 0.267 0.271 0.274
H2 0.603 0.603 0.615 0.624 0.634 0.641
A1 0.138 0.138 0.154 0.170 0.201 0.203
H3 0.602 0.602 0.613 0.620 0.626 0.632
D1 0.324 0.324 0.340 0.357 0.363 0.374
D2 0.552 0.552 0.566 0.577 0.580 0.583
D3 0.509 0.509 0.518 0.528 0.532 0.534
D4 0.466 0.466 0.479 0.485 0.489 0.490
P1 0.586 0.586 0.588 0.589 0.596 0.598
P2 0.516 0.516 0.514 0.506 0.501 0.500
P3 0.551 0.551 0.553 0.554 0.555 0.553
P4 0.634 0.634 0.642 0.649 0.651 0.653
C1 0.776 0.795 0.798 0.807 0.813 0.818
M1 0.446 0.446 0.443 0.439 0.436 0.438
M2 0.623 0.623 0.618 0.611 0.612 0.616
M3 0.775 0.775 0.773 0.770 0.773 0.777
ARQB 0.930 0.931 0.955 0.973 0.985 0.995

From these results we can see that the classification per-
formance tends to improve as l increases, and the scheme
that use up to length seven fragments achieve the best overall
performance. Most of these differences are statistically sig-
nificant with the only exception being l = 2 and l = 3, which
are not statistically different for p = 0.01.

Table 5 shows the number of acyclic fragments of vari-
ous length that were generated for each dataset, as well as
the time required to generate the fragments of length seven.
These results show that the number of fragments does in-
crease considerably with l, which essentially puts a practi-
cal upper bound on the length of the fragments that can be
used for classification. In fact, for l = 8 (not shown here),
the number of fragments were about three to five times more
than that for l = 7, which made it impractical to build SVM-
based classifier for many of the datasets. However, on the
positive side, the amount of time required to generate these

Table 5: Numbers of AF for different lengths l.
# of fragments runtime (in sec)

D l = 3 l = 5 l = 7 for l = 7
NCI1 6258 95835 1033757 1022
NCI109 6286 96124 1035681 1007
NCI123 6177 94701 1021345 1008
NCI145 6258 95403 1027123 998
NCI167 8537 123165 1250149 1338
NCI220 1568 13082 82992 22
NCI33 6203 95105 1026732 1030
NCI330 7378 101201 954487 796
NCI41 5313 80157 835764 724
NCI47 6237 95552 1030241 1028
NCI81 6278 95900 1035657 1015
NCI83 5349 80674 840101 716
H1 14369 170230 1389487 1312
H2 14248 168488 1371833 1251
A1 3231 66357 725401 434
H3 2757 23655 137779 61
D1 2127 18888 103159 26
D2 2118 18540 100798 28
D3 2243 20575 117385 35
D4 2336 21636 123910 42
P1 1217 7968 37164 8
P2 1238 8098 37914 9
P3 1239 7959 36774 8
P4 1239 8004 37243 8
C1 1135 6495 29110 6
M1 1301 9531 38812 10
M2 1301 9531 38812 10
M3 1301 9531 38812 10

Due to space constraints we omitted the results for l equal to 2, 4 and 6.

fragments is quite small, and is significantly lower than that
required for learning the SVM models.

6.5 Effectiveness of Different Kernels for AF
Descriptor

Table 6 shows the classification performance of the different
kernel functions described in Section 5 for the AF descrip-
tors. These results were obtained for AF descriptors contain-
ing fragments of length up to seven.

Two key observations can be made from analyzing these
results. First, the classification performance obtained by the
Tanimoto-based kernel functions is in general higher than
that obtained by the RBF-based kernels. This result is to a
large extent in agreement with the widely accepted opinion
within the cheminformatics community that Tanimoto coef-
ficient is a good similarity measure for chemical compounds
[36]. Second, the best performing kernel function among
those based on Tanimoto, is the K∗

f (length-differentiated-
frequency vectors), which is different from the best perform-
ing kernel function in the case of RBF, which is K ∗

b (length-
differentiated-binary vectors). However, for both classes of
kernels, giving equal weights to the fragments of various
lengths leads to better results.

Note that based on the Wilcoxon statistical test of p =
0.01, the differences between K∗

b and K∗
f for Tanimoto are

not significant, but K∗
f is statistically better than Kb and Kf .

Also, in the case of RBF, K∗
b is statistically better than the

other three, which are statistically equivalent among them.
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Table 6: ROC50 values for the AF descriptors using kernels
derived from Tanimoto and RBF.

Tanimoto RBF
Datasets (Kb) (Kf ) (K∗

b ) (K∗
f ) (Kb) (Kf ) (K∗

b ) (K∗
f )

NCI1 0.312 0.313 0.304 0.317 0.303 0.286 0.305 0.271
NCI109 0.296 0.297 0.297 0.296 0.271 0.265 0.292 0.256
NCI123 0.253 0.253 0.251 0.262 0.252 0.241 0.247 0.235
NCI145 0.330 0.330 0.323 0.334 0.283 0.293 0.322 0.284
NCI167 0.062 0.063 0.062 0.065 0.060 0.061 0.062 0.059
NCI220 0.230 0.221 0.254 0.238 0.266 0.281 0.263 0.299
NCI33 0.311 0.311 0.303 0.318 0.285 0.288 0.304 0.288
NCI330 0.320 0.320 0.321 0.341 0.301 0.302 0.317 0.309
NCI41 0.353 0.353 0.347 0.355 0.316 0.314 0.346 0.306
NCI47 0.302 0.303 0.296 0.305 0.277 0.271 0.295 0.263
NCI81 0.288 0.288 0.284 0.294 0.263 0.266 0.284 0.253
NCI83 0.303 0.302 0.303 0.316 0.280 0.272 0.301 0.276
H1 0.268 0.265 0.263 0.274 0.258 0.214 0.264 0.230
H2 0.645 0.643 0.634 0.641 0.581 0.577 0.636 0.567
A1 0.180 0.207 0.188 0.203 0.178 0.185 0.195 0.186
H3 0.634 0.635 0.630 0.632 0.610 0.603 0.631 0.601
D1 0.377 0.369 0.356 0.374 0.354 0.342 0.357 0.329
D2 0.577 0.586 0.604 0.583 0.551 0.545 0.592 0.572
D3 0.504 0.501 0.509 0.534 0.493 0.486 0.506 0.491
D4 0.466 0.471 0.480 0.490 0.445 0.434 0.470 0.443
P1 0.597 0.610 0.608 0.598 0.572 0.563 0.599 0.576
P2 0.498 0.505 0.507 0.500 0.492 0.486 0.500 0.497
P3 0.567 0.574 0.587 0.553 0.552 0.540 0.582 0.559
P4 0.624 0.632 0.628 0.653 0.620 0.617 0.625 0.611
C1 0.810 0.811 0.805 0.818 0.812 0.820 0.815 0.819
M1 0.432 0.434 0.444 0.438 0.417 0.423 0.439 0.440
M2 0.610 0.605 0.607 0.616 0.584 0.592 0.606 0.608
M3 0.788 0.775 0.774 0.777 0.758 0.754 0.773 0.750
ARQB1 0.970 0.976 0.973 0.990
ARQB2 0.951 0.940 0.994 0.942
ARQB3 0.965 0.970 0.967 0.986 0.923 0.912 0.965 0.914

Best performing scheme(s) for each classification problem is shown in bold. ARQB1
is the ARQB using Tanimoto-based kernels only, ARQB2 is ARQB using RBF-based
kernels only and ARQB3 is the ARQB calculated using both Tanimoto-and RBF-based
kernels.

6.6 Comparison with Previously Developed
Descriptor Spaces

6.6.1 Classification Performance
To compare the classification performance of the AF descrip-
tor space against the classification performance of the four
previously developed descriptor spaces (fp-8192, MK, CT,
and FS) and the TF and PF subsets of AF (described in Sec-
tion 4) we performed a series of experiments in which we
used the various kernels described in Section 5 to classify
the various datasets. Table 7 and 8 show the ROC50 results
achieved by the best kernels for each descriptor space. In ad-
dition, Table 9 shows weather or not these schemes achieve
ROC50 results that are statistically different from each other.
The results for AF, TF, and PF were obtained for fragments
up to length seven.

These results show that the AF descriptors lead to ROC50
results that are statistically better than that achieved by
all other previously developed schemes, for both the Tani-
moto and RBF-based kernels. In addition, the performance
achieved by both TF and PF is also good and in general better
than that achieved by the earlier approaches.

Comparing between fp-8192, CT, MK, and FS, we can see
that the fingerprint-based descriptors achieve the best overall
results, whereas MK and CT tend to perform the worst. How-
ever, from a statistical significance standpoint CT, MK, and
FS are equivalent.

Another interesting observation is that the PF scheme
achieves better results than fp-8192 (even though the differ-

ence is not significant at p = 0.01 but it is at p = 0.05). Since
the fp-8192 descriptors were also generated by enumerating
paths of length up to seven (and also cycles), the performance
difference suggests that the folding that takes place due to the
fingerprint’s hashing approach negatively impacts the classi-
fication performance.

Finally, comparing Tanimoto- with RBF-based kernels,
we can see that the former does better and these differences
are in general statistically significant at p = 0.01.

Table 7: ROC50 values for the seven descriptors using ker-
nels derived from Tanimoto.

Datasets AF TF PF fp-8192 CT MK FS
(K∗

f ) (K∗
f ) (Kb) (Kb) (Kf ) (Kf ) (K∗

b )
NCI1 0.317 0.314 0.309 0.277 0.266 0.231 0.263
NCI109 0.296 0.293 0.287 0.269 0.235 0.225 0.238
NCI123 0.262 0.255 0.253 0.242 0.228 0.219 0.240
NCI145 0.334 0.333 0.323 0.278 0.270 0.232 0.265
NCI167 0.065 0.060 0.063 0.060 0.047 0.049 0.054
NCI220 0.238 0.250 0.241 0.258 0.208 0.441 0.217
NCI33 0.318 0.311 0.306 0.260 0.243 0.220 0.251
NCI330 0.341 0.321 0.319 0.329 0.315 0.178 0.242
NCI41 0.355 0.357 0.345 0.310 0.275 0.251 0.300
NCI47 0.305 0.306 0.296 0.268 0.235 0.228 0.243
NCI81 0.294 0.289 0.291 0.262 0.238 0.232 0.239
NCI83 0.316 0.315 0.304 0.274 0.262 0.229 0.267
H1 0.274 0.270 0.266 0.258 0.232 0.224 0.228
H2 0.641 0.638 0.641 0.600 0.571 0.562 0.581
A1 0.203 0.183 0.183 0.138 0.138 0.134 0.147
H3 0.632 0.630 0.637 0.614 0.599 0.586 0.576
D1 0.374 0.387 0.374 0.368 0.311 0.318 0.327
D2 0.583 0.550 0.573 0.583 0.547 0.559 0.507
D3 0.534 0.522 0.493 0.500 0.460 0.440 0.474
D4 0.490 0.477 0.461 0.461 0.439 0.391 0.399
P1 0.598 0.591 0.592 0.576 0.558 0.569 0.546
P2 0.500 0.508 0.501 0.537 0.499 0.526 0.459
P3 0.553 0.539 0.571 0.569 0.506 0.544 0.552
P4 0.653 0.622 0.621 0.566 0.554 0.558 0.590
C1 0.818 0.816 0.816 0.829 0.751 0.793 0.818
M1 0.438 0.419 0.425 0.453 0.347 0.413 0.409
M2 0.616 0.586 0.595 0.600 0.490 0.592 0.604
M3 0.777 0.782 0.782 0.777 0.745 0.789 0.801
ARQB 0.975 0.956 0.950 0.909 0.829 0.827 0.846

Best performing scheme(s) for each classification problem is shown in bold. AF refers
to Acyclic fragments, TF to Tree fragments, PF to Path fragments, fp-8192 refers to
fingerprints of length 8192 bits, CT to Cycles & Trees, MK to Maccs keys, and finally
FS to frequent substructures.

6.6.2 Retrieval Performance
We also compare the effectiveness of the different descriptor
spaces for the task that is commonly referred to as a database
screening [35]. The goal of this is given a compound that
has been experimentally determined to be active, find other
compounds from a database that are active as well. Since the
activity of a chemical compound depends on its molecular
structure, and compounds with similar molecular structure
tend to have similar chemical function, this task essentially
maps to ranking the compounds in the database based on how
similar they are to the query compound.

In our experiments, for each dataset we used each of its ac-
tive compounds as a query and evaluated the extent to which
the various descriptor spaces along with the kernel functions
studied in this paper lead to similarity measures that can suc-
cessfully retrieve the other active compounds.

As it was with the study presented in the previous section,
our experimental evaluation was comprehensive using all
possible combinations of descriptor spaces and kernel func-
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Table 8: ROC50 values for the seven descriptors using ker-
nels derived from RBF.

Datasets AF TF PF fp-8192 CT MK FS
(K∗

b ) (K∗
b ) (K∗

b ) (Kb) (Kb) (Kf ) (Kb)
NCI1 0.305 0.302 0.303 0.198 0.256 0.192 0.249
NCI109 0.292 0.293 0.288 0.199 0.228 0.202 0.232
NCI123 0.247 0.240 0.249 0.177 0.223 0.173 0.234
NCI145 0.322 0.321 0.317 0.203 0.255 0.194 0.258
NCI167 0.062 0.062 0.053 0.043 0.041 0.043 0.047
NCI220 0.263 0.266 0.261 0.272 0.218 0.393 0.198
NCI33 0.304 0.297 0.286 0.186 0.238 0.210 0.242
NCI330 0.317 0.306 0.311 0.235 0.305 0.241 0.241
NCI41 0.346 0.344 0.344 0.237 0.267 0.213 0.294
NCI47 0.295 0.271 0.289 0.194 0.232 0.186 0.227
NCI81 0.284 0.279 0.286 0.188 0.230 0.194 0.231
NCI83 0.301 0.298 0.300 0.197 0.258 0.204 0.253
H1 0.264 0.259 0.265 0.229 0.223 0.233 0.220
H2 0.636 0.629 0.635 0.573 0.556 0.545 0.575
A1 0.195 0.167 0.212 0.125 0.128 0.062 0.123
H3 0.631 0.628 0.632 0.578 0.589 0.584 0.554
D1 0.357 0.362 0.358 0.345 0.317 0.340 0.307
D2 0.592 0.571 0.545 0.567 0.558 0.551 0.486
D3 0.506 0.497 0.507 0.430 0.454 0.424 0.482
D4 0.470 0.458 0.460 0.401 0.426 0.380 0.400
P1 0.599 0.604 0.604 0.544 0.542 0.563 0.553
P2 0.500 0.468 0.492 0.532 0.493 0.512 0.465
P3 0.582 0.458 0.580 0.553 0.499 0.583 0.558
P4 0.625 0.605 0.622 0.542 0.559 0.536 0.594
C1 0.815 0.810 0.808 0.794 0.744 0.815 0.813
M1 0.439 0.414 0.429 0.428 0.343 0.411 0.410
M2 0.606 0.573 0.600 0.567 0.484 0.577 0.584
M3 0.773 0.779 0.768 0.785 0.749 0.788 0.775
ARQB 0.981 0.951 0.968 0.805 0.835 0.803 0.845

Best performing scheme(s) for each classification problem is shown in bold.

tions. Table 10 and Table 11 show the NHR results achieved
by the best kernels for each descriptor space, whereas Ta-
ble 12 shows the extent to which the relative performance of
various schemes are statistically significant.

Comparing these results with those for the classification
task shows similar trends with respect to the relative perfor-
mance of the various descriptor spaces. For both Tanimoto-
and RBF-based kernels AF statistically outperforms the pre-
viously developed schemes. The only exception is with re-
spect to the CT descriptor space and RBF for which AF’s
higher average performance is not statistically significant at
p = 0.01 but it is at p = 0.05. Also the average perfor-
mance of the TF and PF descriptors (as measured by AQRB)
is higher than earlier schemes as well.

7 Conclusion & Discussion

In this paper we presented a new class of descriptors for
representing molecular graphs that are based on connected
acyclic fragments and illustrated their effectiveness for the
tasks of building classification models and retrieving active
compounds from chemical libraries.

This work was primarily motivated by our desire to under-
stand which aspects of the molecular graph are important in
providing effective descriptor-based representations for the
above two tasks given the four design choices described in
Section 4 (dataset specificity, fragment complexity, precise-
ness, and coverage) and the fact that no scheme, including
AF, leads to a descriptor space that is strictly superior (in
terms of what it captures) to the rest of the schemes. Each
one of the seven descriptor spaces (AF, TF, PF, fp-n, MK, CT,
and FS) make some compromises along at least one of these

Table 9: Wilcoxon statistical test for the seven descriptors in
Table 7 and Table 8.

Tanimoto

AF TF PF fp-8192 CT MK FS W/E/L
AF > > > > > > 6 / 0 / 0
TF < = = > > > 3 / 2 / 1
PF < = = > > > 3 / 2 / 1
fp-8192 < = = > > > 3 / 2 / 1
CT < < < < = = 0 / 2 / 4
MK < < < < = = 0 / 2 / 4
FS < < < < = = 0 / 2 / 4

RBF

AF TF PF fp-8192 CT MK FS W/E/L
AF > > > > > > 6 / 0 / 0
TF < = > > > > 3 / 2 / 1
PF < = > > > > 3 / 2 / 1
fp-8192 < < < = = = 0 / 2 / 4
CT < < < = = = 0 / 2 / 4
MK < < < = = = 0 / 2 / 4
FS < < < = = = 0 / 2 / 4

The sign ‘>’ denotes that row outperforms column descriptor, ‘<’ denotes that col-
umn outperforms row descriptor and ‘=’ denotes that row and column descriptors are
statistically indistinguishable. W/E/L is Wins, Equal, and Losses for each scheme.

dimensions. We believe that our experimental results help
in providing some answers. Specifically, the results compar-
ing PF and fp-8192, suggest that a precise representation is a
key property and helps PF outperform fp-8192 even though
the former utilizes only path-based fragments, whereas fp-
8192 also uses fragments corresponding to cycles. Similarly,
the results comparing AF against FS suggest that the 100%
coverage of AF is a critical property as it helps outperform
the FS approach, which leads to descriptor spaces with much
more complex fragments (i.e., arbitrary connected substruc-
tures). Also, the results comparing the schemes that utilize
dataset specific fragment discovery approaches against the
MK scheme show that relying on pre-identified fragments
will lead to lower performance. Finally, the results compar-
ing AF against TF and PF show that everything else being
the same, more complex fragments do lead to better results;
however, these gains are not substantial.

The work in this paper has been primarily focused on
classification approaches based on descriptor spaces. How-
ever, another approach was recently investigated by Kashima
et al [18] that uses a random-walk based approach to directly
construct a kernel function between two graphs. The ex-
periments presented in [18] showed promising results (even
though they are worse than those reported in this paper for
the common datasets), and we believe that such direct graph
kernels coupled with information as to what aspects of the
molecular graphs are important, can potentially lead to effec-
tive classification algorithms.

Finally, the fact that acyclic fragments, and tree fragments
in particular, can be useful in classifying chemical com-
pounds, has been known for quite a while. Palyulin and his
collaborators [31,38] used certain types of tree fragments for
classification and reported good results for QSAR and QSPR
prediction problems.
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Table 10: NHR for k = 10 using kernels derived from Tani-
moto

Datasets AF TF PF fp-8192 CT MK FS
(Kf ) (Kb) (K∗

b ) (Kb) (Kb) (Kf ) (Kb)
NCI1 0.493 0.477 0.479 0.467 0.400 0.438 0.443
NCI109 0.481 0.473 0.467 0.457 0.378 0.435 0.439
NCI123 0.448 0.438 0.440 0.431 0.367 0.284 0.408
NCI145 0.751 0.737 0.731 0.683 0.668 0.678 0.686
NCI167 0.704 0.676 0.690 0.679 0.675 0.656 0.690
NCI220 0.328 0.335 0.328 0.310 0.329 0.445 0.328
NCI33 0.436 0.423 0.429 0.416 0.346 0.391 0.379
NCI330 0.512 0.479 0.492 0.507 0.437 0.435 0.436
NCI41 0.476 0.469 0.473 0.455 0.378 0.453 0.443
NCI47 0.491 0.485 0.474 0.457 0.388 0.452 0.384
NCI81 0.483 0.471 0.476 0.465 0.393 0.369 0.438
NCI83 0.477 0.472 0.470 0.461 0.390 0.335 0.444
H1 0.366 0.367 0.358 0.351 0.352 0.304 0.326
H2 0.560 0.566 0.560 0.511 0.487 0.528 0.466
A1 0.685 0.677 0.682 0.682 0.683 0.660 0.680
H3 0.624 0.631 0.628 0.616 0.612 0.576 0.570
D1 0.219 0.217 0.210 0.189 0.214 0.213 0.213
D2 0.325 0.345 0.311 0.342 0.343 0.316 0.338
D3 0.415 0.417 0.401 0.404 0.403 0.421 0.387
D4 0.493 0.504 0.484 0.485 0.521 0.455 0.476
P1 0.440 0.487 0.427 0.442 0.486 0.415 0.433
P2 0.353 0.420 0.324 0.338 0.391 0.399 0.350
P3 0.363 0.400 0.358 0.435 0.452 0.404 0.342
P4 0.515 0.542 0.508 0.398 0.557 0.488 0.491
C1 0.650 0.647 0.648 0.659 0.675 0.636 0.536
M1 0.387 0.379 0.380 0.382 0.307 0.369 0.328
M2 0.422 0.408 0.447 0.413 0.297 0.400 0.394
M3 0.520 0.453 0.557 0.501 0.426 0.508 0.508
ARQB 0.961 0.961 0.946 0.926 0.883 0.893 0.886

Best performing scheme(s) for each classification problem is shown in bold.
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