
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING47, 109–124 (1997)
ARTICLE NO. PC971410

Multilevel Diffusion Schemes for Repartitioning of Adaptive Meshes1

Kirk Schloegel,2 George Karypis,2 and Vipin Kumar2

Army HPC Research Center, Minneapolis, Minnesota; and Department of Computer Science and Engineering, University of Minnesota, Minnesota

For a large class of irregular mesh applications, the structure
of the mesh changes from one phase of the computation to the
next. Eventually, as the mesh evolves, the adapted mesh has to
be repartitioned to ensure good load balance. If this new graph
is partitioned from scratch, it may lead to an excessive migration
of data among processors. In this paper, we present schemes
for computing repartitionings of adaptively refined meshes that
perform diffusion of vertices in a multilevel framework. These
schemes try to minimize vertex movement without significantly
compromising the edge-cut. We present heuristics to control the
tradeoff between edge-cut and vertex migration costs. We also
show that multilevel diffusion produces results with improved
edge-cuts over single-level diffusion, and is better able to make use
of heuristics to control the tradeoff between edge-cut and vertex
migration costs than single-level diffusion. © 1997 Academic Press

1. INTRODUCTION

Mesh partitioning is an important problem which has ap-
plications in many areas, including scientific computing. In
irregular mesh applications, the computation associated with
the mesh can be represented by a graph that has weights asso-
ciated with its vertices and edges. Weight on the vertices of the
graph represents the amount of computation, and the weight
of the edges represents the amount of interaction between the
computations associated with the vertices. Efficient parallel
execution of these irregular grid applications requires the par-
titioning of the associated graph intop parts with the following
two objectives: (i) each partition has an equal amount of total
vertex weight; (ii) the total weight of the edges cut by the par-
titions (thereafter referred to asedge-cut) is minimized. Since
the weight of any given edge represents the amount of com-

1This work was supported by NSF CCR-9423082, by Army Research
Office Contracts DA/DAAH04-95-1-0538 and DA/DAAH04-95-1-0244, by
Army High Performance Computing Research Center Cooperative Agreement
DAAH04-95-2-0003/Contract DAAH04-95-C-0008, the content of which
does not necessarily reflect the position or the policy of the government,
and no official endorsement should be inferred. Additional support was
provided by the IBM Partnership Award and by the IBM SUR equipment
grant. Access to computing facilities was provided by AHPCRC, Minnesota
Supercomputer Institute. Related papers are available via WWW at URL:
http://www.cs.umn.edu/∼karypis.

2E-mail: kirk@cs.umn.edu, karypis@cs.umn.edu, kumar@cs.umn.edu.

munication required between nodes, minimizing the number of
edges cut by the partition tends to minimize the overall amount
of communication required by the computation. This problem
has been well defined and discussed in previous works [3, 6,
11, 12].

For a large class of irregular grid applications, the compu-
tational structure of the problem changes in an incremental
fashion from one phase of the computation to another. For
example, in adaptive meshes computations [1], areas of the
original mesh are selectively refined or de-refined in order to
accurately model the dynamic computation. This changes the
amount of work which is required to be performed on each pro-
cessor in the next computation phase. On a parallel computer,
this can result in an uneven distribution of work, making it nec-
essary to repartition and redistribute the adapted mesh across
the processors. This repartitioning algorithm should satisfy the
following objectives.

1. It robustly balances the graph.If each partition does
not have roughly equal vertex-weight, then the overall parallel
run-time will be dominated by the processor containing the
highest weight, resulting in higher parallel run-time. In order
to make the repartitioning algorithm general it must be able to
balance graphs from a wide variety of application domains.

2. It minimizes edge-cut.The redistributed graph should
have a small edge-cut to minimize communication overhead
in the follow on computation.

3. It minimizes vertex migration time.Once the mesh is
repartitioned, and before the computations can restart, data
associated with the migrated vertices also need to be moved.
In many adaptive computations, the data associated with each
vertex are very large. The time for movement of the data can
dominate overall run time, especially if the mesh is adapted
frequently.

4. It is fast and scalable. The computational cost of
repartitioning should be small since it is done frequently. Also,
since the problem studied in this paper is relevant only in
the context of parallel computers, the repartitioning algorithm
should have an efficient parallel formulation. Performing the
repartitioning on a serial processor can become a very serious
bottleneck.3

3The algorithm should also have limited memory requirements, as any
memory used by the partitioner cannot be used by the application.

109

0743-7315/97 $25.00
Copyright © 1997 by Academic Press

All rights of reproduction in any form reserved.

110 SCHLOEGEL, KARYPIS, AND KUMAR

Objectives 1 and 2 can be optimized reasonably if the
adapted graph is partitioned from scratch using a state-of-the-
art multilevel graph partitioner such as METIS [9, 11, 12]
or Chaco [6]. Since highly parallel formulations of multilevel
graph partitioning algorithms are available [10, 13], criterion 4
can also be met to a large extent. Partitioning from scratch will,
however, result in high vertex migration, as the partitioning
does not take the initial location of the vertices into account.
A partitioning method that incrementally constructs a new
partition as simply a modification of the input partition (e.g.,
by diffusion [18, 19]) can potentially move a much smaller
number of vertices. Such a method can also be potentially
faster than partitioning the graph from scratch.

Repartitioning schemes that incrementally modify an exist-
ing partition have been quite successful on graphs that are
small perturbations of the original graphs [15, 19]. For only
slightly imbalanced graphs, the initial partition does not need
to be disturbed very much, and so these algorithms are able
to maintain an edge-cut comparable with the initial partition.
However, if the initial partition is highly imbalanced, then
many vertices need to move in order to balance the graph.
Thus, even if the disturbance to the initial partition is mini-
mized, the final partition will necessarily end up quite a bit
removed from it. Hence, the balancing phase of such a method
will increase the edge-cut considerably. Local refinement [15,
19] can only provide a limited improvement in the edge-cut
of the resulting partition.

One promising solution to the problem of edge-cut degra-
dation for highly imbalanced graphs is the use of a multilevel
scheme that takes the initial location of the vertices into con-
sideration. The multilevel paradigm allows the local refine-
ment to be performed at multiple coarsened versions of the
graph, which has been shown to be quite effective in reduc-
ing the edge-cut [3, 6, 11, 12]. In addition to the refinement,
the movement of graph vertices (to achieve load balance) can
also be done at multiple coarsened versions of the graph. This
multilevel diffusion scheme can move large chunks of vertices
at coarser levels and then achieve better load balance at finer
levels.

In this paper, we present repartitioning algorithms based
upon multilevel diffusion. These algorithms construct a series
of contracted graphs by collapsing pairs of vertices together
that belong to the same initial partition. Once a sufficiently
small graph has been constructed, the partition is balanced
via undirected diffusion (i.e., diffusion in which balancing
decisions are made by purely local views of the graph) or via
directed diffusion (i.e., diffusion which is directed by a global
view of the graph) [8] at different levels. Once the graph
is balanced, then multilevel refinement is performed at the
remaining levels in order to clean up the edge-cut disturbed by
the balancing phase. We further describe two heuristics which
are able to control the tradeoff between edge-cut and vertex
migration costs when used in a multilevel context. Our results
show that multilevel diffusion produces results with improved
edge-cuts over single-level diffusion and is better able to make

use of heuristics to control the tradeoff between edge-cut and
vertex migration costs than single-level diffusion. Our results
also show that the parallel formulation of multilevel diffusion
is similar to that of multilevelk-way graph partitioning [10, 13]
in performance and scalability. Walshawet al. have previously
implemented a form of multilevel diffusion in JOSTLE-MD
[18], without the heuristics for trading off the vertex migration
and edge-cut.

The organization of this paper is as follows. Section
2 describes the notations and definitions which we use
throughout this paper. Section 3 reviews previous related work.
Section 4 describes our multilevel diffusion repartitioning
algorithms in depth. Section 5 gives experimental results
of our multilevel repartitioners. Section 6 describes and
gives experimental results for our heuristics to control vertex
migration costs. Section 7 gives experimental results of
repartitioning graphs from two application domains. Section
8 contains results on the parallel execution of our multilevel
diffusion scheme. Finally, Section 9 provides some concluding
remarks. A preliminary version of this paper appeared in [16].

2. NOTATIONS, DEFINITIONS, AND ISSUES

In our discussion we include the concepts of both vertex
weight and vertex size as introduced in [14, 17]. Vertex weight
is the computational cost of the work represented by the vertex
while size reflects its migration cost. Thus, the repartitioner
should attempt to balance the graph with respect to vertex
weight while minimizing vertex migration with respect to
vertex size. Depending on the representation and storage policy
of the data, size and weight may not necessarily be equal.
One example of such a situation arises in [14, 17]. A method
for reducing the vertex migration overhead used in [14, 17]
is to determine both the coarsening and the refinement of
the adaptive mesh prior to repartitioning, but to actually
perform only mesh coarsening at this time. This causes the
graph to shrink prior to repartitioning. After repartitioning
and subsequent data migration, the previously determined
refinement of the adaptive mesh can be performed. In this way
the cost of migrating the newly created vertices which have
been selected to swap processors by the repartitioner need not
be paid.

Let G = (V, E) be an undirected graph ofV vertices
and E edges. Let p be the number of partitions. Letsi

represent the cost of movement of vertexvi . We will refer
to si as the size of vertex i . Let wi represent the weight
(i.e., computational work) of vertexvi andwe(v1, v2) equal
the amount of communication required betweenv1 andv2. A
vertex’s densityis equal to its weight divided by its size. We
denoteB(q) as the set of vertices with partitionq. The weight
of any partitionq can then be defined as

W(q) =
∑

vi∈B(q)

wi

and so the average partition weight is

REPARTITIONING OF ADAPTIVE MESHES 111

W =
∑p

i=1 W(i)

p
.

A graph isimbalancedif it is partitioned and

∃q |W(q) > W × (1+ ε),
whereε is a small constant. Ifε = 0, then all partitions would
have to be exactly equal in weight in order for the graph to be
balanced. However, our results indicated that this is often too
strict a definition. For this paper, we setε equal to .03.

In an imbalanced graph, a partition isoverbalancedif
its weight is greater than the average partition weight times
1 + ε. Likewise, a partition isunderbalancedif its weight
is less than the average partition weight divided by 1+ ε.
Otherwise, partitions arebalanced. The graph isbalanced
when no partition is overbalanced. We will use the term
repartitioningwhen an existing partition is used as an input in
an algorithm in order to find a new partition on the same graph
and the termpartitioning when no input partition is used.

A vertex iscleanif its current partition is its initial partition
on the input graph. Otherwise it isdirty. A vertex is aborder
vertex if one of its adjacent vertices is in another partition. If
so, then all such partitions are the vertex’sneighborpartitions.
If a partition contains at least one vertex which has another
partition as a neighbor partition, then those two partitions are
neighbor partitions to each other.

TOTALV is defined as the sum of the sizes of vertices which
change partitions as the result of partitioning or repartitioning
[14]. Thus, it is the sum of the sizes of the dirty vertices.
MAXV is defined as the maximum of the sums of the sizes of
those vertices which migrate into or out of any one partition
as a result of partitioning or repartitioning [14]. As discussed
in [14], in many cases MAXV reflects the time for vertex
migration more accurately than TOTALV.

3. REPARTITIONING STRATEGIES: REVIEW OF
PREVIOUS WORK

A repartitioning of a dynamic graph can be computed by
simply partitioning the new graph from scratch. However,
since no concern is given for the existing partition, most
vertices are not likely to be assigned to their initial partitions
with this method. Intelligent remapping of the resulting
partition can reduce the required movement of vertices [14,
17], but vertex migration can still be quite high.

The second strategy is to use the existing partitioning as
input for a repartitioning algorithm and to attempt to minimize
the difference between the original partition and the output
partition. This strategy can result in much smaller vertex
migration compared to schemes that partition the modified
graph from scratch. TOTALV can be minimized if only a
subset of vertices, the sum of whose weight equals the
difference between the average partition weight and the actual
partition weight, is migrated out of any one partition. This

can be trivially accomplished by the followingcut-and-paste
repartitioning method: Excess vertices in an overbalanced
partition are simply swapped into one or more underbalanced
partitions in order to bring these partitions up to balance.
However, while this method will optimize TOTALV, it will have
an excessively negative effect on the edge-cut compared with
more sophisticated approaches.

Another method that reduces edge-cut degradation over
cut-and-paste repartitioning, while increasing TOTALV only
moderately, is analogous to diffusion from thermal dynamics.
The concept is for vertices to move from overbalanced
partitions to neighboring underbalanced partitions and to
eventually reach balance, just as in the analogous case, uneven
temperatures in a space cause the movement of heat toward
equilibrium [8].

Figure 1 illustrates these methods for a graph whose vertices
and edges have weight of 1. In Fig. 1a, the original graph is
imbalanced because partition 3 has a partition weight of 6,
while the average partition weight is only 4. Edge-cut for the
original graph is 12. In Fig. 1b, the original partition was
thrown out and the graph was then partitioned from scratch
resulting in an edge-cut of 13. This edge-cut is almost as low
as that of the original partition. However, TOTALV is 7. This is
because many vertices had to be migrated because they were
assigned to a new partition which was different from their
original partitions. In Fig. 1c, cut-and-paste repartitioning was
used. Here, TOTALV is 2, since verticesd and l migrate to
partition 1. The edge-cut is now 16. In Fig. 1d, a diffusion-type
repartitioning was conducted. Vertex movement increases to 4,
but edge-cut drops to 14 in comparison with the cut-and-paste
method. Notice that partition 3 migrates vertexd to partition 2
and vertexp to partition 4. This, in turn, causes the recipient
partitions to become imbalanced. They then migrate vertices
j and f to partition 1. At this point the graph is balanced.

From these examples, we see an illustration of how cut-
and-paste repartitioning minimizes TOTALV while completely
ignoring edge-cut. Likewise, partitioning the graph from
scratch minimizes edge-cut while resulting in high TOTALV.
Diffusion, however, attempts to keep TOTALV low by ensuring
that the vertices which do not need to be migrated to balance
the graph are reassigned to their original partitions. It also
attempts to keep edge-cut low by making incremental changes
to the current partition.

Undirected diffusionis diffusion which occurs through dis-
tributed actions employing only local views of the graph. Thus,
vertex migration decisions are made at every partition accord-
ing to the relative difference in partition weights between each
partition and all of its neighbor partitions. Undirected diffu-
sion has the advantage that it is highly distributed in nature.
However, balancing occurs without the guidance of a global
view of the graph. This can potentially increase the edge-cut,
vertex migration costs, and run time of the algorithm. Diffu-
sion has been studied in the general context of load balancing
in [2, 4, 21].

112 SCHLOEGEL, KARYPIS, AND KUMAR

FIG. 1. Partitioning and repartitioning examples.

Directed diffusionis diffusion guided by a global view of
the graph. It is accomplished by obtaining adiffusion solution
that specifies the number of vertices to be moved [7, 8, 19]
for every pair of partitions. Two methods of computing the
diffusion solution involve minimization of the one-norm of
the diffusion solution and minimization of its two-norm. One-

norm minimization is the minimization of the sum of the
moduli of the elements of the diffusion solution vector. Two-
norm minimization is a minimization of the sum of the squares
of the elements of the diffusion solution. Figure 2 shows
two different diffusion based solutions for a graph in which
partition A and B are overbalanced and partitions E and F

FIG. 2. One- and two-norm diffusion examples.

REPARTITIONING OF ADAPTIVE MESHES 113

are underbalanced. Arrows indicate vertex flow. The numbers
next to the arrows indicates the magnitude of this flow. The
solution in Fig. 2a minimizes the one-norm by assigning
all of the vertex flow on the shortest route available. Thus,
TOTALV is minimized. However, one-norm minimization does
not guarantee the minimization of MAXV. This can be seen
if we focus on partitionG of Fig. 2a. This partition receives
all of the vertex flow from both overbalanced partitions. The
total vertex weight both into and out of partitionG is 20. The
lower bound for MAXV here is 10. Thus, MAXV is twice
the minimal necessary to balance the graph. The solution
in Fig. 2b minimizes the two-norm. Here the vertex flow is
split among the available channels. Hence, the channel-use is
more efficient. The two-norm minimization tends to minimize
MAXV, at the expense of higher TOTALV.

Ou and Ranka [15] developed a method which optimally
minimizes the one-norm of the diffusion solution using linear
programming. Hu and Blake [8] described a method which
computes the diffusion solution while optimally minimizing
the two-norm. They proved that this solution can be found by
solving the linear equation

Lλ = b,

whereb is the vector containing the load of each partition mi-
nus the average partition load, andL is a Laplacian matrix,
defined as

(L)qr =
{−1, if q 6= r, q andr are neighbors,

deg(q), if q = r ,
0, otherwise,

andλ, the diffusion solution, is a vector withp elements. An
amount of vertex weight equal toλq − λr needs to be moved
from partition q to partition r for every partitionr which is
adjacent to partitionq in order for the graph to balance. A neg-
ative value indicates vertex flow in the opposite direction. Hu
and Blake [8] showed that when using the parallel conjugate
gradient algorithm [5] to solve forλ, the algorithm converges
in fewer thanp iterations.

Walshaw et al. implemented JOSTLE, a combined parti-
tioner and directed diffusion repartitioner based on an opti-
mization of the Hu and Blake [8] diffusion solver [19].

4. MULTILEVEL GRAPH REPARTITIONING

Multilevel graph partitioning has been studied in [3, 6,
11, 12]. Our multilevel graph repartitioning algorithm is
essentially a modification of thek-way multilevel partitioning
algorithm [11]. Hence, we first review thek-way multilevel
scheme for partitioning. Throughout this paper, we will refer to
thek-way multilevel graph partitioning algorithm implemented
in METIS as simply METIS.

The k-way multilevel graph partitioning algorithm [11]
implemented in METIS has three phases, a coarsening phase,
a partitioning phase, and a refinement (or uncoarsening)

phase.4 During the coarsening phase, a sequence of smaller
graphs are constructed from an input graph by collapsing
vertices together. When enough vertices have been collapsed
together so that the coarsest graph is sufficiently small, ak-
way partition is found. Finally, the partition of the coarsest
graph is projected back to the original graph by refining it at
each uncoarsening level using ak-way partitioning refinement
algorithm.

The k-way refinement algorithm in METIS uses a simple
randomized algorithm that moves vertices among the partitions
to reduce the edge-cut and to improve the balance. Consider a
graph G = (V, E). For each vertexv in V we define the
neighborhood N(v) of v to be the union of the partitions
to which the vertices adjacent tov belong (excludingv’s
partition). Note that ifv is a border vertex, thenN(v) 6= ∅,
and if v is an interior vertex, thenN(v) = ∅. In the k-
way refinement algorithm, each vertex of the graph is visited
randomly. A vertexv is moved to one of the neighboring
partitions in N(v) if any of the following vertex migration
criteria is satisfied.

1. The edge-cut is reduced while maintaining the balance.
2. The balance improves while maintaining the edge-cut.

If the first criterion is satisfied, then the algorithm tries to
move v into a partition that will lead to a reduction in the
edge-cut, subject to balance constraints. If multiple partitions
satisfy this criterion, the vertex is moved to the one that lead to
the highest reduction in the edge-cut. If the second criterion is
satisfied (but the first is not), then the algorithm tries to move
v to a partition that will improve the balance without changing
the edge-cut. If multiple partitions satisfy this criterion, then
the vertex is moved to the one that leads to the highest
improvement in balance. Note that since each vertex is moved
to its neighboring partitions, thek-way refinement algorithm
moves only border vertices. This process is repeated a small
number of times or until we can obtain no further reduction
in the edge-cut [11].

4.1. Repartitioning Algorithms Based on Multilevel Diffusion

A multilevel undirected diffusion repartitioning algorithm
(MLD) as a modification of the multilevelk-way partitioning
algorithm implemented in METIS can be derived as follows.
In the coarsening phase, only pairs of nodes that belong to
the same partition are considered for merging. Hence, the
initial partition of the coarsest level graph is identical to the
input partition of the graph that is being repartitioned and thus
does not need to be computed. This makes the coarsening
phase completely parallelizable, as coarsening is local to each
processor.

The uncoarsening phase of MLD contains two subphases:
multilevel diffusion and multilevel refinement. In the multi-

4Note that the meanings of the termscoarsen and refine here in the
multilevel partitioning context are different from their meanings in the adaptive
mesh context.

114 SCHLOEGEL, KARYPIS, AND KUMAR

level diffusion phase, balance is sought on the coarsest graph
in a process similar to multilevel refinement. This is accom-
plished by forcing the migration of vertices out of overbal-
anced partitions. The vertices are visited in a random order.
Each border vertex is examined. If a vertex is in an overbal-
anced partition and is neighbors with a nonoverbalanced parti-
tion, then that vertex will migrate to the nonoverbalanced par-
tition. If the vertex is neighbors with several nonoverbalanced
partitions, then it will migrate to the partition that produces
the greatest improvement in edge-cut. The vertex is migrated
even if this results in an increased edge-cut. After each border
vertex is visited exactly once, the process repeats until either
balance is obtained or no balancing progress is made.

Given this scheme, it may not be possible to balance the
graph at the coarsest graph level. That is, there may not
be sufficiently many vertices of small weight (i.e., vertices
composed of few subvertices) on the coarsest graph to allow
for total balancing. If this is the case, the graph needs to
be uncoarsened one level in order to increase the number of
smaller weight vertices. The process described above is then
begun on the next coarsest graph. Our experiments have shown
that the graph will typically balance within a few levels.

After the graph is balanced, multilevel diffusion ends and
multilevel refinement begins on the current graph. Here, the
emphasis is on improving the edge-cut. The vertices are visited
randomly. Each border vertex visited is checked to see if the
migration of the vertex to a neighboring partition will satisfy
one of the followingrefinement phase vertex migration criteria.

1. The selected partition is the vertex’s initial partition
from the input graph, the move does not increase the edge-
cut, and the balance is maintained.

2. The edge-cut is reduced while maintaining the balance.
3. The balance improves while maintaining the edge-cut.

Criterion 1 allows vertices to migrate to their initial parti-
tions (as long as the migration does not increase the edge-cut
and worsen the load balance), and therefore, to lower TOTALV
and possibly MAXV. If more than one of these criteria is sat-
isfied, then priority is given to moving the vertex back to its
initial partition and then to reducing the edge-cut.

Our multilevel directed diffusion repartitioning algorithm
(MLDD) is as follows. Coarsening is accomplished as de-
scribed for MLD above. However, balance is sought by means
of a global picture of the graph (i.e., the two-norm minimiz-
ing diffusion solution) guiding vertex migration. That is, the
border vertices are visited randomly. If the visited vertex is
neighbors with a partition which has a positive flow value ac-
cording to the diffusion solution with respect to the vertex’s
current partition and this flow value is greater than 90% of the
vertex’s weight, then that vertex is migrated to the neighbor
partition. If a vertex is neighbors with more than one such
partition, it is migrated to that partition which will result in
the lowest edge-cut. The vertex is migrated even if this results
in an increased edge-cut. When a vertex is migrated, the flow
value obtained by the diffusion solution for the two partitions

FIG. 3. Multilevel diffusion repartitioning.

is updated by decreasing it by the migrating vertex’s weight.
After each border vertex is visited exactly once, the process re-
peats until either balance is obtained or no balancing progress
is made. Once balance is obtained, multilevel refinement is
begun as described in the MLD algorithm above.

In summary, as illustrated in Fig. 3, our multilevel diffusion
repartitioning algorithms are made up of three phases, graph
coarsening, multilevel diffusion, and multilevel refinement.
The coarsening phase results in a series of contracted graphs.
The multilevel diffusion phase balances the graph using
the very coarsest graphs. The multilevel refinement phase
seeks to improve the edge-cut disturbed by the balancing
process. Optionally, the multilevel diffusion can be guided
by a diffusion solution. We will refer to our multilevel
undirected diffusion repartitioning algorithm as MLD and to
our multilevel directed diffusion repartitioning algorithm as
MLDD. Single-level directed diffusion (SLDD) will be used
to provide a comparison with our multilevel diffusion schemes.
In SLDD, diffusion and refinement are performed only on
the original input graph and thus, no graph contraction is
performed.

Walshaw et al. [18] have previously implemented a re-
lated scheme in JOSTLE-MD. The JOSTLE-MD algorithm
performs both diffusion and refinement starting on the coars-
est graph and continuing on every subsequently finer graph.
Our scheme performs multilevel diffusion only on the coarsest
graphs until balance is reached and then multilevel refinement
only on the remaining finer graphs.

5. EXPERIMENTAL RESULTS

The experiments in Sections 5 and 6 were performed using
five different graphs arising in finite element applications. They
are enumerated and described in Table I. METIS was originally
used on the input graphs to obtain a 128-way partition. Then

REPARTITIONING OF ADAPTIVE MESHES 115

TABLE I
Characteristics of the Various Graphs

Used in the Serial Experiments

Graph
Number of

vertices
Number of

edges Description

AUTO 448,695 3,314,611 3D mesh of GM’s Saturn

m14b 214,765 1,679,018 3D mesh of submarine

MDUAL2 988,605 1,947,069 dual of a 3D mesh

TORSO 201,142 1,479,989 3D mesh of a human thorax

WAVE 156,317 1,059,331 3D mesh of a submarine

the weights of some randomly selected vertices were increased
so as to overbalance and underbalance certain partitions.
Specifically, for one series of experiments four of the 128
partitions were overbalanced by 80%. This was accomplished
by doubling the vertex weights of 80% of the vertices in each
of the four selected partitions. In the next series of experiments,

four partitions were overbalanced and four partitions were
underbalanced in order to create source and sink partitions.
Here, partition weights were modified by multiplying the
vertex weight of each vertex in a given partition by a constant.
All source partition vertex weights were multiplied by 19. All
sink partition vertex weights were multiplied by 1. All others
were multiplied by 10. Finally, in two series of experiments,
source and sink partitions were created by multiplying the
vertex weights of each vertex in a partition by a random
number. These random numbers were distributed to produce
an average vertex weight of 18 in source partitions, 2 in sink
partitions, and 10 in all other partitions.

Figure 4 compares the results from single-level directed dif-
fusion with two multilevel diffusion schemes. All of the results
are normalized against the results obtained by partitioning the
imbalanced graph from scratch using METIS.

Figure 4a shows the results of repartitioning using these
three schemes on graphs which were overbalanced by 80% in
four partitions. First we see that TOTALV and MAXV for all

FIG. 4. Repartitioning results.

116 SCHLOEGEL, KARYPIS, AND KUMAR

three of these schemes are much better compared with
partitioning from scratch. This is expected, since METIS does
not make use of the information provided by an input partition.
Thus, it is highly unlikely that vertices are reassigned to their
initial partitions. Figure 4a also shows that for this simple
balancing problem, there is not much difference between the
results from MLD, MLDD, and SLDD. These results confirm
our hypothesis that for relatively simple balancing problems,
SLDD is able to maintain a good edge-cut. It is only for more
complex imbalance problems that the SLDD algorithm begins
to break down.

Figures 4b–d illustrate this point. Figures 4b and c show
the results of repartitioning on graphs with four source and
four sink partitions. In Fig. 4b, every vertex in a partition has
the same vertex weight as every other vertex in the partition.
In Fig. 4c however, the weight of every vertex in each parti-
tion was multiplied by a randomly generated number. Figure
4d shows the results of repartitioning on graphs with eight
source and eight sink partitions and randomly distributed ver-
tex weights. These results show that the multilevel directed
diffusion algorithm is effective in keeping the edge-cut degra-
dation and TOTALV down for complex balancing problems.
MLDD consistently results in lower edge-cuts and TOTALV
than SLDD and MLD in every experiment. The edge-cuts of
SLDD and MLD are generally similar. With respect to MAXV,
the MLDD scheme did not fare as well. In seven of the 20
results, the MLDD scheme resulted in MAXV results which
were 10 to 50% higher than the other repartitioners. However,
these were still lower than the MAXV results from partitioning
from scratch.

The results indicate that the multilevel diffusion paradigm
is quite powerful. Both multilevel diffusion algorithms (MLD
and MLDD) are able to repartition each of the imbalanced
graphs effectively. We see that multilevel directed diffusion is
more effective at keeping edge-cut and TOTALV results down
than multilevel undirected diffusion. However, this difference
is not as great as that obtained when we compared the
results (not shown in this paper) from single-level undirected
diffusion to those of single-level directed diffusion. Here,
edge-cut, TOTALV, MAXV, and the repartitioning algorithm
run-time were all higher virtually across the board for single-
level undirected diffusion compared to single-level directed
diffusion.

6. HEURISTICS

In this section we present heuristics to lower TOTALV and
MAXV while marginally sacrificing edge-cut. This can be very
useful in those applications in which the time required to
migrate vertices dominates the total execution time.

6.1. A Heuristic to Reduce TOTALV

As defined in Section 2, a vertex is dirty if it is currently
in a partition different from its initial partition on the input

graph. TOTALV then is the sum of the sizes of the dirty
vertices. During the multilevel diffusion phase, a certain
amount of vertices become dirty. This is unavoidable, as
the graph must be balanced. These vertices can be migrated
further, however, without increasing TOTALV. Hence, in the
multilevel refinement phase, if only dirty vertices are migrated,
TOTALV cannot increase further, and it may even decrease if
dirty vertices find their way back to their original partitions.
However, it appears overly restrictive to completely eliminate
the migration of clean vertices, as it may result in higher
edge-cuts. Nevertheless, it appears reasonable to restrict the
migration of clean vertices. This is done by means of the
cleanness factor (CF). During multilevel refinement, a clean
vertex is moved only if Thus, we limit the movement of clean
vertices who result in only small edge-cut decreases relative
to their size. If CF is set to infinity, then only dirty vertices
are considered for migration during multilevel refinement. If
CF is zero, then all vertices, clean and dirty, are considered
and may be migrated even if they do not reduce the edge-cut.
An interesting and important case is when CF= ε, whereε is
a small number such as 0.0001. In this case, a clean vertex is
moved only if it reduces the edge-cut. Note that the refinement
criteria of METIS allows the move of a vertex that maintains
the edge-cut, but improves the balance. When CF= ε, the
second criterion is not applied for clean vertices.

Figure 5 shows the results of repartitioning using three
different values for the cleanness factor. These experiments
are performed on the same imbalance problems as described
in Section 5. All of the results are from the multilevel directed
diffusion repartitioner with vertex cleanness and suppression
(MLDD-CS). Each experiment is conducted with an input
suppression factor heuristic of .5. The suppression factor
heuristic is described in Section 6.2. The results are normalized
against those obtained with the cleanness factor of zero.

In each of the results, TOTALV decreases as CF increases.
This is as expected, as raising the cleanness factor decreases
the number of vertices allowed to migrate during multilevel
refinement. We also see a corresponding rise in the edge-cut
as the cleanness factor increases. Thus, the results show that
it is possible to lower TOTALV by trading edge-cut.

This decrease in TOTALV is able to affect MAXV in certain
cases. Since there is less total vertex migration, it stands to
reason that the maximum vertex migration into or out of any
one partition might also drop. However, this is not necessarily
the case. In fact, MAXV could increase as CF increases. This
would be the result when MAXV is dominated by the sum of
the sizes of the vertices migrating into one partition. Since dirty
vertices are free to migrate regardless of the cleanness factor,
there is nothing stopping them (apart from balance constraints)
from migrating into this partition. Doing so would, of course,
increase the sum of the sizes of the vertices migrated into the
partition. This would, in turn, increase MAXV as MAXV was
equal to the prior sum.

REPARTITIONING OF ADAPTIVE MESHES 117

FIG. 5. Repartitioning with cleanness.

6.2. A Heuristic to Reduce MAXV

MAXV is the max of the sum of the sizes of vertices into
or out of any one partition. Our experiments have shown
that the outgoing component of MAXV is usually not a
concern. Intuitively, this is because vertices tend to migrate
out of an overbalanced partition only until the partition is
balanced. Furthermore, overbalanced partitions may have an
ample supply of average to highly dense vertices. That is, they
may have a good supply of vertices whose weight divided by
their size is relatively high. Choosing high density vertices for
movement whenever possible balances the graph while keeping
the cost of vertex migration down. Even if vertices are selected
randomly for migration in overbalanced partitions, there is
a good chance that mostly relatively dense vertices will be
migrated. Thus, the sum of the sizes of the outgoing vertices
will be in the vicinity to the lower bound.

On the other hand, the max of the sum of the sizes of vertices
which migrateinto any one partition is potentially problematic.
Underbalanced partitions must depend on neighbor partitions

to migrate vertices into them. There is no guarantee that an
underbalanced partition’s neighbors will have a large supply
of dense vertices to migrate. The worst case scenario is
when two underbalanced partitions are neighbors and only
one of these partitions is neighbors with an overbalanced
partition. Figure 6 illustrates this point. Here partitionA is

FIG. 6. Blocking a sink to sink transfer.

118 SCHLOEGEL, KARYPIS, AND KUMAR

overbalanced, partitionsB and C are underbalanced, and
partitions D and E are balanced. The diffusion solution will
call for vertex migration as indicated by the arrows. Notice
that partitionB is supposed to migrate vertices into partition
C. However, partitionB may initially be full of relatively low-
density vertices since it is also an underbalanced partition.
It will take a much greater number of low-density vertices
to balance partitionC than it would have taken average or
highly dense vertices. If this happens, partitionC will get
an overabundance of inflowing, low-density vertices. These
vertices will dominate MAXV. However, if the migration of
these low-density vertices could be suppressed, the result
would be that only average density vertices from partitions
D and E would be able to migrate into partitionC. Thus,
MAXV would be reduced.

The underlying problem lies in the migration of low-density
vertices. Partitions are balanced according to vertex weights.
However, vertex migration costs are paid in terms of vertex
size. Therefore, migrating vertices with relatively low weight-
to-size ratios will tend to increase the vertex migration cost
necessary to balance the graph. In order to avoid this situation,
we suppress the movement of low density vertices by using a
parameter calledsuppression factor(SF).

During multilevel diffusion a vertexv is considered for
move only if

Density ofv

Average vertex density
> SF.

Therefore, if SF is zero, no vertex migration is suppressed. If
SF is set to infinity, all vertex migration is suppressed during
multilevel diffusion. In this case it is, of course, impossible
for the graph to balance, as no vertices are allowed to move.
If SF is set to one, only vertices that are above the average
density are allowed to migrate during balancing. The tradeoff
here is that the larger the value of SF, the less free vertices
are to migrate and so the more difficult it is to balance
the graph. With larger values of SF, the graph will tend to
balance at higher and higher uncoarsening levels. This can
also potentially degrade the edge-cut, as multilevel refinement
is the key to keeping edge-cut low. (Multilevel refinement
begins only after multilevel diffusion completes.) Thus, the
more uncoarsening levels it takes to balance the graph, the
fewer levels are available for refinement to reduce the edge-
cut.

Figure 7 shows the results of repartitioning the imbalance
problems (described above) using a range of values for SF. We
have set the cleanness factor (CF) at a constant .0001 for each
of these experiments. Here, the results are normalized against
the results obtained from using SF equal to zero. We see that
even small values for the suppression factor reduces MAXV by
up to 55% for all but the first set of graphs. Meanwhile, across
the board, edge-cut is increased by only a few percent. As SF
increases, MAXV tends to decrease, while edge-cut increases.
Thus, the results show that by employing vertex suppression

in a multilevel context, it is possible to decrease MAXV by
trading edge-cut.

An interesting side-effect occurs with respect to TOTALV.
Since suppression keeps low-density vertices from migrating
during multilevel diffusion, load balancing is accomplished
through the migration of higher density vertices. Thus,
TOTALV also tends to drop.

Notice in Fig. 7a that suppression has had no effect.
This is because for this problem, vertex density is highly
homogeneous across partitions. The densities range from 1 to 2
here. The average vertex density for the graph is 1.03. Thus, in
order to suppress the lowest density vertices (those of density
1), the suppression factor will have to be greater than .97.
Since 97.5% of the vertices in these imbalance problems are
of density 1, this suppression factor is much too large to allow
the graph to be balanced. In fact, we conducted experiments
with a suppression factor as large as 1 and none of the graphs
consistently balanced.

Figures 7b–d show that as the homogeneity of vertex
density decreases, vertex suppression becomes more effective.
However, by reexamining the results from Fig. 4, we also
see that as homogeneity decreases, MAXV becomes more
problematic for the multilevel schemes. Thus, while vertex
suppression is less effective on homogeneous graphs, it tends
to be less necessary here, as well. That is, as the homogeneity
decreases, MAXV becomes more problematic. At the same
time however, vertex suppression becomes more effective.
These results show that vertex suppression is a powerful
heuristic for controlling MAXV.

6.3. Dynamic Suppression

As the previous results have shown, increasing the suppres-
sion factor tends to decrease MAXV. If the suppression factor
is set too low, no vertices will be suppressed and so vertex
suppression will be ineffective. However, if this suppression
factor is too high, the majority of vertices will be suppressed
and the graph will not be balanced. If the characteristics of
mesh adaptation are known in advance, then the suppression
factor can be set at an appropriate level. However, if this is
not the case, then it may be difficult to set the suppression fac-
tor at an appropriate level. To handle these situations, we have
implemented a scheme that dynamically adjusts SF as follows.
At the beginning of each uncoarsening level, SF is initialized
to some quantity (e.g., 1). During multilevel diffusion, after
every vertex has been visited, the dynamic suppression algo-
rithm checks to see if at least 80% of vertices were suppressed.
If this is the case, then the suppression factor is divided by 1.3
prior to the start of the next iteration. The next section shows
the results of using MLDD with dynamic suppression on two
application domains.

7. REPARTITIONING OF APPLICATION GRAPHS

We have conducted experiments on repartitioning applica-
tion graphs from two domains. The first set is taken from the

REPARTITIONING OF ADAPTIVE MESHES 119

FIG. 7. Repartitioning with suppression.

DIME software package [20]. The application solves Laplace’s
equation with Dirichelet boundary conditions on a square, 2-
dimensional mesh with a stylized “S” hole. The problem is
solved by Jacobi iteration, refined, and load-balanced [18].
The result is a domain with a small degree of change at each
successive stage in the mesh adaptation.

The second set shows a series of application meshes with
a high degree of adaptation at each stage. These graphs are
3-dimensional mesh models of a rotating helicopter blade. As
the blade spins, the mesh must be adapted by refining the mesh
in the area where the rotor has entered and coarsening it in the
area of the mesh where the rotor has passed through. These
meshes were provided by the authors of [14].

For each of these application domains, the first of a series
of x graphs,G1, G2, . . . , Gx, was originally partitioned with
METIS. The partition of graphG1 acted as the input partition
for graphG2. Repartitioning this now imbalanced graph,G2,
resulted in the experiment namedFirst and the input partition
for graphG3. Similarly, the repartition of graphG3 resulted in
experimentSecond, and so on. For the first application domain

belowx is 10. Therefore, there arex−1, or nine, repartitioning
experiments. For the second domainx is 7, so there are six
repartitioning experiments.

7.1. Laplace’s Equation Solver

Table II shows the performance of our single and multilevel
directed diffusion repartitioning algorithm on the first applica-
tion domain. Here, the edge-cuts and run times are averaged
over the nine experiments. Also, the TOTALV results are first
divided by the total number of vertices in each graph and then
averaged together to obtain TOTALV. SLDD indicates results
obtained from our single-level directed diffusion repartition-
ing algorithm with CF and SF set at zero. MLDD indicates
results obtained from the MLDD algorithm. MLDD-CS indi-
cates results obtained from our multilevel directed diffusion
repartitioning algorithm with CF set to 0.0001 and SF set to
0.25. MLDD-CdS indicates results from the MLDD-CS algo-
rithm with dynamic suppression and CF set to 0.0001. Note,
we have chosen CF to be 0.0001 because the graph imbalance
is very slight here. Thus, the initial low edge-cut partition

120 SCHLOEGEL, KARYPIS, AND KUMAR

TABLE II
Performance of Different Diffusion Schemes

Algorithm Edge-Cut TOTAlV %

SLDD 2677 5.10

MLDD 2463 3.16

MLDD-CS 2553 2.38

MLDD-CdS 2673 1.39

METIS 2485 97.3

is not perturbed significantly. This allows us to concentrate
the power of the multilevel paradigm on minimizing TOTALV
instead of decreasing the edge-cut. METIS indicates results
from partitioning from scratch with METIS. We use nine
graphs with sizes from 31,624 vertices and 46,986 edges to
281,706 vertices and 421,172 edges. All of the results are
obtained using a 64-way partition.

The results show that the multilevel scheme provides
better edge-cut and TOTALV compared with the single-level
scheme. Also, the dynamic suppression is quite effective,
as it marginally increases the edge-cut, while substantially
decreasing TOTALV.

7.2. Helicopter Blade Application

Figure 8 shows the results obtained from repartitioning a
series of rapidly changing adapted meshes described above on
a 64-way partition. The results are normalized against those in
which METIS was used to partition the imbalanced graph from
scratch. MLDD-dS indicates the results from the multilevel
undirected diffusion repartitioning algorithm using dynamic
suppression. SLDD-dS indicates the results from the single-
level directed diffusion repartitioner with dynamic suppression.

FIG. 8. Repartitioning of helicopter blade application graphs.

We used the multilevel undirected diffusion algorithm
because the multilevel directed diffusion algorithm was unable
to balance the graph. This was because the weights of the
vertices were highly heterogeneous. That is, they differed from
each other by up to a factor of 1000. We found that the
vertices were often too coarse to be able to be guided by
the diffusion solution. For example, quite often during the
execution of the algorithm, the diffusion solution called for
vertices totaling a weight of 500 to be migrated, but all of
the boundary vertices had much larger weights (i.e., greater
than 700), as all of the lower weight vertices had already
been transferred. For some cases, even on the finest graphs,
it was not possible to achieve balance using the diffusion
solution. Undirected diffusion allows for more degrees of
freedom. That is, extremely high weight vertices are more free
to migrate about, eventually reaching underbalanced partitions
via circuitous routes.

The results confirm the robustness of multilevel diffusion.
We see that the multilevel undirected diffusion repartitioner
substantially outperforms the single-level scheme. It obtains
lower edge-cut and TOTALV results across the board than the
single-level scheme. It also obtains MAXV results lower than
SLDD-dS in four out of six cases.

With respect to partitioning from scratch, the multilevel
scheme again reduces both TOTALV and MAXV while in-
creasing edge-cut. Here, however, the TOTALV and MAXV of
MLD are only slightly improved over that of partitioning from
scratch. In fact, for some graphs MAXV of partitioning from
scratch actually beats that of repartitioning. This is due to the
complexity of the imbalance problem, which necessitates mi-
gration of a large number of vertices in order to balance the
graph. For some of these graphs, so much vertex migration
is necessary that repartitioning brings little benefit here over
partitioning from scratch.

8. PARALLEL FORMULATION OF
MULTILEVEL DIFFUSION

We have implemented the multilevel diffusion algorithms in
PARMETIS, which contains a parallel formulation of our multi-
level k-way graph partitioning algorithm. Vertices are initially
assumed to be distributed acrossp processors. This division of
vertices corresponds to the original partitioning. The coarsen-
ing phase of parallel multilevel diffusion algorithms requires
no communication, as the computed matchings are restricted
to vertices residing on the same processors. Otherwise, this
phase is identical as described in [13].

The parallel formulation of the multilevel diffusion phase
depends on whether we are using directed or undirected dif-
fusion. The parallel formulation of the undirected diffusion
algorithm is modeled after our coarse-grained parallel multi-
level refinement algorithm [13]. The only difference is that
vertices are visited and selected for migration according to
the criteria for undirected diffusion described in Section 4.1.
In the case of directed diffusion, our current implementation

REPARTITIONING OF ADAPTIVE MESHES 121

performs directed diffusion only for the coarsest graph. Since
the coarsest graph is very small (its size is proportional to the
number of processors), this is done serially, as the computa-
tion does not significantly affect the overall performance and
scalability of our parallel multilevel directed diffusion algo-
rithm. Furthermore, we use the additional processors to obtain
a better directed diffusion as follows. The graph is broadcast
to all processors. Each processor then simultaneously balances
the coarsest graph using the directed diffusion algorithm de-
scribed in Section 4.1 with dynamic suppression (Section 6.3).
Since the diffusion scheme is inherently random, each proces-
sor computes a potentially unique partition. The best partition
can then be selected by focusing on the edge-cut, the TOTALV,
the MAXV, or the balance. In our experiments, we select the
partition that has the lowest edge-cut. If the coarsest graph is
too coarse to allow for complete balancing, then the parallel
undirected diffusion algorithm is used to balance any remain-
ing imbalances.

The parallel formulation of the multilevel refinement al-
gorithm is similar to that for undirected diffusion with the
exception that vertices are moved according to therefine-
ment phase vertex migration criteriadescribed in Section 4.1.
Furthermore, the concepts of vertex cleanness and suppres-
sions are also employed to reduce TOTALV and MAXV. Oth-
erwise, our multilevel refinement algorithm is identical to
the coarse-grained parallel multilevel refinement algorithm de-
scribed in [13].

8.1. Experimental Results

We tested our parallel multilevel repartitioning algorithms
on a Cray T3D with 256 processors. Each processor on the
T3D is a 150 MHz Dec Alpha (EV4). The processors are
interconnected via a three dimensional torus network that has
a peak unidirectional bandwidth of 150 Bytes per second and a
small latency. We used Cray’s MPI library for communication.
Cray’s MPI achieves a peak bandwidth of 45 MBytes and an
effective startup time of 57µs.

We evaluated the performance of our parallel adaptive
multilevel diffusion algorithms on four medium to large size
graphs arising in finite element computations. These graphs
are duals of 3D finite element meshes with tetrahedra elements.
We have selected these larger graphs to demonstrate that
our schemes can perform adaptive repartitioning of very
large graphs quickly. The characteristics of these graphs are
described in Table III.

For each graph we synthetically generated adaptive graphs
by randomly changing the weights of the vertices. For exam-
ple, on 64 processors, we first computed a 64-way partition
and moved the graph so that processorPi stores the vertices
that belong to partitioni . Next, each processorPi selects a ran-
dom numberri between zero and the number of vertices that it
stores and randomly selectsri of its vertices and changes their
weight from 1 to 3. We found that this scheme leads to graphs
that are about 50% load imbalanced, i.e., there are partitions
whose weight are 50% higher than the average weight. These

TABLE III
The Various Graphs Used in the Experiments

Graph name Number of vertices Number of edges

MRNGA 257000 505048

MRNGB 1017253 2015714

MRNGC 4039160 8016848

MRNGD 7833224 15291280

synthetically generated graphs are then used as the input to
our parallel multilevel diffusion and partitioning algorithms.
In all of our experiments, a graph that is 5% load imbalanced
is assumed to be well balanced, and in all experiments this
load imbalance level is easily achieved.

Table IV shows the results obtained by our parallel multi-
level directed and undirected diffusion algorithms for the test
problems on 64, 128, and 256 processors. For each problem,
this table shows the edge-cut of the resulting partitioning, the
total number of vertices that needs to be moved (TOTALV),
and the maximum number of vertices that needs to be moved
in and out of any particular processor (MAXV), as well as the
amount of time (in seconds) required to compute the reparti-
tioning. The rows labeled “Scratch” show similar performance
metrics for the scheme in which the adaptive graph is being
repartitioned from scratch using the parallel multilevelk-way
partitioning algorithm described in [13]. Finally, the rows la-
beled “Imbalance” indicate the load imbalance generated by
our synthetic adaptation scheme for each one of the graph-
processor combinations. As the reader can see, the load im-
balance ranges between 1.42 (42%) and 1.52 (52%). Note that
MRNGD could not run on 64 processors due to the limited
amount of memory on each processor.

To better compare the three schemes, we graphically
depicted the results shown in Table IV in the sequence of
graphs shown in Fig. 9. In particular, Fig. 9a compares the
quality in terms of edge-cut produced by the two multilevel
diffusion algorithms relative to partitioning from scratch. For
each experiment, we computed the ratio of the edge-cut
produced by the diffusion algorithms to that of partitioning
from scratch and plotted it using a bar chart. For example, the
bars for MRNGB-128 correspond to partitioning the adaptively
refined graph MRNGB on 128 processors. Looking at this
figure we can see that the edge-cuts of the partitionings
produced by the two multilevel diffusion algorithms are in
general within 5% of the edge-cut produced by partitioning the
adaptive graphs from scratch. Furthermore, for some of these
graphs (e.g., MRNGA-256 and MRNGC-128) the multilevel
diffusion algorithms produced partitionings whose edge-cut
was slightly better than that of partitioning from scratch. These
results show that our adaptive multilevel diffusion algorithms
are able to produce partitionings whose quality is comparable
to the quality obtained by the parallel multilevel partitioning
algorithm. Comparing the two multilevel diffusion algorithms
together, we see that in general they lead to partitionings that
have comparable edge-cuts.

122 SCHLOEGEL, KARYPIS, AND KUMAR

TABLE IV
The Performance of the Parallel Adaptive Repartitioning Schemes on the Four Test Graphs for

64, 128, and 256 Processors on Cray T3D. All Run-Times Are in Seconds

64 Processors 128 Processors 256 Processors

Graph Scheme Cut TotalV MaxV Time Cut TotalV MaxV Time Cut TotalV MaxV Time

MRNGA Imbalance 1.4244 1.4391 1.4971

Undirected 26457 24819 2427 0.573 32898 24089 1391 0.424 42536 25423 730 0.436

Directed 25895 25858 2363 0̇.666 34635 26670 1430 0.547 42502 25620 755 1.066

Scratch 25099 253856 9815 0.902 32855 252054 4991 1.019 43130 256020 2660 2.247

MRNGB Imbalance 1.4876 1.4955 1.4854

Undirected 69428 92806 10625 1.377 87687 94704 5342 1.017 112522 94328 2821 0.817

Directed 67032 94397 10447 1.534 86836 90785 5376 1.174 112199 95074 3028 1.161

Scratch 65395 996825 39444 2.039 85812 1016832 20365 1.799 110459 1016166 10507 3.294

MRNGC Imbalance 1.4715 1.4920 1.4995

Undirected 169336 342078 46182 3.994 217165 358453 26919 2.435 278607 368216 11513 1.689

Directed 169559 386720 44182 4.385 223031 382812 27300 2.685 279832 351109 11299 2.092

Scratch 167617 3943621 166742 5.056 222368 3998118 83983 3.558 281195 3984525 42061 4.352

MRNGD Imbalance 1.4470 1.5152

Undirected 345122 640172 40995 4.145 452386 743892 22439 2.747

Directed 350334 700727 46231 4.511 445263 768296 22902 3.203

Scratch 343354 7487361 156524 5.511 438704 7507463 83205 4.692

The performance in terms on the number of vertices that
need to be moved (TOTALV and MAXV) is shown in Figs.
9b and 9c, respectively. Looking at these two figures we can
clearly see the advantage of the multilevel diffusion algorithms
over partitioning from scratch in significantly reducing the
number of vertices that needs to be moved in order to achieve
load balance. The multilevel diffusion schemes move fewer
than 10% of the total number of vertices that are required
to be moved by partitioning from scratch (Fig. 9b), and the
maximum number of vertices that is sent and received by any
processor is fewer than 30% of that required by partitioning
from scratch (Fig. 9c). As was the case with the edge-cut, the
relative performance of directed and undirected diffusion is
quite similar, with both schemes performing within a couple
percentage points of each other.

Notice that our serial algorithms’ results from Section 5
indicate that directed diffusion is generally more effective than
undirected diffusion in keeping edge-cut and vertex movement
low. However, our parallel formulations of directed and
undirected diffusion have similar performance. This is because
our current parallel implementation of multilevel directed
diffusion is a simplified version of the serial algorithm.
Specifically, as described in Section 8, directed diffusion
occurs only on the coarsest graph in the parallel formulation.

At this point if the graph is not balanced, undirected diffusion
takes over. Hence, the two schemes obtain results that are quite
similar.

Finally, Fig. 9d shows the amount of time required by
the two multilevel diffusion algorithms relative to partitioning
from scratch. From this figure we can see that the multilevel
diffusion algorithms are considerably faster than partitioning
the graph from scratch. In particular, for MRNGD on 256
processors, undirected diffusion is about 40% faster than par-
titioning from scratch, requiring only 2.75 s (partitioning from
scratch requires 4.69 s). This run-time difference is mostly
due to the fact that the multilevel diffusion algorithms do not
have to compute an initialk-way partitioning of the coarsest
graph, as they inherit the original partitioning. Comparing the
multilevel undirected diffusion with the directed diffusion al-
gorithm we see that the former is faster, and the performance
gap increases with the number of processors. This is because
the directed diffusion algorithm needs to diffuse the coars-
est graph serially, whereas the undirected diffusion algorithm
does not have this serial component. Looking at the run-times
shown in Table IV we can see that both multilevel diffusion
algorithms scale very well with the number of processors, and
they are able to partition graphs with around 8,000,000 ver-
tices in around 3 s.

REPARTITIONING OF ADAPTIVE MESHES 123

FIG. 9. Comparison of the parallel formulations of directed and undirected relative to partitioning from scratch. Diagram (a) compares the quality in terms
of edge-cuts. Diagram (b) compares the quality in terms of the total number of vertices that need to be moved (TOTALV). Diagram (c) compares the quality
in terms of the maximum number of vertices that need to be moved in and out of a partition (MAXV). Diagram (d) compares the run time of the various
algorithms. In each diagram, the results are normalized with respect to partitioning from scratch. Bars under the baseline indicate that the multilevel diffusion
algorithms perform better than partitioning from scratch.

9. CONCLUSIONS

Our results on a variety of synthetic and application
meshes show that multilevel diffusion is a robust scheme
for repartitioning a wide variety of adaptive meshes. The
resulting edge-cuts are generally close to those resulting
from partitioning from scratch, while vertex movement is
quite reduced. Furthermore, parameterized heuristics allow
for edge-cut, TOTALV, or MAXV to be specifically optimized
depending on application requirements. Multilevel diffusion
also produces significantly better edge-cuts compared with
single-level directed diffusion. Our experiments show that
directed diffusion tends to obtain results improved over those
obtained by undirected diffusion.

Throughout this paper, we have reported results from
various values of parameters CF and SF. Our experiments
have shown that the use of either one will reduce vertex
movement, while increasing edge-cut slightly. The higher these
parameters are set at, the greater these trade-offs become.
When they are used in conjunction with one another this effect
is increased. Thus, for a nice compromise of vertex movement
and edge-cut, employing only one parameter or the other will
usually be sufficient. In general, the appropriate values of
these parameters will be different for different applications. We
provide the following general guidelines for specific scenarios.
If edge-cut of the resulting partition is most important, then

set both CF and SF to zero. This will allow for the maximum
movement of vertices to minimize edge-cut. If vertex densities
are homogeneous, set SF to zero, as suppression is ineffective.
If vertex densities are highly heterogeneous, then prefer high
values of SF (over CF) to strike a trade-off with edge-cut.
Finally, if vertex migration time is most important, then use
a high value for both CF and SF in order to minimize vertex
movement.

Our results also show that for highly complex balancing
problems, the benefits obtained from repartitioning over parti-
tioning from scratch are reduced. The helicopter blade exper-
iments illustrated that MAXV results obtained from multilevel
diffusion might degrade to the point in which they approach
or even surpass those of partitioning from scratch for highly
imbalanced graphs. In a bandwidth-rich system, MAXV will
tend to determine vertex movement time. Therefore, for cer-
tain application domains, it may well be beneficial to partition
from scratch in order to maintain low edge-cut while not giv-
ing up much in terms of MAXV. Thus, for such applications,
repartitioning may seldom be preferable to partitioning from
scratch.

The parallel adaptive repartitioning algorithms described
in this paper are available in the PARMETIS graph parti-
tioning library that is publicly available on WWW at http:/
/www.cs.umn.edu/∼metis.

124 SCHLOEGEL, KARYPIS, AND KUMAR

REFERENCES

1. R. Biswas and R. C. Strawn, A new procedure for dynamic adaption
of three-dimensional unstructured grids.Appl. Numer. Math.13 (1994),
437–452.

2. J. E. Boillat, Load balancing and poisson equation in a graph.
Concurrency: Practice and Experience2 (1990), 289–313.

3. T. Bui and C. Jones, A heuristic for reducing fill in sparse matrix
factorization. In 6th SIAM Conf. Parallel Processing for Scientific
Computing,1993, pp. 445–452.

4. G. Cybenko, Dynamic load balancing for distributed memory multipro-
cessors.J. Parallel Distrib. Comput.7, 2 (1989), 279–301.

5. G. H. Golub and C. Van Loan,Matrix Computations,Second edition.
Johns Hopkins Press, Baltimore, 1989.

6. B. Hendrickson and R. Leland, A multilevel algorithm for partitioning
graphs. Technical Report SAND93-1301, Sandia National Laboratories,
1993.

7. G. Horton, A multi-level diffusion method for dynamic load balancing.
Parallel Comput.9 (1993), 209–218.

8. Y. F. Hu and R. J. Blake, An optimal dynamic load balancing algorithm.
Technical Report DL-P-95-011, Daresbury Laboratory, Warrington, UK,
1995.

9. G. Karypis and V. Kumar, METIS: Unstructured graph partitioning
and sparse matrix ordering system. Technical Report, Department of
Computer Science, University of Minnesota, 1995. [Available on the
WWW at URL http://www.cs.umn.edu/∼karypis/metis]

10. G. Karypis and V. Kumar, Parallel multilevelk-way partitioning scheme
for irregular graphs. Technical Report TR 96-036, Department of
Computer Science, University of Minnesota, 1996. [Also available
on WWW at URL http://www.cs.umn.edu/∼karypis. A short version
appears in Supercomputing ’96.]

11. G. Karypis and V. Kumar, Multilevelk-way partitioning scheme for
irregular graphs.J. Parallel Distrib. Comput.,in press. [Also available
on WWW at URL http://www.cs.umn.edu/∼karypis]

12. G. Karypis and V. Kumar, A fast and highly quality multilevel scheme
for partitioning irregular graphs.SIAM J. Sci. Comput.,to appear. [Also
available on WWW at URL http://www.cs.umn.edu/∼karypis. A short
version appears in Intl. Conf. on Parallel Processing 1995.]

13. G. Karypis and V. Kumar, A coarse-grain parallel multilevelk-way
partitioning algorithm. InProceedings of the Eighth SIAM Conference
on Parallel Processing for Scientific Computing,1997.

14. L. Oliker and R. Biswas, Efficient load balancing and data remapping
for adaptive grid calculations. Technical Report, NASA Ames Research
Center, Moffett Field, CA, 1997.

15. C.-W. Ou and S. Ranka, Parallel incremental graph partitioning using
linear programming. Technical report, Syracuse University, Syracuse,
NY, 1992.

16. K. Schloegel, G. Karypis, and V. Kumar, Repartitioning of adaptive
meshes: Experiments with multilevel diffusion. InThird International
Euro-Par Conference Proceedings,August 1997, pp. 945–949.

17. A. Sohn, R. Biswas, and H. Simon, Impact of load balancing on un-
structured adaptive grid computations for distributed-memory multipro-

cessors. InProc. 8th IEEE Symposium on Parallel and Distributed Pro-
cessing (SPDP),1996, pp. 26–33.

18. C. Walshaw, M. Cross, and M. G. Everett, Dynamic load-balancing for
parallel adaptive unstructured meshes.Parallel Process. Sci. Comput.
1997.

19. C. Walshaw, M. Cross, and M. G. Everett, Dynamic mesh partitioning:
A unified optimisation and load-balancing algorithm. Technical Report
95/IM/06, Centre for Numerical Modelling and Process Analysis,
University of Greenwich, London, UK, December 1995.

20. R. D. Williams, Dime: Distributed irregular mesh environment. Techni-
cal Report C3P 861, Caltech Concurrent Computation Report, California
Institute of Technology, Pasadena, CA, 1990.

21. C. Z. Xu and F. C. M. Lau, The generalized dimension exchange method
for load balancing ink-ary ncubes and variants.J. Parallel Distrib.
Comput.24 (1995), 72–85.

KIRK SCHLOEGEL is currently working on his Ph.D. in computer science
at the University of Minnesota. He received his M.Sc. at the University
of Edinburgh, Edinburgh, Scotland. His research interests include parallel
algorithm design and parallel computing.

GEORGE KARYPIS received his Ph.D. in computer science at the
University of Minnesota, and he is currently an assistant professor at the
Department of Computer Science and Engineering at the University of
Minnesota. His research interests span the areas of parallel algorithm design,
applications of parallel processing in scientific computing and optimization,
sparse matrix computations, parallel programming languages and libraries,
and data mining. His recent work has been in the areas of parallel sparse
direct solvers, serial and parallel graph partitioning algorithms, parallel matrix
ordering algorithms, and scalable parallel preconditioners. His research has
resulted in the development of software libraries for unstructured mesh
partitioning (METIS and ParMETIS), and for parallel Cholesky factorization
(PSPASES). He has authored over 20 research articles, and is a coauthor of a
widely used text book, “Introduction to Parallel Computing.”

VIPIN KUMAR received his Ph.D. in computer science at the University
of Maryland, and he is currently a professor at the Department of Computer
Science and Engineering at the University of Minnesota. His current research
interests include parallel computing, parallel algorithms for scientific comput-
ing problems, and data mining. His research has resulted in the development
of highly efficient parallel algorithms and software for sparse matrix fac-
torization (PSPASES), graph partitioning (METIS and ParMETIS), and dense
hierarchical solvers. Kumar’s research in performance analysis resulted in the
development of the isoefficiency metric for analyzing the scalability of paral-
lel algorithms. He is the author of over 100 research articles, and a coauthor
of a widely used textbook “Introduction to Parallel Computing.” Kumar has
given over 50 invited talks at various conferences, workshops, and national
labs, and has served as chair/co-chair for many conferences/workshops in the
area of parallel computing. Kumar serves on the editorial boards ofIEEE Par-
allel and Distributed Technology, IEEE Transactions of Data and Knowledge
Engineering, Parallel Computing, and theJournal of Parallel and Distributed
Computing. He is a senior member of IEEE, and a member of SIAM and
ACM.

Received March 31, 1997; revised September 19, 1997; accepted October 17, 1997

