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Abstract—Student retention and timely graduation are enduring
challenges in higher education. With the rapidly expanding collec-
tion and availability of learning data and related analytics, student
performance can be accurately monitored, and possibly predicted
ahead of time, thus, enabling early warning and degree planning
“expert systems” to provide disciplined decision support to coun-
selors, advisors, and educators. Previous work in educational data
mining has explored matrix factorization techniques for grade pre-
diction, albeit without taking contextual information into account.
Temporal information should be informative as it distinguishes
between the different class offerings and indirectly captures stu-
dent experience as well. To exploit temporal and/or other kinds
of context, we develop three approaches under the framework of
collaborative filtering (CF). Two of the proposed approaches build
upon coupled matrix factorization with a shared latent matrix fac-
tor. The third utilizes tensor factorization to model grades and their
context, without introducing a new mode per context dimension as
is common in the CF literature. The latent factors obtained can be
used to predict grades and context, if desired. We evaluate these ap-
proaches on grade data obtained from the University of Minnesota.
Experimental results show that fairly good prediction is possible
even with simple approaches, but very accurate prediction is hard.
The more advanced approaches can increase prediction accuracy,
but only up to a point for the particular dataset considered.

Index Terms—Alternating optimization, candecomp/parafac
(CP) decomposition, collaborative filtering, coupled matrix fac-
torization, matrix/tensor rank, predicting student performance,
singular value decomposition (SVD), tensor factorization.

1. INTRODUCTION

HERE has recently been growing interest in educational
data mining [1] in general, and predicting student perfor-
mance in particular [2]-[14]. The motivation behind this line of
work is that student performance prediction can be leveraged
to support instruction, advising, and counseling. As an exam-
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ple, predicting student performance in class activities during
the semester [2], [15] can be used in early warning systems to
identify students who are on the verge of failing a class in or-
der to take a corrective action [4]. Other work has focused on
predicting whether a student is able to perform a given task cor-
rectly [6]—[8], [12], [16], which can be used for class evaluation
and exercise recommendation purposes. Moreover, leveraging
course recommendation approaches as in [17]-[19], and meth-
ods for predicting final grades as in [3], [5], [10] can help to
minimize the time-to-degree and build better academic plan-
ning tools. The work in this paper falls under the last category,
as we aim to predict student performance at the course-level in
terms of final grades in classes students have not yet taken. This
can help in semester-to-semester course selection, recommen-
dation of ‘bridge’ courses, and early warning systems. In this
introduction, we provide a brief background focusing on the
most relevant prior art and state the contribution of our work to
education analytics and recommender systems in general.

A. Background and Related Work

Many researchers have proposed approaching the student
performance prediction problem using regression techniques
as in [20]. Recently, Elbadrawy, Studham, and Karypis [2]
have presented collaborative multi-regression models which,
unlike single regression-based approaches [4], allow for cross-
student information sharing. They cross-leverage the advan-
tages of regression-based models in accounting for students’
interactions with Learning Management Systems (LMS) and
factorization-based models in creating student-specific predic-
tions [2]. Polyzou and Karypis [5] proposed models that utilize
a judiciously chosen subset of the historical grade data when
predicting grades for a specific course or a specific student:
Course-Specific Regression (CSR), or Student-Specific Regres-
sion (SSR), respectively. In CSR, a grade is predicted by the
student’s prior grades with a linear regression model that deter-
mines how much each one of her/his past grades contributes.
This regression vector is estimated by a model that utilizes only
rows corresponding to students who took the course to be pre-
dicted in the students x courses grade matrix. As they pointed
out, CSR uses the same regression vector for all students, which
can be a limitation when applied on flexible academic programs
where students have less common courses. To overcome this is-
sue, in SSR, they eliminate courses that a student s has not taken
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Fig. 1. Students x courses grade matrix sample.

from the grade matrix as well as students who have not taken
the target course c, or do not have enough common courses with
s to estimate a regression model that is personalized for each
student [5].

Researchers have adapted recommender system techniques to
the student performance prediction problem [3], [6], [8], [9],
[11], and the course recommendation problem [17]-[19]. Typ-
ically, the users’ ratings for items are represented in a users X
items matrix [21]. Similarly, in the setting of latent factor and
Matrix Factorization (MF) models, the students’ grades are usu-
ally tabulated in a sparse students x courses matrix ,G € R" ",
as in Fig. 1. In the context of grade prediction, various meth-
ods based on MF have been used to estimate the latent factors
which produce representations for each student and course in
order to be used to predict grades. The goal is to fill the miss-
ing values, which can be viewed as a matrix completion task
[22]. The main idea here is to factor G as G ~ AB”, where
A e RVF B e R™F and F << min(n,m) is the dimen-
sionality of the latent space. Then missing entries in G are im-
puted based on ABT  where the factors A and B are estimated
from the available data by minimizing a suitable loss func-
tion. Sweeney, Lester, and Rangwala [3] explored estimating
those factors for grade data via Singular Value Decomposition
(SVD) and showed that grade prediction improves when SVD
is followed by k-NN (k-Nearest Neighbor) post-processing, as
detailed in [23]. It has been shown that adding global and local
biases (for every student and course) to the MF model as in [5],
[3] reduces the error in grade prediction.

The models we propose in this work draw from factor anal-
ysis for matrices and tensors, but can also be viewed under a
recommender system ‘lens’. It is therefore useful to provide
the following classification for recommender systems, before
we proceed to explain the specific modeling and optimization
approaches proposed in this paper. Generally, models that are
intended to predict the missing values (ratings or grades) are
classified as follows [21]:

1) Collaborative Filtering (CF): in which predictions are
calculated based on the historical ratings of all users col-
lectively, either based on the similarities between users
and items (neighborhood-based) or on latent factors and
MF (model-based) [21].

2) Content-based recommendations: in which recommenda-
tion is provided depending on the similarity in the features
of items that a user has rated or in the attributes of users
who have rated the same items [24], [21].

3) Hybrid between CF and content-based models: various
works have tried to cross-leverage the advantages of these
two types of approaches. Our work here can be classified
under this category.

The user and item features in CF models are learned from
the data, which is assumed to exhibit a hidden low-dimensional
structure [21]. On the other hand, in content-based recommenda-
tions, these features are given, e.g., a user’s gender or a movie’s
genre. In the setting of student performance forecasting, the stu-
dent’s major or GPA, and the course’s level or department are
examples of such features.

In many situations, recommender system models that take
additional contextual information into account provide more
accurate recommendations as they are customized to each
scenario [24]-[27]. Some of these methods are extending the tra-
ditional MF to incorporate useful side information besides his-
torical ratings (grades). So-called context-aware recommender
systems (CARS) can be categorized into three types: contex-
tual pre-filtering, where the data is selected based on context;
contextual post-filtering, where recommendations are filtered
after they have been computed; and contextual modeling, where
the context is accounted for while computing recommenda-
tions [28]. The proposed models in this paper fall under the
last category, as context is exploited within the model. In our
application domain of learning analytics, additional informa-
tion such as time [7] has been used to enhance the accuracy
of student performance prediction. Gonzélez-Brenes [7] pro-
posed a method where questions are clustered based on their la-
tent representation derived from factoring the students x ques-
tions grade matrix. The resulting cluster centroids are inter-
preted as skills, and a model of skill acquisition is built for
each student. This model is then used to predict a student’s
performance.

Coupled matrix factorization (CMF) has also been used in
recommender systems where two or more matrices (one cor-
responding to ratings and the other(s) to side information) are
jointly decomposed using one or more common latent factors
corresponding to shared modes. Fang and Si [29] used a CMF
method to incorporate implicit feedback in a system for online
scientific community recommendation that also accounts for
user content and/or item content. In the context of learning an-
alytics, Lan et al. [13] (see also [12]) exploit context by jointly
processing binary questions x students grade data together with
questions x word-dictionary count data, using a sparse common
matrix factor for the questions. In [13], the sum of the log-
likelihood of the observed grades and the log-likelihood of the
word counts given the latent factors is maximized. A Bernoulli
model is used for the binary grades, and a Poisson model is
used for the word counts. The context in both [29] and [13]
is associated with only one dimension of the data — users (stu-
dents) or items (questions). Recently, Sahebi ez al. [14] proposed
a CMF-based model that captures the improvement in student
knowledge during multiple attempts at the same quiz, as part of
the learning process.

Karatzoglou et al. [24] generalized the notion of MF repre-
sentation in the context of CF by modeling data as a User x Item
x Contextl x Context2 x --- x Context(N-2) N-dimensional
tensor where every type of context is introduced as a new mode
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Fig. 2. Illustration of modeling context as a new mode.

in the tensor. For our particular application domain of predict-
ing student performance, temporal side information has been
exploited in [6] by modeling data as a three-way (student x task
x time) tensor — see Fig. 2, where context would be time in this
case. This is the prevalent approach for incorporating context
in CF-based recommender systems [6], [24], [30]. Introducing
a new mode for each context variable has two main drawbacks:
first, the tensor size grows exponentially in the number of con-
text variables; second, this usually yields an extremely sparse
tensor. The reason is that each grade (rating) is usually given
in only one context. Very sparse tensors require high rank to
approximate (think, e.g., of a diagonal matrix, which is full rank
if the elements on the diagonal are nonzero).

B. Contributions

1) Methodological: In this work, we propose three meth-
ods to incorporate additional information in the context of CF.
In particular, we present two CMF models and one Low-Rank
Tensor Factorization (LRTF) model. Intuitively, students shar-
ing the same grade transcripts and course timestamps should
be more predictive of each other than if they only share the
former. If we decompose the grade and time (context) matrices
using a common student latent factor, then two students will
have the same latent representation if and only if they have the
same grade transcripts and course timestamps, as illustrated in
Section III-A1l. In a similar manner, courses sharing the same
student timestamps in addition to student grades are more pre-
dictive of each other than if they only share the same student
grades. The reason is that grade statistics for a given course
change over time, e.g., due to instructor variability, textbook
changes, and broader trends such as grade inflation. If we de-
compose the grade and time matrices using a common course
latent factor, then two courses will have the same latent fac-
tor if and only if they have the same grades and timestamps,
as illustrated in Section III-A2. Using a common factor for
students, and a common factor for courses simultaneously re-
quires latent scaling and yields a LRTF model, as we will see
in Section III-B.

Unlike [29] and [13], the side information that we exploit is
associated with (student, course) pairs — it comes in the form
of a matrix that has the same rows and columns as the grade
matrix. We use i) iterative imputation, ii) student- and course-
specific bias variables, and iii) a validation set to select the

appropriate model rank. The approaches in [29] and [13] do not
use iterative imputation, and employ rank regularization (via
Frobenious norm penalties on the factor matrices) instead of
explicit rank selection via validation. In [29], student/course-
specific bias variables are not added to the models. We found
that 1)-iii) are important for obtaining competitive results in
our application domain. Moreover, in contrast to the approach
in [13], our models do not assume that the data follows any
distribution.

In the case of LRTF, we model data in a tensor which has
the grade matrix as the first frontal slab and the context ma-
trix behind it. We factor this tensor using Candecomp/Parafac
(CP) decomposition. If there are more than one type of context
(context dimensions), we simply augment the tensor with more
slabs at the back-end. Our modeling, in contrast to [6], [24],
[30], maintains a common sparsity structure across the different
matrices in CMF or tensor slabs in LRTF, facilitating low-rank
modeling. Also, if the grade timestamp is modeled as a new
mode and we wish to predict for next semester, we face the
issue of predicting an entirely missing slab.! Our modeling of
the context as a matrix in CMF models and as a tensor ‘slab’ in
LRTF allows us to deal with this ‘cold start’ problem of an en-
tire semester missing very nicely, as we in fact predict scattered
entries instead of an entire slab.

Another advantage of our modeling approaches relative to
[6], [24], [30] is that they predict not only the unseen grade or
rating, but also the context in which the grade or rating will be
earned/given. This is useful for forecasting course enrollments
and other applications, such as targeted (context-sensitive) mar-
keting and advertising in the case of movie recommendations.

2) Case Study: Although the models and methods that we
propose can potentially be applied to other recommendation
tasks (movies, products, restaurants, etc.), our original motiva-
tion comes from learning data analytics, and so we focus on
student grade prediction. We apply our algorithms on real grade
data from ~ 10* students and ~ 10° courses spanning 12 years
from the College of Science and Engineering at the University of
Minnesota. Experimental results show that fairly good predic-
tion is possible even with simple approaches, but very accurate
prediction is hard. The more advanced approaches can increase
prediction accuracy, but only up to a point for the particular
dataset considered. In particular, we verify that the proposed
models and methods improve the baseline where no context is
taken into account, and outperform other recent CF methods
when predicting for a specific department and when predicting
randomly missing grades.

Notation: Capital letters with underscore denote tensors, e.g.
X; bold capital letters A, B, C denote matrices; bold small
letters a, b, ¢ denote column vectors; ® denotes Khatri-Rao
(column-wise Kronecker) product; ® denotes the Hadamard
(element-wise) product; o is the outer product; AT denotes the
transpose of A; AT denotes the pseudo inverse of A; A(i,:) or
a; denotes the ithrow of A and A (:, j) denotes the jth column of

! An alternative is to use relative timestamps with respect to the time a student
entered the program (reflecting student experience or ‘seniority’). The drawback
is that we risk clumping together students and courses that are temporally far
apart, having very different learning experiences.
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A; X(:,:, k) denotes the kth matrix slab of the three-way tensor
X taken perpendicular to the third mode; Dy (C) := Diag(cy,)
is a diagonal matrix with the kth row of C on its diagonal; and
vec(A) is the vec-operator applied on a matrix A by stacking
its columns into a vector.

II. PROBLEM FORMULATION

Given a grade dataset indexed by (student, course) pairs, with
contextual information, e.g., time, our main goal is to predict
students’ grades in courses they have not taken. In particu-
lar, we introduce three different models in Sections III-A and
III-B in order to incorporate arbitrary side information along-
side with historical grades to improve the accuracy of grade
prediction. We denote the very sparse students x courses
grade matrix G, which is comprised by the observed grades
for n students in m courses. Grades are encoded by map-
ping [F, D, D+,C—,C,C+, B—, B, B+, A—, A] to numeric
grades [0,1,1.33,1.67,2,2.33,2.67,3,3.33,3.67,4], respec-
tively. As for traditional MF techniques, G, serves as the
primary information source in our models [3].

In our experiments, we have tried two different types of side
information: absolute time T, in which the courses were taken,
and student experience E, . Time in T, is measured in semesters,
while a student’s experience in E, is calculated by the number
of semesters she/he has been in the program. The context is
tabulated in a students X courses matrix, in the same way as the
grade matrix G, using (student, course) pairs. T, (i, j)/E, (¢, j)
reveals the temporal/experience information corresponding to
the grade G, (%, j). For the remainder of this paper, we focus on
the time context T', in our formulation and results as we found
that it is the most informative.

Each professor has her/his own way of grading even when
they teach the same course. Moreover, year-to-year student co-
hort variation may cause a given professor to grade the same ma-
terial differently through the years. By encoding every semester
in T, with a distinct digit, the various offerings of the same
course can be distinguished. Specifically, semesters in T, are
mapped to consecutive integer numbers starting from 1. For in-
stance, we encode Fall 2002 as 1, Spring 2003 as 2, Summer
2003 as 3 and so on — see Section IV-A. Although the context is
formed in the same way, it is modeled and exploited in different
ways by the three models, as we will see.

We train our models on the observed grades and their as-
sociated context after excluding a test set. After training each
model, the task is to predict grades g; ; in the test data. Our
models predict not only missing grades, but also the context in
which the grade is earned, #; ;.

III. PROPOSED APPROACHES

We present the three proposed methods and their algorithms
in the following order: the two CMF models are explained in
Section ITI-A and the LRTF model is presented in Section III-B.

A. Coupled Matrix Factorization (CMF)

Latent factor and traditional MF techniques explained in the
introduction have been used in the context of recommender

systems, specifically in CF-based methods [31]. Researchers
have adapted recommendation techniques, e.g., based on MF
to address the grade prediction problem [8], [9] interpreting
students, courses, and grades as users, items, and ratings,
respectively. Those models have shown very good results in
the context of grade prediction using only historical grades of
students [5], [31].

Contextual information, such as time (e.g., measured in
semesters) and student seniority (experience) should be infor-
mative when predicting grades. For instance, students who have
taken the same courses with similar grades are more predic-
tive of each other if they actually took these classes in the same
semesters (same time) than if they have a big time gap. A student
might fail a class if taking it in her/his freshman year, but might
get an A taking the same class in her/his senior year. This is an
example of how student seniority can help as side information.

The main idea of CMF is to incorporate and exploit those
pieces of contextual information into the traditional latent factor
and MF models without over-complicating the solution. There
are two CMF models proposed here, which are presented in
detail in this section. Student and course bias terms are added
to the formulation of these two models.

1) Coupled Matrix Factorization With Common Student Fac-
tors (CMFS): In this model, we decompose the students x
courses grade and the students X courses context matrices
using a common student latent factor. First, define a matrix
W ¢ R"*™ gsuch that:

wii.j) - {

where A includes the indices of observed grades. In the se-
quel, we also use W € R™*" to denote the complement of W.
Hence, W has ones at the indices of the missing entries of the
grade matrix and zeros elsewhere. We can now define the ‘com-
plete’ grade and time matrices in terms of the observed G,, T,
and missing G,,,, T, grades and corresponding timestamps,
respectively.

1 if (i,4) € A,
0 otherwise.

ey

G=W&®G, +W&G,,
T=W&T,+Wa&T, 2)
Then, CMES can be formulated as follows:
min |[W® G, +W &G, — ABT ||

Gm ,Tm,
A.B| B,

+WeT,+WeT, -ABI |3 (3

where G,, T, € R"*™ are the students x courses matrix of ob-
served grades and the corresponding students X courses matrix
of timestamps, respectively, A € R B;,By; € R™*F and
F' is the dimensionality of latent space. Note that G,,,, T,, €
R™ ™ are variables to be estimated. Also note that the entries
of G,,, corresponding to observed grades play no role, as they
are zeroed out by the multiplication with W, and likewise for
T,,. These definitions are mainly used to facilitate concisely
stating the problem and explaining the proposed algorithmic
approaches. While the formulation in (3) has only one context,
T,, we can add another context if desired, following the same
concept of shared student latent factors.
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Fig. 3.

To reformulate CMFS in a simpler form, define:

X:=[G | T], B!:=[Bl

Bj | 4)

where X € R"*?*" and B, € R?>™*¥ Then, (3) can be refor-
mulated as follows:

min

o min X - ABJ% (5)

Looking into equation (3), we can see that A and B, are
the low-rank factors of G, and A and B, are the low-rank
factors of T. Thus, the grades and the times share the same
student latent factors matrix, A. The underlying assumption of
a student having the same latent representation in both domains
(grade and time) is that there are few different types of students:
say for example, ‘achievers’ that take courses early and do well;
‘strugglers’ that tend to delay taking advanced courses and have
lower grades; ‘working’ students that may take courses at lower
loads, etc. Therefore, a student type is associated with a grade
pattern and a temporal pattern, and every student is a linear
combination of these basic types.

In equation (5), note that X is an implicit function of
G,,,T,,. One approach is to fix those, solve for A and B,
in (5) by Singular Value Decomposition (SVD) of X, then fix A
and B, and impute the missing entries (i.e., update G,,, T,,),
and continue to alternate between the two types of updates —
see Section III-A4. If imputation is not desired, matrix com-
pletion approaches (e.g., Stochastic Gradient Descent (SGD))
can be used instead. However, we found in our experiments that
imputation improves the prediction accuracy.

Intuitively, in order for two students to have the same la-
tent factor representation (corresponding rows of A), they must
have the same grade transcripts and time profiles as illustrated
in Fig. 3. The idea is that students sharing the same course
timestamps in addition to grade transcripts are more predictive
of each other than if they only have the same grades. For in-
stance, if students s; and s, correspond to identical rows of A
(horizontal black lines) in Fig. 3, we can predict the missing
entry in so’s grade in G based on s;’s grade.

2) Coupled Matrix Factorization With Common Course Fac-
tors (CMFC): In this model, the context matrix is exploited by
jointly decomposing it with the students x courses grade matrix
using a common course latent factor. CMFC is formulated as
follows:

min [W®&G,+WaG, —AB"|%

Gm . .Tm .,
Aj.Ay.B

+WeT,+WeT, —AB |2 (6)
clearly, A; and B are the low-rank factors of G (defined in

(2)), and A, and B are the low-rank factors of T. Hence, the
grade and the time matrices share the same course latent factors

€l c2) cl ey

Fig. 4. Illustration of the basic idea behind CMFC.

matrix, B. In a similar manner to what we did to simplify CMFS,
we define:

Y =[Gl ' TT], Al :=[A] ' Al] @)
where Y € R™*2" and A, € R?"*F_ Then, (6) can be refor-
mulated as follows:

o, mmin o Y -BAC|} ®)
problem (8) can be solved by alternating between SVD of Y
and imputation for missing entries by updating G,, and T}, .

Studies have shown that grade statistics for a given course
change over time, e.g., due to instructor variability, textbook
changes, and broader trends such as grade inflation. In CMFC
formulation, in order for two courses to have the same latent
factor representation (corresponding columns of B”'), they must
have the same student grades and time profiles as illustrated in
Fig. 4. In other words, two courses will be similar if they have
been co-taken by students in near-by semesters in addition to
having similar grade distribution. This formulation will pick up
the change of grades over time. The idea behind this model is
that courses sharing the same student timestamps in addition to
grades are more predictive of each other than if they only have
the same student grades. For example, if two courses, ¢; and ca,
correspond to identical columns of B” (vertical black lines) in
Fig. 4, we can predict the missing entry in ¢o grades in G based
on the corresponding c; grade.

3) Student and Course Biases for CMF Models: For more
accurate prediction of grades, we add student and course bias
terms to the grade and context matrices. This is inspired by
the improvement that user and item biases bring to movie rec-
ommendation systems [21], [32]. Modeling how a student is
likely to perform on average (student bias), and how difficult
a course is on average (course bias) have also been shown to
be effective in grade prediction using different but related mod-
els and approaches [2], [5], [6]. After incorporating biases, the
formulation of CMFS becomes:

||W® G, +W® G, — AB{ - bs]-T - 1b(TH%7

+|WeT,+W®T, — AB] — t,1" — 1] ||%
©

Where b, € R” is the student grade bias vector, b, € R™ is
the course grade bias vector, t; € R" is the student context
(time) bias vector, and t. € R™ is the course context bias vector.
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Similarly for CMFC:
Juin  [[W® G, + WG, — A B —b,1" —1b]}
AL A B,
by bt te
+ ||W ® TU + W ® Tm - AQBT - tSlT - 1t?||2F
(10)

After we train the two CMF models on the grade training set
and its corresponding context, the prediction of the grade that a
student ¢ is going to obtain in a course 7 and the prediction of
the time in which this grade will be earned are given in (11) for
CMFS model:

Gij = bs(i) + b (j) + A(i,:)B] (:, ),
tij =ts(i) + te(j) + A, )B] (2, ) (11)

Similarly for CMFC, grades and context are predicted using
12):
9i.j = bs(i) +be(j) + A (i,:)BT (2, ),
%\i,j = ts‘(z) + tc(j) + AZ(iv :)BT(:vj)
4) CMF Algorithm: Since CMFS and CMFC can be solved
using the same algorithm (up to transposition), we focus on the

CMFS formulation in (9).
Recall G and T as defined in equation (2). Then, define:

12)

G, =G —b,17 —1b7,
X, =[Gy | Ty].

T, :=T-t,17 —1t7 (13)
(14)
The algorithm for CMFS is as follows.

Algorithm 1: CMFES formulation (9).
Input: G,, T, and v

1: Scaling: scale the context matrix T, with v — important
for accurate prediction.

2: Initialization: impute missing entries in G,,, with the
average of the observed grades in G, ; same for T, ;
bs;=b.=t;=t.=0

3: Repeat

e Update G, and T, using (13)
A, B, (defined in (4)) +— SVD(X})

T T
e Update grade bias vectors by, = (G-AB, -1b. )1
m

b. = (G-ABT b, 1771
g n

, and

(G-ABJ —1t7)1

o= ,and

e Update context bias vectors t, =

t. =
e Impute missiﬁg values of G by updating
G, = AB! +b,17 +1b!
e Impute missing values of T by updating
T, = AB] +t,17 + 1t7
until convergence (the normalized difference of the cost
at two successive iterations < €).
Return: A, By, By, b, b, t, and t.

(G-AB! —t,1")"1

B. Low-Rank Tensor Factorization (LRTF)

Considerable work has been done in recent years towards
incorporating context with the goal of building more personal-
ized recommender systems, for which context turns out playing
an important role. The context-aware CF model based on Ten-
sor Factorization introduced in [24] models data as a User X
Item x Context tensor. A similar approach was used in [6] to
predict student performance, modeling data as a three-mode ten-
sor (student x task x time). Although this technique improves
the prediction accuracy by exploiting the context, it increases
the sparsity of the data by introducing context as a new mode,
therefore increasing the rank required for accurate approxima-
tion, especially without imputation. The reason is that a very
sparse tensor with a random sparsity pattern requires rank in the
order of the number of nonzero elements, as a rank-one tensor is
spent explaining each available element, and there is very slow
error ‘roll-off” as one increases the model’s rank.

We propose instead the LRTF model, where a context matrix
(e.g., time T,) is introduced as another slab behind the main
historical grades matrix G, . The rest of this section is structured
as follows. In section III-B1, we review the Candecomp/Parafac
(low-rank) decomposition for tensors, our LRTF formulation
is explained in Section III-B2, and an algorithm to solve this
formulation is presented in Section III-B3.

1) Candecomp/Parafac (CP) Decomposition: We summa-
rize the basics of CP decomposition as it is essential in our
LRTF formulation. Decomposing a three-way tensor as a sum
of outer products (rank-one three-way tensors) as a data analy-
sis technique was proposed independently by Carroll and Chang
[33] (they called it Candecomp) and Harshman [34] (who called
it Parafac). The CP decomposes a three-way array X € R7>*7/ >/
into a sum of F' rank-one tensors [35], i.e.,

F

X% Zafobf oCy (15)
f=1

where I is a positive integer, a; € RT, by € R7, and cy € RE
[36]. A CP solution is usually expressed in terms of the factor
matrices A € R B e R7*F  and C € RE*F | which have
the vectors ay, by and c; as columns, respectively, i.e., A =
[a; as ... ap]and likewise for B and C. Let X(:, :, k) denote
the kth slice (frontal ‘slab’) of X. Then (15) can be written as:

X(:,:, k) ~ AD,(C)B” (16)

where Dy, (C) is a diagonal matrix holding the kth row of C on
its diagonal [35].

2) LRTF Model Formulation: As a first step, we model the
grade matrix G which includes the observed and missing grades
as defined in (2) and its context T as a tensor with two frontal
slices — G in front, and the context matrix we wish to use behind
it2, i.e.,

a7

2If we desire to exploit more than one contextual information, a third slice of
context can be added, etc.
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Fig. 5. Illustration of modeling grade data and its context in LRTF.

Therefore X € R™*™>*2 in the case where only one context is
added behind G, where the first mode describes n students, the
second mode describes m courses, and the third mode describes
the number of contexts added to the grade matrix. Modeling
data in frontal slices is illustrated in Fig. 5. The advantage of
this modeling is that adding a context does not increase sparsity,
it maintains exactly the same sparsity pattern as in G,. In the
LRTF model, we typically use an alternating optimization al-
gorithm to estimate the factor matrices A € R"*", B € R™*F
and C € R?*¥ of the CP decomposition of X. After every up-
date of A, B and C we use them to impute for missing grades
and context. Overall, LRTF can be formulated as follows:

IW® G, + W ® G,, - AD;(C)BT||%

min

m oy Lm oy

A.B,C

+|WaeT,+WaT, — AD,(C)B” [} (18)

Clearly, the grade and context matrices share the same A and B
factors in the above LRTF formulation. Therefore, in order for
two students who take the same classes to be more predictive of
each other, they must share similar time profiles (or any other
context) as well. Solving problem (18) requires relatively small
rank due to the imputation that occurs within every iteration (the
update of G,,, and T, ) and the fact that sparsity is not affected
by adding context slabs.

Similar to CMFS, and CMFC, in our experience, adding stu-
dent and course biases always improves the accuracy of grade
prediction for LRTF as well. After accounting for the student
and course bias vectors for the grade matrix and its context, (18)
becomes:

min - [We G, +W®G,, - AD,(C)B”

G, T A,
by bt te

— ADy(C)BT —t 17 — 17 |3 (19)

3) LRTF Algorithm: We now present the algorithm that
solves the LRTF formulation to estimate the CP factor matrices
A, B, and C, which are subsequently used to predict the grades
and their context as follows:

9i.j = bs(i) + be(j) + A(i,:)D1 (C)BT (:, ),

fj =t.(i) +t.(j) + AGG, )Do(C)BT (;,j)  (20)

Algorithm 2: LRTF formulation (19).
Input: G,, T, and v

1: Scaling: scale the context matrix T, with v — important
for accurate prediction.

2: Initialization: impute missing entries in G,,, with the
average of the observed grades in G, ; same for T, ;
b,=b.=t;=t.=0; Initialize for A, B, C using N-way
Toolbox [37] to provide a better initialization as it uses
algebraic methods (eigen-decomposition) for

initialization.
3: Repeat
e Update G, and T, using (13)
e Update A — XI)([Dl (C)BT, D, (C)BT])T
e Update B « Y, ([D;(C)AT, Dy (C)AT))f
e Update c; « vec(G;)(B® A)f
e Update cy — vec(Ty)(B® A)f

Update b, — (G-ADICIBT 1bI)1 g

m
_ (G-AD,(C)B” -b, 1771
b, =

n
_ . T _14+T
e Update t, — (C ADZ((:n)B 1t7)1

(
¢ — (G-AD,(C)BT t,17)"1

, and

e Impute missing ﬁalues of G by updating
G, = AD;(C)B” +b,1” + 1b!
e Impute missing values of T by updating
T,, = ADy(C)BT +t,17 + 1t!
until convergence (the normalized difference of the cost
at two successive iterations < €)
Return: A, B, C, b,, b, t,, and t,

Recall X, defined in (14) and define:

Y, =[G} | T{]. (21)

The algorithmic steps to solve the LRTF model are summarized
in Algorithm 2.

IV. EXPERIMENTAL DESIGN

In this section we provide necessary information about
the setup and the design of experiments we performed to test
the three proposed models, CMFS, CMFC, and LRTF, on real
educational data. We describe the features of this grade dataset
and explain the construction of the context we used as a side
information in Section IV-A. Our baseline where no context is
added and other methods used for comparison are summarized in
Section IV-B. In Section IV-C, we explain the different test sets
used for testing alongside with the metrics used for evaluation.
Finally, in the last Section IV-D, we clarify our model selection
strategy used to choose parameters for all methods.

A. Dataset and Context

The experimental results were obtained using real histori-
cal grade data from the College of Science and Engineering
(CSE) students at the University of Minnesota. Experimental
results are shown for two different datasets. Dataset 1 contains
all the grades of students of CSE for any course they have



736 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 11, NO. 5, AUGUST 2017

500 1000

1500 2000 2500 3000 3500

2000 o

4000

6000 B
8000 .

10000

12000 g

100 200 300 400 500 600 700 800 900

Fig. 6. Visualization of the grade matrix G, obtained from Dataset 1 (top)
and Dataset 2 (bottom).

TABLE I
DESCRIPTION OF FEATURES OF GRADE DATASETS

Feature Dataset 1 Dataset 2

# of students (n) 10,245 12,938

# of courses (m) 3712 941

# of observations 244,086 269,073
sparsity 99.36% 97.79%

period Fall 2002 - Fall 2013 Fall 2002 - Spring 2015

taken between Fall 2002 until Fall 2013, including courses
offered by other colleges. Dataset 2 includes grades of stu-
dents of CSE strictly for courses under one of the following
departments: Aerospace Engineering, Biomedical Engineering,
Chemical Engineering, Chemistry, Civil Engineering, Computer
science, Electrical Engineering, Material Science, Mathematics,
Mechanical Engineering, Physics, and Statistics. The G, matri-
ces for the two datasets are visualized in Fig. 6 through which
we can view their sparsity. Clearly, Dataset 2 is less sparse as
courses are limited to CSE departments. Table I summarizes the
two datasets and their features.

We also apply our methods to subsets of data corresponding to
specific departments, where students are more highly correlated.
Thus, we extracted the Electrical and Computer Engineering

TABLE I
DESCRIPTION OF FEATURES OF GRADE DATASETS FOR ECE AND CHEM
DEPARTMENTS (SUBSETS OF DATASET 2)

Feature ECE Chem
# of students (n) 1,306 1,106
# of courses (m) 702 632
# of observations 27,171 22,960
sparsity 97.04% 96.72%

(ECE) and Chemistry (Chem) departments from Dataset 2. The
subsets of data corresponding to students who declared these
two majors are summarized in Table II.

For each observed dataset, we computed CMFS, CMFC, and
LRTF models with two different types of contextual informa-
tion: absolute time T, indicating the semester in which a grade
was earned; and student experience E,, reflecting seniority
when taking a course. Throughout our experiments, we used
these two contexts individually and together with each one of
the proposed models. We found out that using the time context
individually is the most informative as it provides the best grade
prediction. We think that adding the experience context E, be-
sides the time T, did not improve the prediction due to the
correlation between these two context — student experience can
be inferred from (is implicit in) the absolute time information.
Therefor, we show results in the next section for simulations
conducted using the time context T, alongside with observed
grades G,. As explained in Section II, we map semesters to
consecutive integer numbers starting from 1. Hence, the maxi-
mum value in T, is 34 for Dataset 1 and 38 for Dataset 2. An
illustrative example of this mapping is shown in Fig. 7.

B. Comparison With Other Methods

We compare the performance of CMFS, CMFC and LRTF
with their baseline where no context is used, as well as the
following methods:

1) Baseline : Factoring the grade matrix G as defined in (2)
with iterative imputation and grade bias terms in the same way
as the proposed models, but without including any context. The
baseline is formulated as follows:

min [W®G,+W®G, —AB” —b,17 —1b! |2

B.,b,.b,
(22)
where A and B are the low-rank factors of G.
2) Matrix Factorization (MF): The MF approach is de-
scribed in [5]. To match the MF model with our notation, we
rewrite its formulation as follows:

min 7 (g0~ = D)~ bell) — AL )BY ()
,bs,be, 9i.; €G,

+A(AIE + 1BF + [bsll3 + [[be]I3) (23)

where 1 is a global bias, by € R” and b, € R™ are the student
and course bias vectors, respectively, and A € R"” *F and B €
R™*F are the low-rank latent factors.
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Fig. 7. Students x courses semester matrix (top) and an illustrative example
of the mapping done to construct T, (bottom).

3) BiasOnly : As described in [5], only global and local
bias terms are considered in equation (23). Biases are estimated
using the MF formulation above with ' = 0.

4) Context Tensorization (CXT) : First, grade data is mod-
eled in a student x course X time (semester) tensor Y €
R"*m*t similar to [6], where ¢ is the number of semesters.
Then, we estimate the factors of the CP decomposition for this
tensor. The formulation of CXT is as follows:

ST IW (k) ® (Y., k) — AD, (C)B)|[2
k=1

+A(|AlE + Bl + ICl7) (24)

where W (i, j, k) = 1if Y (4, j, k) is available, O otherwise. This
formulation is the prevailing one in context-aware CF-based
recommender systems. We estimate the CP low rank factors A,
B and C using column-wise alternating optimization (CCD++)
[38], which allows us to easily handle missing data. We also
tried using SGD for this purpose [38], but with generally inferior
results.

C. Test Sets and Evaluation Metrics

To assess the proposed models, we test their prediction of
grades in a test set, Giqst, Which is either: 1) the last semester
or 2) randomly selected 10% of the observed grades in G,.
We should mention that when we test on the last semester for
Dataset 1, we discard Fall 2013 and Summer 2013 and test
on Spring 2013, as Summer 2013 and Fall 2013 do not have
enough observed grades (Dataset 1 was recorded before the
end of the Fall 2013 semester). The cardinality (/V) of the test
set for theses two cases for Dataset 1 and Dataset 2, and the
number of predicted grades for ECE and Chem departments
for Spring 2015 are shown in Table III. We denote the time

TABLE III
CARDINALITY (') OF THE VARIOUS TEST SETS, |G test |

Dataset 1 Dataset 2 ECE Chem
last semester 14,723 9,176 872 824
random 10% 24,407 26,908 - -

context associated with Gyt as Tiest. Grades in Gyeg; and
their corresponding context Ty are excluded from G, and
T,, respectively.

The grade prediction accuracy is evaluated using the Root
Mean Squared Error (RMSE) and Mean Absolute Error (MAE)
of Giest as defined in (25) and (26), respectively. Same metrics
are used to calculate the accuracy of predicting context in Tt .

1 _
RMSE= |~ > (g,-gu) @9
9i,j €Gest
- L 19 — Jij
MAE = ng./ EG'A‘.H}V J J‘ (26)

When we predict for the last semester, Gcs; and Ty are
fixed, and therefore RMSE and MAE are directly used for
evaluation. However, for the case of testing on a randomly se-
lected 10% of the grades, we run each experiment 3 times and
present the Average RMSE (AvgRMSE) and the Average MAE
(AvgMAE).

D. Model Selection and Training

Parameters in CMFS, CMFC, LRTF, and the methods in
Section IV-B are selected based on the performance of these
models on a validation set Gy,;, which is randomly selected
10% of observed grade data G, not including the test set Gest -

For all models (except for BiasOnly), we perform a greedy
search on the best model rank (R) — note that R = F' + 2 in
the models that have two bias terms, where F' is the number of
columns of A (or A;). For our models, the baseline, and MF,
we let R range from 3 to 30 with increments of 1. For CXT
model, we perform a search on R in the range from 1 to 100
with increments of 1.

Similarly, we search for the best value of v used to scale the
context matrix in the range of 0 to 5 with an increment of 0.05;
note that v = 0 yields the baseline model. The best v varies
depending on the type of test set G.sy We are testing on as
described in Section IV-C. We found that v = 1/2 gives the
best prediction when Gy is the last semester, while v = 1/10
gives the best prediction in the case of testing on Gyeg; as
randomly selected 10% of observed data. In MF, BiasOnly,
and CXT methods, we search for the best A (the regularization
parameter) from O to 16 in increments of 0.05. For both cases of
Giest, the best prediction is found when A = 0.65 for MF and
A = 0.25 for BiasOnly. When testing on subsets of the data, in
MF A = 0.8 and A = 0.7 give the best prediction for ECE and
Chem, respectively. While for BiasOnly A = 0.3 gives the best
prediction for both departments.
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While the cost of our model is monotonically improving with
iterations, the prediction RMSE/MAE is not. We found that
the RMSE is a convex (U-shaped) function of the number of
iterations when we solve for the proposed models. The stopping
criterion used to terminate model fitting iterations is based on
the cost function as explained in algorithms 1 and 2. We monitor
the prediction RMSE on G, and terminate when it starts rising
again.

Once we tune parameters based on G|, we train our models
using the provided algorithmic procedures on the grade matrix
G, and its context T,. Then, grades in the test set Gyes; and
their context Ty are predicted using the last model fitted
before we terminated the iterations by equations (11), (12) and
(20) for CMFS, CMFC, and LRTF, respectively. The prediction
error metrics are then calculated using the formulas provided in
Section IV-C.

V. EXPERIMENTAL RESULTS

In this section we show the performance of CMFS, CMFC,
and LRTF models which exploit the time context T, alongside
with G, and compare them to the baseline, MF, BiasOnly, and
CXT - the first three approaches use only the observed grade
matrix G,, while CXT uses the semester information as third
mode, as described in Section IV-B. The performance is mea-
sured in terms of the accuracy of predicting grades in the test set
Gest - For our models and the baseline, we show results for the
best three model ranks for each dataset, and present the results
of MF and CXT with their best rank. We also show how well
our methods predict the time context in T'.s;. As we test on two
different test sets, last semester and randomly missing grades,
we dedicate one section for each test set type.

A. Prediction of Last Semester

The performance results shown in this section are calculated
on the last semester test set. Table IV shows the prediction error
of students’ final grades evaluated by RMSE and MAE for our
models and the methods in comparison. The CXT model is not
included in this comparison, as the entire last semester slab
Y (:,:,t) is missing from the training data, and this is something
that CXT cannot handle. Even if we perfectly model the other
slabs, we have no data point for the last semester, and thus cannot
even scale the model to the last semester. This is a well-known
drawback of context tensorization approaches, known as ‘cold
start’. Amongst our models, CMFC with rank R = 3 works best
for Dataset 1, while CMFS with R = 3 gives the smallest error
for Dataset 2. The results on the last semester were unexpected,
as our methods with their best rank outperform BiasOnly but
they do not improve the baseline or MF with R = 3. This might
be due to the nature of the dataset we are using (the best models
have very low rank, and student and course BiasOnly predicts
almost as well as any other method, which indicates either very
simple or very challenging ‘extreme’ data); or the fact that we
resort to alternating optimization as we cannot fit the models
to optimality. Another explanation for these results is that we
tune model parameters for randomly missing validation set and
test on the last semester test set which have different natures. To

TABLE IV
PREDICTION ERROR OF THE PROPOSED VS. EXISTING METHODS MEASURED BY
RMSE AND MAE FOR GRADES IN G (st (LAST SEMESTER)
WITH THEIR BEST RANK(S), R

Dataset 1 Dataset 2
Method R RMSE MAE R RMSE MAE
3 0.6659 0.4728 3 0.6628 0.4778
Baseline 4 0.6706 04784 | 4 0.6709  0.4880
5 0.6884  0.4964 5 0.6732  0.4919
MF 3 0.6702  0.4667 3 0.6638  0.4737
BiasOnly 2 0.6824  0.4800 2 0.6712  0.4843
3 0.6818  0.4865 3 0.6672  0.4831
CMFS 4 0.6877 04904 | 4 0.6694  0.4858
5 0.6925 0.4972 5 0.6701  0.4859
3 0.6716  0.4747 3 0.6674  0.4816
CMFC 4 0.6781  0.4855 4 0.6699  0.4863
5 0.6879  0.4945 5 0.6756  0.4919
9 0.6797 0.4820 | 10 0.6680  0.4809
LRTF 10 0.6780 04816 | 11  0.6689 0.4816
11 0.6778 04825 | 12 0.6698 0.4830

TABLE V

PREDICTION ERROR OF THE PROPOSED METHODS MEASURED BY RMSE AND
MAE FOR TIMESTAMPS IN Tcs¢ (LAST SEMESTER)
WITH THEIR BEST RANKS, R

Dataset 1 Dataset 2
Method | R RMSE  MAE R RMSE MAE
3 1.7599  1.2662 3 1.3329  0.8273
CMFS 4 2.1210  1.3918 | 4  2.0686  1.4342
5 2.2021 14660 | 5 2.1386  1.4946
3 1.6435 1.1009 3 1.3374  0.8335
CMFC 4 2.1820 1.4429 | 4 2.0975 1.4699
5 2.3025 1.5728 5 2.2731  1.6980
9 24888 1.6791 | 10 2.1249  1.2882
LRTF 10 25199 1.7098 | 11  2.1698  1.3402
11 26359 1.7910 | 12 22195 1.3857

resolve this, we used the semester before the last one to select
models and it did not work well, as different courses are usually
offered in the fall and spring semesters. It is worth mentioning
here that imputing for missing grades while fitting the model
helps, as this is the main difference between our baseline and
MF - note the results of baseline vs. MF in Table IV. For
each dataset, we highlight the smallest RMSE produced by our
models and the baseline to make it easier for the reader to
compare.

In Table V, we show the prediction error of our models for the
time at which grades in the last semester test set were obtained.
Note that the correct time values in Ty which we are pre-
dicting are the same which correspond to last semester. Recall
that we scale T, by v = 1/2, hence every semester adds 0.5
including summers. CMFS with R = 3 can predict time with
less than three semesters error — roughly within one year error
as we account for summer semesters. We should mention that
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TABLE VI
PREDICTION ERROR OF THE PROPOSED VS. EXISTING METHODS MEASURED BY
RMSE AND MAE FOR GRADES IN G.s; (LAST SEMESTER FOR ECE AND
CHEM DEPARTMENTS)

ECE Chem

Method R RMSE MAE R RMSE MAE
3 0.6534 04754 | 3 0.6898 0.4939

Baseline 4 06673 05028 | 4 0.7060 0.5169
5 06614 04854 | 5 0.6989 0.5114

MF 3 0.6735 04834 | 3 0.7074 0.5077
BiasOnly | 2 0.6564 0.4828 | 2 0.7063 0.5161
3 06569 04803 | 3  0.6927 0.5027

CMFS 4 06700 05004 | 4 0.7201 0.5275
5 06722 05043 | 5 0.7209 0.5283

4 06518 04815 | 4 0.6892 0.5043
CMFC 5 06481 04762 | 5 0.6741 0.4934
6 06412 04702 | 6 0.6851 0.5029

6 0.6566 04761 | 6 0.6899 0.4985

LRTF 7 06579 04793 | 7 0.6911 0.4995
10 0.6568 04785 | 8 0.6942 0.5019

TABLE VII

PREDICTION ERROR OF THE PROPOSED VS. EXISTING METHODS MEASURED BY
THE AVERAGE ERROR (AVGRMSE AND AVGMAE) OF THREE DIFFERENT
HELD-OUT GRADE TEST SETS Gcst (RANDOMLY MISSING) WITH THEIR

BEST RANK(S), R

Dataset 1 Dataset 2
Method R AvgRMSE AvgMAE | R AvgRMSE AvgMAE
3 0.6132 0.4448 3 0.5830 0.4345
Baseline 4 0.6123 0.4421 4 0.5856 0.4367
5 0.6196 0.4466 | 5 0.5853 0.4350
MF 3 0.6118 0.4416 | 3 0.5862 0.4411
BiasOnly 2 0.6258 0.4598 2 0.5861 0.4414
CXT (CCD++) | 2 0.6983 0.4955 5 0.6143 0.4620
CXT (SGD) | 5 0.7444 0.5230 | 5 0.6112 0.4614
3 0.6159 0.4469 | 3 0.5827 0.4345
CMFS 5 0.6118 0.4419 | 4 0.5816 0.4339
6 0.6192 0.4478 6 0.5843 0.4353
3 0.6091 0.4409 | 3 0.5805 0.4322
CMFC 4 0.6116 0.4413 | 4 0.5799 0.4320
5 0.6168 0.4447 5 0.5828 0.4339
5 0.6127 0.4433 8 0.5790 0.4314
LRTF 6 0.6114 0.4420 | 9 0.5797 0.4321
7 0.6121 0.4424 | 10  0.5808 0.4328

although the smallest error in Table V is RMSE = 1.3329, this
is not the best time prediction that can be obtained. The reason
is that we tune the models based on the prediction of grades as
it is our main interest and then predict for the context.

t4 Predicting for a single Department: One might be curious
about how the different methods compare when focusing on
a single department where students are highly correlated. We
show the results of the prediction for students of ECE and Chem
(subsets of Dataset 2) in Table VI. The CMFC model improves
the prediction of the baseline, MF, and BiasOnly models in both
cases — the improvement is highlighted.

TABLE VIII
PREDICTION ERROR OF THE PROPOSED METHODS MEASURED BY THE
AVERAGE ERROR (AVGRMSE AND AVGMAE) OF THREE DIFFERENT
HELD-OUT TIMESTAMP TEST SETS Tcst (RANDOMLY MISSING)
WITH THEIR BEST RANKS, R

Dataset 1 Dataset 2
Method | R AvgRMSE AvgMAE | R AvgRMSE AvgMAE
3 0.2158 0.1498 | 3 0.1952 0.1299
CMFS | 5 0.2421 0.1637 | 4 0.2058 0.1377
6 0.2610 0.1778 | 6 0.2370 0.1621
3 0.2247 0.1615 | 3 0.2062 0.1427
CMEC | 4 0.2416 0.1722 | 4 0.2142 0.1471
5 0.2502 0.1741 5 0.2220 0.1505
5 0.2371 0.1634 | 8 0.2224 0.1471
LRTF | 6 0.2432 0.1699 | 9 0.2286 0.1505
7 0.2502 0.1701 |10  0.2318 0.1522

TABLE IX
ESTIMATES OF THE STANDARD DEVIATION (SD) OF THE PREDICTION RMSE
AND MAE FOR THE PROPOSED MODELS USING 100 DIFFERENT RANDOMLY
HELD-OUT Gcst AND T'c5¢ AND THE LISTED RANKS, R

Giest T iest
Method R SD(RMSE) SD(MAE) SD(RMSE) SD(MAE)
CMFS 6 3.2E-03 2.0E-03 2.6E-03 1.5E-03
CMEFC 5 3.6E-03 2.3E-03 3.3E-03 2.1E-03
LRTF 8 3.2E-03 2.2E-03 2.7E-03 1.5E-03

B. Prediction of Randomly Missing 10% of Data

In this section we show the prediction error of testing on
randomly missing 10% of data. Table VII shows the prediction
error for the proposed models, baseline, MF, BiasOnly, and
CXT. For this test set, our models outperform MF, BiasOnly,
and CXT methods and improve the baseline prediction. CMFC
gives the smallest error among our models for Dataset 1, while
LRTF provides the best prediction for Dataset 2. The smallest
AvgRMSE provided by the proposed models and the best of the
other methods are highlighted to point out the improvement. We
get stable results - the RMSEs for the different held-out subsets
are close to each other. For example, the three RMSE values are
0.5787, 0.5798, and 0.5785 for the LRTF model for Dataset 2
with R = 8 — other results are qualitatively similar.

For this test set, our models predict the time with smaller error
than in the case of last semester, as is clear from Table VIII. We
scale T, by v = 1/10 in this case, hence every semester adds
0.1, including summers. For Dataset 2, the time was predicted
using CMFS with less than two semesters error, AvgRMSE
= 0.1952.

To give an idea about statistical significance of the results, we
report estimates of the standard deviation (SD) of the prediction
RMSE and MAE for the proposed models using 100 different
randomly held-out test sets. In Table IX, SD estimates are shown
for Dataset 2 for the listed ranks.
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VI. CONCLUSION

In this work, we extended the traditional MF method in the
context of CF to incorporate contextual information in a dif-
ferent way than is commonly done in the recommender system
literature. Utilizing matrix factorization and tensor factorization
we proposed models that allow for flexible integration of side
information, without amplifying sparsity / increasing the needed
model rank. They also can handle the ‘cold start’ problem when
predicting for a certain context, such as next semester. These
models share the feature of factoring the grade matrix and the
context with a common factor to exploit the context in which a
grade was earned. Algorithms to solve the presented formula-
tions were provided.

These models were tested on actual grade data obtained from
the University of Minnesota with time context measured in
semesters. We conducted a careful comparison with our baseline
and existing methods that are used in the setting of predicting
student performance. Comparisons were made on the prediction
of grades in two types of test set, last semester and randomly
missing grades. Although the results were a bit disappointing for
last semester predictions as our modeling did not improve the
baseline or MF, they showed a promising prediction improve-
ment for the case of testing on a single department. In the case
of predicting randomly missing grades, the proposed models
outperform earlier methods and the smallest error is provided
by CMFC for Dataset 1 and LRTF for Dataset 2.

Another aspect that the presented modeling could be used for
is context prediction, e.g., course enrollment forecasting. For
the randomly missing grade prediction, the time was predicted
using CMFS with less than two semesters error on average,
AvgRMSE = 0.1952.
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