Repartitioning of Adaptive Meshes: Experiments
with Multilevel Diffusion *

Kirk Schloegel, George Karypis, Vipin Kumar
University of Minnesota, Department, of Computer Science
(kirk, karypis, kumar) @ cs.umn.edu

Abstract. For a large class of irregular grid applications, the structure
of the mesh changes from one phase of the computation to the next.
Eventually, as the graph evolves, the adapted mesh has to be reparti-
tioned to ensure good load balance. If this new graph is partitioned from
scratch, it will lead to an excessive migration of data among processors.
In this paper, we present a new scheme for computing repartitionings of
adaptively refined meshes. This scheme performs diffusion of vertices in
a multilevel framework and minimizes vertex movement without signifi-
cantly compromising the edge-cut.

1 Introduction

For a large class of irregular grid applications, the computational structure of the
problem changes in an incremental fashion from one phase of the computation
to another. An example of such an effect results with the use of adaptive meshes.
Eventually, as the graph evolves, it becomes necessary to correct the partition
in accordance with the structural changes in the computation and to migrate a
certain amount of computation between processors. Failure to do so will lead to
load imbalance, which will bog down parallel run time.

Thus, for adaptive applications, we need a partitioning or repartitioning
algorithm with the following constraints. It is fast. It is scalable. It balances the
graph. It minimizes edge-cut. It minimizes vertex migration time. The use of
parallel graph partitioners will result in a balanced graph with small edge-cuts,
but will lead to excessive movement of data among processors. In this paper,
we present a new scheme for computing repartitionings of adaptively refined
meshes. This scheme performs diffusion of vertices in a multilevel framework
and minimizes vertex movement without significantly compromising the edge-
cut.

* This work was supported by NSF CCR-9423082, by Army Research Office
contract DA/DAAH04-95-1-0538, by Army High Performance Computing Re-
search Center cooperative agreement number DAAH04-95-2-0003/contract num-
ber DAAH04-95-C-0008, by the IBM Partnership Award, and by the IBM SUR
equipment grant. Access to computing facilities was provided by AHPCRC, Min-
nesota Supercomputer Institute. Related papers are available via WWW at URL:
http://www.cs.umn.edu/~karypis

In this paper, TotalV is defined as the number of vertices which change
partitions as the result of partitioning or repartitioning. MaxV is defined as the
maximum number of vertices which migrate into or out of any one partition as
a result of partitioning or repartitioning.

2 Repartitioning Strategies: Review of Previous Work

In partitioning or repartitioning a dynamic graph, two strategies are available.
The first is to simply partition the new graph from scratch. The advantage of this
strategy is that edge-cut is minimized. The second strategy is to use the existing
partition as input for a repartitioning algorithm and to attempt to minimize the
difference between the original partition and the output partition. This strategy
has the potential benefit of reducing TotalV by an order of magnitude or more
over partitioning the modified graph from scratch.

The second strategy can be accomplished by the following cut-and-paste
repartioning method. Excess vertices in an overbalanced partition are simply
swapped into one or more underbalanced partitions in order to bring these par-
titions up to balance. However, while this method will optimize the vertex mi-
gration time, it will have an excessively negative effect on the edge-cut compared
with more sophisticated approaches.

Another method which reduces edge-cut degradation over cut-and-paste
repartitioning, while increasing TotalV only moderately, is analogous to diffusion
from thermal dynamics. The concept is for vertices to move from overbalanced
partitions to underbalanced partitions and to eventually reach balance, just as
in the analogous case, uneven temperatures in a space cause the movement of
heat towards equilibrium [1].

Directed diffusion is diffusion guided by a global view of the graph. One
method of computing this view (hereafter referred to as the diffusion solution)
involves minimization of the two-norm of this solution. Hu and Blake described
a method which computes the diffusion solution while optimally minimizing its
two-norm [3].

Walshaw, Cross, and Everett implemented JOSTLE, a combined partitioner
and diffusion repartitioner. Their repartitioning scheme has two phases, a bal-
ancing phase based on the Hu and Blake method [3] and a refinement phase
based on Kernighan-Lin refinement [5]. They obtained low TotalV results and
low edge-cut degradation on mildly perturbed graphs [8]. Walshaw, Cross, and
Everett later implemented JOSTLE-MD. This replaced the refinement phase of
the original JOSTLE algorithm with multilevel refinement [2, 4]. The result was
a decrease in edge-cut over the original algorithm at the cost of an increase in
TotalV [7]. Unlike our schemes, JOSTLE-MD applies directed diffusion on the
full graph. Thus, it misses the benefits of multilevel diffusion.

2.1 Multilevel Schemes for Graph Partitioning

The multilevel graph partitioning algorithm described in [4] finds high quality
partitions. It has three phases, a coarsening phase, a partitioning phase, and a

refinement, or uncoarsening, phase. During the coarsening phase, a sequence of
smaller graphs are constructed from an input graph by collapsing vertices to-
gether. When enough vertices have been collapsed together so that the coarsest
graph is sufficiently small, a partition is found using one among a variety of
methods. Finally, the partition of the coarsest graph is projected back to the
original graph by refining it at each uncoarsening level. Since now each uncoars-
ening level contains a finer graph, each subsequent graph has more degrees of
freedom than the previous one had. These degrees of freedom can be used to
decrease the edge-cut and increase the graph balance at each level.

Refinement is done in this scheme by a method based on the Kernighan-
Lin partition algorithm [5]. Vertices are visited randomly. Each vertex visited is
checked as to whether migrating partitions would

1. decrease the edge-cut while maintaining the graph balance, or
2. maintain the edge-cut and increase graph balance.

If so, the vertex is migrated. This process is repeated until it converges [4]. We
define these two conditions as the vertex migration criteria.

3 Multilevel Diffusion

A repartitioning algorithm as a modification of the multilevel k-way partitioning
algorithm implemented in MERS can be derived as follows. In the coarsening
phase, only those pairs of nodes that belong to the same partition are considered
for merging. Hence, the initial partitioning of the coarsest level graph is identical
to the current partition of the graph that is being considered for repartioning.

We added a partition enforcement level to the refinement phase. The par-
tition enforcement level is a constant which determines whether a partition is
so overbalanced as to warrant forced vertex migration. During refinement, if
the weight of the partition of the currently selected vertex is greater than the
partition enforcement level and the vertex is a border vertex and at least one
of the vertex’s neighbor partitions is not overbalanced, then the vertex must
migrate regardless of the consequences to edge-cut. If the vertex must migrate
and more than one of its neighbor partitions are not overbalanced, then the
vertex selects a partition to migrate to according to the vertex migration cri-
teria described above. Thus, as the uncoarsening phase progresses, balance is
automatically sought in conjunction with refinement. We use this repartitioning
algorithm as a base algorithm and refer to it as R-MELS.

4 Multilevel Directed Diffusion

The R-MFEIIS algorithm as described earlier can potentially balance any imbal-
anced graph. However, the diffusion of vertices from overbalanced partitions does
not make use of the global information about the location of underbalanced par-
titions when determining vertex movement. It is possible to use the diffusion

solution of the graph in order to direct the movement of vertices in R-MERS.
That is, if the weight of a partition is greater than the enforcement level, then
border vertices are migrated only in accordance with the diffusion solution. In
essence, vertices flow directly from overbalanced partitions to underbalanced
partitions with this global guidance. Thus, balancing is potentially quicker to
converge than in R-MEIDS. This repartitioning algorithm will be referred to as
Rf-MELS.

5 Results

We evaluated the performance of our repartitioning algorithms described above.
These experiments were performed using 10 different graphs arising in finite ele-
ment applications. All experiments were conducted on an SGI R10000 196MHz
processor. The input graphs were partitioned by MENS and then the weights
of some selected vertices were increased so as to overbalance and underbalance
certain partitions.

Table 1 summarizes the results from these experiments. In particular, it
shows the edge-cut, TotalV, MaxV, and run times for MELS, our multilevel repar-
titioner (R-MFIIS), our multilevel directed diffusion repartitioner (Rf-MELS), and
a directed diffusion algorithm (DD-Repart). DD-Repart is essentially our imple-
mentation of the JOSTLE algorithm. The resulting value for each metric was
normalized against the result from MELS. The means of 400 experiments are
presented.

| Table 1: Overview of Results |

Algorithm |Edge Cut|TotalV|MaxV|Run Time
MFILS 1.000 | 1.000 {1.000{ 1.000
R-MFIiS 1.146 | 0.121 |0.471] 0.980
RE{-MERS 1.139 | 0.116 |0.462| 0.969
DD-Repart| 1.455 | 0.173 |0.504| 2.880

| Table 2: MDUAL, 4 Sources, 4 Sinks |

Algorithm |Edge Cut|TotalV|MaxV|Run Time
MELS 34,317 (252,747|5,499| 15.0
Rf-MERS 35,262 |36,237|2,912| 16.1
DD-Repart| 44,780 | 49,402 (3,137| 197.5

The R-MFIIS and Rf-METS algorithms produced results within a few percent
of each other for all four metrics. They both produced substantially lower results
for TotalV and MaxV than the MFELS partitioner while maintaining comparable

edge-cuts. They also proved to be faster and more effective than the directed
diffusion algorithm. In particular, the directed diffusion algorithm (DD-Repart)
produced greater TotalV and MaxV results and larger edge cuts than either R-
MEIRS or Rf-MEIRS.

Table 2 shows the results obtained on one particular experiment for MDUAL
with a 128-way partition. The results from partitioning from scratch (MEIS), our
multilevel directed diffusion repartitioning (Rf-MELS), and the directed diffusion
algorithm (DD-Repart) are compared on this table. Again edge-cut, TotalV,
MaxV, and run time are compared. Here, however, only the unnormalized results
of a single experiment are given.

6 Conclusions

Our multilevel directed diffusion repartioning algorithm is an excellent and ro-
bust repartitioning algorithm. It has been thoroughly tested on a variety of
graphs for a wide variety of possible imbalance structures and has been found
to be fast, scalable, and effective on them. Furthermore, it is highly parallel in
nature. We have parallelized an optimized version of this algorithm described in
[6]. In our early results we have obtained high-quality repartitionings of eight
million vertex graphs in under three seconds using a 256-processor Cray T3D.

References

1. G. Cybenko. Dynamic load balancing for distributed memory multiprocessors.
Journal of Parallel and Distributed Computing, 7(2):279-301, 1989.

2. Bruce Hendrickson and Robert Leland. An improved spectral graph partitioning
algorithm for mapping parallel computations. Technical Report SAND92-1460, San-
dia National Laboratories, 1992.

3. Y. F. Hu and R. J. Blake. An optimal dynamic load balancing algorithm. Technical
Report DL-P-95-011, Daresbury Laboratory, Warrington, UK, 1995.

4. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for par-
titioning irregular graphs. Technical Report TR 95-035, Department of Com-
puter Science, University of Minnesota, 1995. Also available on WWW at URL
http://www.cs.umn.edu/ "karypis/papers/mlevel_serial.ps. A short version appears
in Intl. Conf. on Parallel Processing 1995.

5. B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, 1970.

6. Kirk Schloegel, George Karypis, and Vipin Kumar. Multilevel diffusion schemes for
repartitioning of adaptive meshes. Technical Report TR 97-013, University of Min-
nesota, Department of Computer Science, 1997. http://www.cs.umn.edu/ karypis.

7. C. Walshaw, M. Cross, and M. G. Everett. Dynamic load-balancing for parallel
adaptive unstructured meshes. Parallel Processing for Scientific Computing, 1997.

8. C. Walshaw, M. Cross, and M. G. Everett. Dynamic mesh partitioning: A unified
optimisation and load-balancing algorithm. Technical Report 95/IM /06, Centre for
Numerical Modelling and Process Analysis, University of Greenwich, London, UK,
December 1995.

This article was processed using the BTEX macro package with LLNCS style

