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munication required between nodes, minimizing the number of
For a large class of irregular mesh applications, the structure edges cut by the partition tends to minimize the overall amount
of the mesh changes from one phase of the computation to the of communication required by the computation. This problem

next. Eventually, as the mesh evolves, the adapted mesh has th3s heen well defined and discussed in previous works [3, 6,
be repartitioned to ensure good load balance. If this new graph 11, 12].

is partitioned from scratch, it may lead to an excessive migration For a large class of irregular grid applications, the compu-
of data among processors. In this paper, we present schemes '

; : A : ) tational structure of the problem changes in an incremental
or computing repartitionings of adaptively refined meshes that . .

perform diffusion of vertices in a multilevel framework. These fashion frqm one phase of the computgtlon to another. For
schemes try to minimize vertex movement without significantly €Xample, in adaptive meshes computations [1], areas of the
compromising the edge-cut. We present heuristics to control the 0riginal mesh are selectively refined or de-refined in order to
tradeoff between edge-cut and vertex migration costs. We also accurately model the dynamic computation. This changes the
show that multilevel diffusion produces results with improved amount of work which is required to be performed on each pro-
edge-cuts over single-level diffusion, and is better able to make usecessor in the next computation phase. On a parallel computer,
of heuristics to control the tradeoff between edge-cut and vertex this can result in an uneven distribution of work, making it nec-
migration costs than single-level diffusion. © 1997 Academic Press essary to repartition and redistribute the adapted mesh across
the processors. This repartitioning algorithm should satisfy the
following objectives.

L INTRODUCTION 1. It robustly balances the graphlf each partition does

Mesh partitioning is an important problem which has a not have roughly equal vertex-weight, then the overall parallel

o . . ) o . run-time will be dominated by the processor containing the
plications in many areas, including scientific computing. |

irregular mesh applications, the computation associated wj WheSt weight, resulting in higher parallel run-time. In order

: 0 make the repartitioning algorithm general it must be able to
the mesh can be represented by a graph that has weights afince graphs from a wide variety of application domains
ciated with its vertices and edges. Weight on the vertices of the grap Y PP )

: . 2. It minimizes edge-cutThe redistributed graph should
graph represents the amount of computation, and the weigh S L2
. . ave a small edge-cut to minimize communication overhead
of the edges represents the amount of interaction between 1 .
- i . : - in the follow on computation.
computations associated with the vertices. Efficient parallel L S . .
3. It minimizes vertex migration timeOnce the mesh is

g)fecgtlon of these |r_regular grld_appllcatlons requires the p"’rlépar'unoned, and before the computations can restart, data
titioning of the associated graph inpgarts with the following . . . .

D o associated with the migrated vertices also need to be moved.
two objectives: (i) each partition has an equal amount of to

vertex weight: (ii) the total weight of the edges cut by the parlj many adaptive computations, the data associated with each

i LS . vertex are very large. The time for movement of the data can
titions (thereafter referred to &sige-cutis minimized. Since : . . . )

. . dominate overall run time, especially if the mesh is adapted
the weight of any given edge represents the amount of COPPéquently

1This work was supported by NSF CCR-9423082, by Army Research 4. ,IF IS_ fast and scalable. _The _C,OmpUtatlonal cost of
Office Contracts DA/DAAH04-95-1-0538 and DA/DAAH04-95-1-0244, byr€partitioning should be small since it is done frequently. Also,
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DAAHO04-95-2-0003/Contract DAAH04-95-C-0008, the content of whictthe context of parallel computers, the repartitioning algorithm

does not necessarily reflect the position or the policy of the governmegimowd have an efficient parallel formulation. Performing the
and no official endorsement should be inferred. Additional support was

provided by the IBM Partnership Award and by the IBM SUR equipmerrt(:"partItlonlng on a serial processor can become a very serious
grant. Access to computing facilities was provided by AHPCRC, MinnesoROttleneck?

Supercomputer Institute. Related papers are available via WWW at URL:

http://lwww.cs.umn.edukarypis. 3The algorithm should also have limited memory requirements, as any
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Objectives 1 and 2 can be optimized reasonably if these of heuristics to control the tradeoff between edge-cut and
adapted graph is partitioned from scratch using a state-of-tivertex migration costs than single-level diffusion. Our results
art multilevel graph partitioner such aseMiS [9, 11, 12] also show that the parallel formulation of multilevel diffusion
or Chaco [6]. Since highly parallel formulations of multileveis similar to that of multilevek-way graph partitioning [10, 13]
graph partitioning algorithms are available [10, 13], criterion #h performance and scalability. Walshatval. have previously
can also be met to a large extent. Partitioning from scratch willnplemented a form of multilevel diffusion in JOSTLE-MD
however, result in high vertex migration, as the partitionin 8], without the heuristics for trading off the vertex migration
does not take the initial location of the vertices into accourdand edge-cut.

A partitioning method that incrementally constructs a new The organization of this paper is as follows. Section
partition as simply a modification of the input partition (e.g2 describes the notations and definitions which we use
by diffusion [18, 19]) can potentially move a much smallethroughout this paper. Section 3 reviews previous related work.
number of vertices. Such a method can also be potentiaBgction 4 describes our multilevel diffusion repartitioning
faster than partitioning the graph from scratch. algorithms in depth. Section 5 gives experimental results

Repartitioning schemes that incrementally modify an existf our multilevel repartitioners. Section 6 describes and
ing partition have been quite successful on graphs that @iges experimental results for our heuristics to control vertex
small perturbations of the original graphs [15, 19]. For onlgnigration costs. Section 7 gives experimental results of
slightly imbalanced graphs, the initial partition does not needpartitioning graphs from two application domains. Section
to be disturbed very much, and so these algorithms are aBleontains results on the parallel execution of our multilevel
to maintain an edge-cut comparable with the initial partitiomiffusion scheme. Finally, Section 9 provides some concluding
However, if the initial partition is highly imbalanced, therremarks. A preliminary version of this paper appeared in [16].
many vertices need to move in order to balance the graph.

Thus, even if the disturbance to the initial partition is mini- 2. NOTATIONS, DEFINITIONS, AND ISSUES
mized, the final partition will necessarily end up quite a bit ) i i
removed from it. Hence, the balancing phase of such a methodn OUr discussion we include the concepts of both vertex

will increase the edge-cut considerably. Local refinement [14€ight and vertex size as introduced in [14, 17]. Vertex weight
19] can only provide a limited improvement in the edge-cdf the computational cost of the work represented by the vertex
of the resulting partition. while size reflects its migration cost. Thus, the repartitioner

One promising solution to the problem of edge-cut degrahould attempt to balance the graph with respect to vertex

dation for highly imbalanced graphs is the use of a multilevé(€dht while minimizing vertex migration with respect to
scheme that takes the initial location of the vertices into coli€M X Size. Depending on the representation and storage policy

sideration. The multilevel paradigm allows the local refineQf the data, size and weight may not necessarily be equal.

ment to be performed at multiple coarsened versions of tﬁ)@e example of such a situation arises in [14, 17]. A method

graph, which has been shown to be quite effective in redLIQ-r reducing _the vertex migration (_)verhead used i_n [14, 17]
ing the edge-cut [3, 6, 11, 12]. In addition to the refinemerlt to dete_rmlne both t_he coarsening a_nd the refinement of
the movement of graph vertices (to achieve load balance) ctgﬁ adaptive mesh prior tq repartmomng, bUt. to actually
also be done at multiple coarsened versions of the graph. TRRTOrM only mesh coarsening at this time. This causes the
multilevel diffusion scheme can move large chunks of vertic@§aph to shrink prior to 'repa.rnnonlng. Aftgr repartltlonlqg
at coarser levels and then achieve better load balance at fiddfl Subsequent data migration, the previously determined
levels. refinement of the adaptive mesh can be performed. In this way

In this paper, we present repartitioning algorithms bas&d€ COStl of rrcljlgratlng the newly crtta)ater(]j vertices which hzve
upon multilevel diffusion. These algorithms construct a seri@§€" Selected to swap processors by the repartitioner need not

of contracted graphs by collapsing pairs of vertices toget ¢ paid. i i

that belong to the same initial partition. Once a sufficientl Let G = (V, E) be an undirected graph CW vertices
small graph has been constructed, the partition is balan E edges. Letp be the number of partitions. Les
via undirected diffusion (i.e., diffusion in which balancing€Present the cost of movement of vertax We will refer
decisions are made by purely local views of the graph) or i@ S @S thesize of vertexi. Let wi represent the weight
directed diffusion (i.e., diffusion which is directed by a globall-€- computational work) of vertex; and we(v1, v2) equal
view of the graph) [8] at different levels. Once the grapﬁ1e arr’10unt O_f (_:ommunlcat_lon re_qwrec_i _betwegn_and v2. A
is balanced, then multilevel refinement is performed at twgrtexsdensnws equal to |ts_ We'ght d""d_e‘?' by its slze. We
remaining levels in order to clean up the edge-cut disturbed ggnoteB(q)_ as the set of vertices _W'th partitian The weight
the balancing phase. We further describe two heuristics whighany partitiong can then be defined as

are able to control the tradeoff between edge-cut and vertex

migration costs when used in a multilevel context. Our results W(@) = Z Wi

show that multilevel diffusion produces results with improved vi€B(@)

edge-cuts over single-level diffusion and is better able to maad so the average partition weight is
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. Zipzl W) can bg_ triyially accomplished by the_ follqwirrth—and-paste
W==—"="—. repartitioning method: Excess vertices in an overbalanced
P partition are simply swapped into one or more underbalanced
A graph isimbalancedf it is partitioned and partitions in order to bring these partitions up to balance.
o However, while this method will optimizedTaLV, it will have
39 W) > W x (1+e), an excessively negative effect on the edge-cut compared with

wheree is a small constant. ¥ = 0, then all partitions would more sophisticated approaches. )
have to be exactly equal in weight in order for the graph to be Another method that reduces edge-cut degradation over

balanced. However, our results indicated that this is often t§gi-@nd-paste repartitioning, while increasingTALV only
strict a definition. For this paper, we seequal to .03. moderately, is analogous to diffusion from thermal dynamics.

In an imbalanced graph, a partition Bverbalancedif The concept is for vertices to move from overbalanced

its weight is greater than the average partition weight tim@grtitions to ne|ghbor|ng. underpalanced partitions and to
1+ ¢. Likewise, a partition isunderbalancedf its weight eventually reach balance, just as in the analogous case, uneven

is less than the average partition weight divided by- %. temperatures in a space cause the movement of heat toward

Otherwise, partitions ar@alanced The graph isbalanced ©duilibrium [8]. .
when no partition is overbalanced. We will use the term Figure 1 illustrates these methods for a graph whose vertices

repartitioningwhen an existing partition is used as an input if"d €dges have weight of 1. In Fig. 1a, the original graph is

an algorithm in order to find a new partition on the same grabwpalanwd because pqrtltlon_3 hf'"s a partition weight of 6,
and the termpartitioning when no input partition is used. while the average partition weight is only 4. Edge-cut for the

A vertex iscleanif its current partition is its initial partition °"19inal graph is 12. In Fig. 1b, the original partition was
on the input graph. Otherwise it dirty. A vertex is aborder throw_n out and the graph was th_en partmon_ed from scratch
vertex if one of its adjacent vertices is in another partition, [ESUlting in an edge-cut of 13. This edge-cut is almost as low
so, then all such partitions are the vertemé&ighborpartitions. as that of the 0I‘Ig|ﬂf?.| partition. HoweyeroTALV Is 7. This is
If a partition contains at least one vertex which has anothBfcause many vertices had to E,e r:mgrateqﬁbecau.:,e the{] were
partition as a neighbor partition, then those two partitions afgSigned to a new partition which was different from their
neighbor partitions to each other original partitions. In Fig. 1c, cut-and-paste repartitioning was

TOTALV is defined as the sum of the sizes of vertices whidtS€d: Here, BTALV is 2, since verticesl and | migrate to
change partitions as the result of partitioning or repartitionin‘%art't'qr,] 1'_ The edge-cutis now 16. In Fig. 1d, a Q|ﬁu5|on-type
[14]. Thus, it is the sum of the sizes of the dirty verticedePartitioning was conducted. Vertex movement increases to 4,

MAxV is defined as the maximum of the sums of the sizes Bit €dge-cut drops to 14 in comparison with the cut-and-paste

those vertices which migrate into or out of any one partitiofi€thod. Notice that partition 3 migrates verteo partition 2
d vertexp to partition 4. This, in turn, causes the recipient

as a result of partitioning or repartitioning [14]. As discussed® V ; ; .
in [14], in many cases WXV reflects the time for vertex partitions to become imbalanced. They then migrate vertices

migration more accurately thanoTALV. j and f to partition 1. At this point the.graph i_s balanced.
From these examples, we see an illustration of how cut-
3. REPARTITIONING STRATEGIES: REVIEW OF and-paste repartitioning minimizeTALV while completely
PREVIOUS WORK ignoring edge-cut. Likewise, partitioning the graph from
scratch minimizes edge-cut while resulting in highTALV.

A repartitioning of a dynamic graph can be computed bRiffusion, however, attempts to kee@TaLV low by ensuring
simply partitioning the new graph from scratch. Howevethat the vertices which do not need to be migrated to balance
since no concern is given for the existing partition, moshe graph are reassigned to their original partitions. It also
vertices are not likely to be assigned to their initial partitionattempts to keep edge-cut low by making incremental changes
with this method. Intelligent remapping of the resultingo the current partition.
partition can reduce the required movement of vertices [14,Undirected diffusioris diffusion which occurs through dis-
17], but vertex migration can still be quite high. tributed actions employing only local views of the graph. Thus,

The second strategy is to use the existing partitioning aertex migration decisions are made at every partition accord-
input for a repartitioning algorithm and to attempt to minimizéng to the relative difference in partition weights between each
the difference between the original partition and the outpptrtition and all of its neighbor partitions. Undirected diffu-
partition. This strategy can result in much smaller vertesion has the advantage that it is highly distributed in nature.
migration compared to schemes that partition the modifiétbwever, balancing occurs without the guidance of a global
graph from scratch. @tALV can be minimized if only a view of the graph. This can potentially increase the edge-cut,
subset of vertices, the sum of whose weight equals thertex migration costs, and run time of the algorithm. Diffu-
difference between the average partition weight and the actsan has been studied in the general context of load balancing
partition weight, is migrated out of any one partition. Thisn [2, 4, 21].
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Edge-cut =12 Edge-cut = 13 TotalV =7

(a) Original Graph (b) Partitioning from Scratch

Edge-cut =16 TotalV = 2 Edge-cut = 14 TotalV =4

{c) Cut-and-Paste Repartitioning (d) Diffusion Repartitioning

FIG. 1. Partitioning and repartitioning examples.

Directed diffusionis diffusion guided by a global view of norm minimization is the minimization of the sum of the
the graph. It is accomplished by obtainingli#usion solution moduli of the elements of the diffusion solution vector. Two-
that specifies the number of vertices to be moved [7, 8, 18brm minimization is a minimization of the sum of the squares
for every pair of partitions. Two methods of computing thef the elements of the diffusion solution. Figure 2 shows
diffusion solution involve minimization of the one-norm oftwo different diffusion based solutions for a graph in which
the diffusion solution and minimization of its two-norm. Onepatrtition A and B are overbalanced and partitions E and F

One-norm = 40 Two-norm = 400 One-norm =51.4 Two-norm = 245.6
(a) One-norm Minimization (b) Two-norm Minimization

FIG. 2. One- and two-norm diffusion examples.



REPARTITIONING OF ADAPTIVE MESHES 113

are underbalanced. Arrows indicate vertex flow. The numbegyease? During the coarsening phase, a sequence of smaller
next to the arrows indicates the magnitude of this flow. Trgraphs are constructed from an input graph by collapsing
solution in Fig. 2a minimizes the one-norm by assigningertices together. When enough vertices have been collapsed
all of the vertex flow on the shortest route available. Thutygether so that the coarsest graph is sufficiently small; a
ToTALV is minimized. However, one-norm minimization doeway partition is found. Finally, the partition of the coarsest
not guarantee the minimization of MV. This can be seen graph is projected back to the original graph by refining it at
if we focus on partitionG of Fig. 2a. This partition receives each uncoarsening level usingkavay partitioning refinement

all of the vertex flow from both overbalanced partitions. Thelgorithm.

total vertex WEIght both into and out of partltltﬁl is 20. The The k_Way refinement a|gorithm in EMS uses a Simp|e
lower bound for MV here is 10. Thus, MxV is twice randomized algorithm that moves vertices among the partitions
the minimal necessary to balance the graph. The solutighreduce the edge-cut and to improve the balance. Consider a
in Fig. 2b minimizes the two-norm. Here the vertex flow igraph G = (V, E). For each vertex in V we define the
split among the available channels. Hence, the channel-usgdsghborhood Nv) of v to be the union of the partitions
more efficient. The two-norm minimization tends to minimizgy which the vertices adjacent to belong (excludingv’s

MAXYV, at the expense of higheroTALV. partition). Note that ifv is a border vertex, thelN(v) # #,

Ou and Ranka [15] developed a method which optimaliind if v is an interior vertex, thetN(v) = #. In the k-
minimizes the one-norm of the diffusion solution USing |ineaNay refinement a|gorithm, each vertex of the graph is visited
programming. Hu and Blake [8] described a method whigiindomly. A vertexv is moved to one of the neighboring

computes the diffusion solution while optimally minimizingpartitions in N(v) if any of the following vertex migration
the two-norm. They proved that this solution can be found Rfiteria is satisfied.

solving the linear equation i , o
1. The edge-cut is reduced while maintaining the balance.

Ly —b 2. The balance improves while maintaining the edge-cut.
If the first criterion is satisfied, then the algorithm tries to

move v into a partition that will lead to a reduction in the

' edge-cut, subject to balance constraints. If multiple partitions

whereb is the vector containing the load of each partition mi
nus the average partition load, ahdis a Laplacian matrix

defined as satisfy this criterion, the vertex is moved to the one that lead to
. : the highest reduction in the edge-cut. If the second criterion is

(L)ar = c;elg ) :]t q f : g andr are neighbors, satisfied (but the first is not), then the algorithm tries to move

ar 0 @D otr?e:wiée v to a partition that will improve the balance without changing

the edge-cut. If multiple partitions satisfy this criterion, then
and 2, the diffusion solution, is a vector witp elements. An the vertex is moved to the one that leads to the highest
amount of vertex weight equal tq; — A, needs to be moved improvement in balance. Note that since each vertex is moved
from partitionq to partitionr for every partitionr which is to its neighboring partitions, thk-way refinement algorithm
adjacent to partitiol in order for the graph to balance. A negmoves only border vertices. This process is repeated a small
ative value indicates vertex flow in the opposite direction. Houmber of times or until we can obtain no further reduction
and Blake [8] showed that when using the parallel conjugaite the edge-cut [11].

gradient algorithm [5] to solve fok, the algorithm converges
in fewer thanp iterations. 4.1. Repartitioning Algorithms Based on Multilevel Diffusion

~ Walshawet al. implemented JOSTLE, a combined parti- A multilevel undirected diffusion repartitioning algorithm
tioner and directed diffusion repartitioner based on an opfiyp) as a modification of the multilevet-way partitioning
mization of the Hu and Blake [8] diffusion solver [19]. algorithm implemented in ETIS can be derived as follows.

In the coarsening phase, only pairs of nodes that belong to
the same partition are considered for merging. Hence, the
. I Lo initial partition of the coarsest level graph is identical to the
Mutlevel graph _partmonmg has be_e_n .StUd'ed n [3, .6i’nput partition of the graph that is being repartitioned and thus
11, 12.]‘ Our mullfulev_el graph repartlthnmg algp_r|thm ISdoes not need to be computed. This makes the coarsening
esserjnally a modification of _tHeway multilevel part|t|pn|ng phase completely parallelizable, as coarsening is local to each
algorithm [11]. Hence, we first review theway multilevel r0CesSor

scheme for partitioning. Throughout this paper, we will refer tB )

X T : : The uncoarsening phase of MLD contains two subphases:
thek-way multilevel graph partitioning algorithm implemented_ . e . ; .
. : multilevel diffusion and multilevel refinement. In the multi-
in METIS as simply MTIS.

The k-way multilevel graph partitioning algorithm [11] “Note that the meanings of the ternt®arsenand refine here in the

implem?m.ed in TIS has three p_hases, a coarsening ph?—%ltilevel partitioning context are different from their meanings in the adaptive
a partitioning phase, and a refinement (or uncoarseninggsh context.

4. MULTILEVEL GRAPH REPARTITIONING
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level diffusion phase, balance is sought on the coarsest gr:
in a process similar to multilevel refinement. This is accon
plished by forcing the migration of vertices out of overbal
anced partitions. The vertices are visited in a random ord
Each border vertex is examined. If a vertex is in an overbz
anced partition and is neighbors with a nonoverbalanced pa
tion, then that vertex will migrate to the nonoverbalanced pe
tition. If the vertex is neighbors with several nonoverbalance
partitions, then it will migrate to the partition that produce
the greatest improvement in edge-cut. The vertex is migrat
even if this results in an increased edge-cut. After each borc
vertex is visited exactly once, the process repeats until eitt
balance is obtained or no balancing progress is made.
Given this scheme, it may not be possible to balance t
graph at the coarsest graph level. That is, there may
be sufficiently many vertices of small weight (i.e., vertice
composed of few subvertices) on the coarsest graph to all
for total balancing. If this is the case, the graph needs
be uncoarsened one level in order to increase the numbel
smaller weight vertices. The process described above is then
begun on the next coarsest graph. Our experiments have shown
that the graph will typically balance within a few levels. is updated by decreasing it by the migrating vertex's weight.
After the graph is balanced, multilevel diffusion ends andfter each border vertex is visited exactly once, the process re-
multilevel refinement begins on the current graph. Here, tipeats until either balance is obtained or no balancing progress
emphasis is on improving the edge-cut. The vertices are visiigdmade. Once balance is obtained, multilevel refinement is
randomly. Each border vertex visited is checked to see if thegun as described in the MLD algorithm above.
migration of the vertex to a neighboring partition will satisfy |n summary, as illustrated in Fig. 3, our multilevel diffusion
one of the followingefinement phase vertex migration Cfiteriarepartitioning algorithms are made up of three phases, graph
. N ..._coarsening, multilevel diffusion, and multilevel refinement.
L. Th? selected partition is the vertex.s initial partitionyy, o coarsening phase results in a series of contracted graphs.
from the input graph,_ the move does not increase the edgf?fe multilevel diffusion phase balances the graph using
cut, and the balance_ IS mamtamed_. o the very coarsest graphs. The multilevel refinement phase
2. The edge-cut-|s reduced V\./h"e ”?a'”_ta.'”'”g b balancseeeks to improve the edge-cut disturbed by the balancing
3. The balance improves while maintaining the edge'cufjrocess. Optionally, the multilevel diffusion can be guided

by a diffusion solution. We will refer to our multilevel

Criterion 1 allows vertices to migrate to their initial parti-undirected diffusion repartitioning algorithm as MLD and to
tions (as long as the migration does not increase the edge-sut multilevel directed diffusion repartitioning algorithm as
and worsen the load balance), and therefore, to loweendV  MLDD. Single-level directed diffusion (SLDD) will be used
and possibly MxV. If more than one of these criteria is satto provide a comparison with our multilevel diffusion schemes.
isfied, then priority is given to moving the vertex back to itgn SLDD, diffusion and refinement are performed only on
initial partition and then to reducing the edge-cut. the original input graph and thus, no graph contraction is

Our multilevel directed diffusion repartitioning algorithmperformed.
(MLDD) is as follows. Coarsening is accomplished as de- \wg|shaw et al. [18] have previously implemented a re-
scribed for MLD above. However, balance is sought by meapgedq scheme in JOSTLE-MD. The JOSTLE-MD algorithm
of a global picture of the graph (i.e., the two-norm minimizperforms both diffusion and refinement starting on the coars-
ing diffusion solution)_guiding vertex migratior_m_That is, the_‘est graph and continuing on every subsequently finer graph.
border vertices are visited randomly. If the visited vertex i§yr scheme performs multilevel diffusion only on the coarsest

neighbors with a partition which has a positive flow valué agraphs until balance is reached and then multilevel refinement
cording to the diffusion solution with respect to the VertexX'gnly on the remaining finer graphs.

current partition and this flow value is greater than 90% of the

vertex's weight, then that vertex is migrated to the neighbor 5. EXPERIMENTAL RESULTS

partition. If a vertex is neighbors with more than one such

partition, it is migrated to that partition which will result in The experiments in Sections 5 and 6 were performed using
the lowest edge-cut. The vertex is migrated even if this resufige different graphs arising in finite element applications. They
in an increased edge-cut. When a vertex is migrated, the flane enumerated and described in Table £\ was originally
value obtained by the diffusion solution for the two partitionssed on the input graphs to obtain a 128-way partition. Then

Multilevel Diffusion Repartitioning

Multilevel Refinement

Coarsest Level Graph

Suiuasieo) ydein

Multilevel Diffusion

FIG. 3. Multilevel diffusion repartitioning.
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TABLE | four partitions were overbalanced and four partitions were
Characteristics of the Various Graphs underbalanced in order to create source and sink partitions.
Used in the Serial Experiments Here, partition weights were modified by multiplying the
vertex weight of each vertex in a given partition by a constant.
Number of Number of L. . s
Graph vertices edges Description All source partition vertex weights were multiplied by 19. All

sink partition vertex weights were multiplied by 1. All others
were multiplied by 10. Finally, in two series of experiments,
m14b 214,765 1,679,018 3D mesh of submarine ~ source and sink partitions were created by multiplying the
vertex weights of each vertex in a partition by a random

AUTO 448,695 3,314,611 3D mesh of GM’s Saturn

MDUAL?2 988,605 1,947,069  dual of a 3D mesh o

number. These random numbers were distributed to produce
TORSO 201,142 1,479,989 3D mesh of a human thoraxan average vertex weight of 18 in source partitions, 2 in sink
WAVE 156,317 1,059,331 3D mesh of a submarine  Partitions, and 10 in all other partitions.

Figure 4 compares the results from single-level directed dif-
the weights of some randomly selected vertices were increadégfon with two multilevel diffusion schemes. All of the results
so as to overbalance and underbalance certain partitiofks normalized against the results obtained by partitioning the
Specifically, for one series of experiments four of the 12®balanced graph from scratch usingeMS.

partitions were overbalanced by 80%. This was accomplishedFigure 4a shows the results of repartitioning using these
by doubling the vertex weights of 80% of the vertices in eadhree schemes on graphs which were overbalanced by 80% in
of the four selected patrtitions. In the next series of experimentsur partitions. First we see thatoTaLV and MaxV for all

80% Overbalance In 4 Partitions 4 Source. 4 Sink - Constant Weights

B MO E=3 MLOD = SILDD  —— MeTiS E=R MLD MLDD = SIDD — MeTiS

1.3

1.2

)
N
B
Edge-cut Totalv Maxv
4 Source, 4 Sink - Random Weights 8 Source, 8 Sink - Random Weights
EER MLD £ MLOD BN SLOD  — MeTiS EEE MLD MLDD ®EE SLDD — MeTis

O @ I3 H & O ® J O & O @ O &
& & 2 & » o7 A & oo oY W
P RFEFF ST FEFE P FSE

- - -
Edge-cut TotalV MaxV
(©)

FIG. 4. Repartitioning results.
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three of these schemes are much better compared wgtiaph. TOTALV then is the sum of the sizes of the dirty
partitioning from scratch. This is expected, sinceTvs does vertices. During the multilevel diffusion phase, a certain
not make use of the information provided by an input partitiommount of vertices become dirty. This is unavoidable, as
Thus, it is highly unlikely that vertices are reassigned to theifie graph must be balanced. These vertices can be migrated
initial partitions. Figure 4a also shows that for this simpleurther, however, without increasingoTALV. Hence, in the
balancing problem, there is not much difference between thg)ltilevel refinement phase, if only dirty vertices are migrated,
results from MLD, MLDD, and SLDD. These results confirmroraLyv cannot increase further, and it may even decrease if
our hypothesis that for relatively simple balancing problemgty vertices find their way back to their original partitions.

SLDD is able to maintain a good edge-cut. It is only for morgever, it appears overly restrictive to completely eliminate
complex imbalance problems that the SLDD algorithm begifge migration of clean vertices, as it may result in higher

to break down. edge-cuts. Nevertheless, it appears reasonable to restrict the

hF|gure|s 4bf_d |Ilus_tratg this point. hF|gu_risf4b and ¢ ShoP‘Migration of clean vertices. This is done by means of the
the rgsu ts 0. .repartltlor)mg on graphs wit ) our squ_rce arf:qeanness factor (CF). During multilevel refinement, a clean
four sink partitions. In Fig. 4b, every vertex in a partition ha§ertex is moved only if Thus, we limit the movement of clean

the same vertex weight as every other vertex in the part't'c\_/"értices who result in only small edge-cut decreases relative

In Fig. 4c however, the weight of every vertex in each Party their size. If CF is set to infinity, then only dirty vertices

tion was multiplied by a randomly generated number. F'gu'é\ere considered for migration during multilevel refinement. If

4d shows thg resglts of r'e'partltlonlng on grap_hs .W'th e'g@F is zero, then all vertices, clean and dirty, are considered
source and eight sink partitions and randomly distributed Vel g may be migrated even if they do not reduce the edge-ct.
tex weights. These results show that the multilevel direct%\q] interesting and important case is when £f, wheree is

diffusion algorithm is effective in keeping the edge-cut degr%— small number such as 0.0001. In this case, a clean vertex is

dation and BTALV down for complex balancing IorOblems'moved only if it reduces the edge-cut. Note that the refinement

MLDD consistently re§ults in lower .edge-cuts andTALY criteria of METIS allows the move of a vertex that maintains
than SLDD and MLD in every _eXF’e”me_“t- The edge-cuts %e edge-cut, but improves the balance. When €Fe, the
SLDD and MLD are generally similar. With respect toakd, second criterion is not applied for clean vertices.

the MLDD scheme did not fare as well. In seven of the 20 Figure 5 shows the results of repartitioning using three

results, the MLDD scheme resulted inaMV results which different values for the cleanness factor. These experiments

were 10 to 50,% higher than the other repartitioners..'Holwevgt;ﬂe performed on the same imbalance problems as described
these were still lower than the AtV results from partitioning in Section 5. All of the results are from the multilevel directed

fro_Ir_T;]scratcn. indicate that th itilevel diffusi di diffusion repartitioner with vertex cleanness and suppression
€ resufts Indicate that the mumlieve! dirusion paradig LDD-CS). Each experiment is conducted with an input

is quite powerful. Both multilevel diffusion algorithms (MLD sdepression factor heuristic of .5. The suppression factor

and MLDD) are able to repartition each of the imbalanc o . . ; )
graphs effectively. We see that multilevel directed diffusioneigeur'snc is described in Section 6.2. The results are normalized

more effective at keeping edge-cut andTALV results down against those obtained with the cleanness factor of zero.
than multilevel undirected diffusion. However, this difference N €ach of the results, dTaLV decreases as CF increases.

is not as great as that obtained when we compared thlis is as expected, as raising the cleanness factor decreases

results (not shown in this paper) from single-level undirectéf® number of vertices allowed to migrate during multilevel
diffusion to those of single-level directed diffusion. Herel€finement. We also see a corresponding rise in the edge-cut
edge-cut, BTALV, MAXV, and the repartitioning algorithm as the cleanness factor increases. Thus, the results show that
run-time were all higher virtually across the board for singldt is possible to lower TTALV by trading edge-cut.
level undirected diffusion compared to single-level directed This decrease indTALV is able to affect MV in certain
diffusion. cases. Since there is less total vertex migration, it stands to
reason that the maximum vertex migration into or out of any
6. HEURISTICS one partition might also drop. However, this is not necessarily
the case. In fact, MxV could increase as CF increases. This
In this section we present heuristics to lowesTALV and \you|d be the result when MV is dominated by the sum of
MaxV while marginally sacrificing edge-cut. This can be very,q gjzes of the vertices migrating into one partition. Since dirty
useful in those applications in which the time required 9. ices are free to migrate regardless of the cleanness factor,
migrate vertices dominates the total execution time. there is nothing stopping them (apart from balance constraints)
from migrating into this partition. Doing so would, of course,
increase the sum of the sizes of the vertices migrated into the
As defined in Section 2, a vertex is dirty if it is currentlypartition. This would, in turn, increase MV as MaxV was
in a partition different from its initial partition on the inputequal to the prior sum.

6.1. A Heuristic to ReduceolALV
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FIG. 5. Repartitioning with cleanness.
6.2. A Heuristic to Reduce MV to migrate vertices into them. There is no guarantee that an

underbalanced partition’s neighbors will have a large supply

MaXV is the max of the sum of the sizes of vertices intef dense vertices to migrate. The worst case scenario is
or out of any one partition. Our experiments have showmhen two underbalanced partitions are neighbors and only
that the outgoing component of AMV is usually not a one of these partitions is neighbors with an overbalanced
concern. Intuitively, this is because vertices tend to migrapartition. Figure 6 illustrates this point. Here partitigw is
out of an overbalanced partition only until the partition is
balanced. Furthermore, overbalanced partitions may have an
ample supply of average to highly dense vertices. That is, they
may have a good supply of vertices whose weight divided by
their size is relatively high. Choosing high density vertices for
movement whenever possible balances the graph while keeping
the cost of vertex migration down. Even if vertices are selected
randomly for migration in overbalanced partitions, there is
a good chance that mostly relatively dense vertices will be
migrated. Thus, the sum of the sizes of the outgoing vertices
will be in the vicinity to the lower bound.

On the other hand, the max of the sum of the sizes of vertices
which migrateinto any one partition is potentially problematic.
Underbalanced partitions must depend on neighbor partitions FIG. 6. Blocking a sink to sink transfer.
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overbalanced, partition8 and C are underbalanced, andin a multilevel context, it is possible to decreasexW by
partitions D and E are balanced. The diffusion solution willtrading edge-cut.
call for vertex migration as indicated by the arrows. Notice An interesting side-effect occurs with respect toTALV.
that partitionB is supposed to migrate vertices into partitiorSince suppression keeps low-density vertices from migrating
C. However, partitionB may initially be full of relatively low- during multilevel diffusion, load balancing is accomplished
density vertices since it is also an underbalanced partitidghrough the migration of higher density vertices. Thus,
It will take a much greater number of low-density vertice3OTALV also tends to drop.
to balance partitiorC than it would have taken average or Notice in Fig. 7a that suppression has had no effect.
highly dense vertices. If this happens, partiti@will get This is because for this problem, vertex density is highly
an overabundance of inflowing, low-density vertices. Thes®mogeneous across partitions. The densities range from 1 to 2
vertices will dominate MxV. However, if the migration of here. The average vertex density for the graph is 1.03. Thus, in
these low-density vertices could be suppressed, the resuler to suppress the lowest density vertices (those of density
would be that only average density vertices from partitiorly, the suppression factor will have to be greater than .97.
D and E would be able to migrate into partitio@. Thus, Since 97.5% of the vertices in these imbalance problems are
MaxV would be reduced. of density 1, this suppression factor is much too large to allow
The underlying problem lies in the migration of low-densitghe graph to be balanced. In fact, we conducted experiments
vertices. Partitions are balanced according to vertex weightgth a suppression factor as large as 1 and none of the graphs
However, vertex migration costs are paid in terms of verteonsistently balanced.
size. Therefore, migrating vertices with relatively low weight- Figures 7b—d show that as the homogeneity of vertex
to-size ratios will tend to increase the vertex migration codensity decreases, vertex suppression becomes more effective.
necessary to balance the graph. In order to avoid this situatiblgwever, by reexamining the results from Fig. 4, we also
we suppress the movement of low density vertices by usingee that as homogeneity decreasesxM becomes more

parameter calleguppression facto(SF). problematic for the multilevel schemes. Thus, while vertex
During multilevel diffusion a vertexv is considered for suppression is less effective on homogeneous graphs, it tends
move only if to be less necessary here, as well. That is, as the homogeneity
decreases, WkV becomes more problematic. At the same
Density ofv time however, vertex suppression becomes more effective.

These results show that vertex suppression is a powerful

>
Average vertex densit L )
g Y heuristic for controlling MXxV.

Therefore, if SF is zero, no vertex migration is suppressed. If , ,
SF is set to infinity, all vertex migration is suppressed duriry3- Pynamic Suppression

multilevel diffusion. In this case it iS, of course, impossible As the previous results have shown, increasing the suppres-
for the graph to balance, as no vertices are allowed to mo¥gn factor tends to decreasealV. If the suppression factor
If SF is set to one, only vertices that are above the averageset too low, no vertices will be suppressed and so vertex
density are allowed to migrate during balancing. The tradegffippression will be ineffective. However, if this suppression
here is that the larger the value of SF, the less free vertiqggtor is too high, the majority of vertices will be suppressed
are to migrate and so the more difficult it is to balancgnd the graph will not be balanced. If the characteristics of
the graph. With larger values of SF, the graph will tend tgesh adaptation are known in advance, then the suppression
balance at higher and higher uncoarsening levels. This Gagtor can be set at an appropriate level. However, if this is
also potentially degrade the edge-cut, as multilevel refinemefat the case, then it may be difficult to set the suppression fac-
is the key to keeping edge-cut low. (Multilevel refinemenor at an appropriate level. To handle these situations, we have
begins only after multilevel diffusion completes.) Thus, thgnplemented a scheme that dynamically adjusts SF as follows.
more uncoarsening levels it takes to balance the graph, #ethe beginning of each uncoarsening level, SF is initialized
fewer levels are available for refinement to reduce the eddg-some quantity (e.g., 1). During multilevel diffusion, after
cut. every vertex has been visited, the dynamic suppression algo-
Figure 7 shows the results of repartitioning the imbalangghm checks to see if at least 80% of vertices were suppressed.
problems (described above) using a range of values for SF. Whis is the case, then the suppression factor is divided by 1.3
have set the cleanness factor (CF) at a constant .0001 for eggbr to the start of the next iteration. The next section shows

of these experiments. Here, the results are normalized agatfst results of using MLDD with dynamic suppression on two
the results obtained from using SF equal to zero. We see thgplication domains.

even small values for the suppression factor reduces\Wby

up to 55% for all but the first set of graphs. Meanwhile, across 7. REPARTITIONING OF APPLICATION GRAPHS

the board, edge-cut is increased by only a few percent. As SF

increases, MxV tends to decrease, while edge-cut increases.We have conducted experiments on repartitioning applica-
Thus, the results show that by employing vertex suppressition graphs from two domains. The first set is taken from the
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FIG. 7. Repartitioning with suppression.

DIME software package [20]. The application solves Laplacetelowx is 10. Therefore, there are-1, or nine, repartitioning

equation with Dirichelet boundary conditions on a square, 2xperiments. For the second domairis 7, so there are six

dimensional mesh with a stylized “S” hole. The problem igepartitioning experiments.

solved by Jacobi iteration, refined, and load-balanced [18]. )

The result is a domain with a small degree of change at eat#- Laplace’s Equation Solver

successive stage in the mesh adaptation. Table Il shows the performance of our single and multilevel
The second set shows a series of application meshes wditected diffusion repartitioning algorithm on the first applica-

a high degree of adaptation at each stage. These graphstiare domain. Here, the edge-cuts and run times are averaged

3-dimensional mesh models of a rotating helicopter blade. Ager the nine experiments. Also, th@TALV results are first

the blade spins, the mesh must be adapted by refining the mésfded by the total number of vertices in each graph and then

in the area where the rotor has entered and coarsening it in #iveraged together to obtairoTaLV. SLDD indicates results

area of the mesh where the rotor has passed through. Thelsgined from our single-level directed diffusion repartition-

meshes were provided by the authors of [14]. ing algorithm with CF and SF set at zero. MLDD indicates
For each of these application domains, the first of a seriessults obtained from the MLDD algorithm. MLDD-CS indi-

of x graphsG1, Go, ..., Gy, was originally partitioned with cates results obtained from our multilevel directed diffusion

METIS. The partition of graplé, acted as the input partition repartitioning algorithm with CF set to 0.0001 and SF set to

for graphG». Repartitioning this now imbalanced grapghz, 0.25. MLDD-CdS indicates results from the MLDD-CS algo-

resulted in the experiment namétst and the input partition rithm with dynamic suppression and CF set to 0.0001. Note,

for graphGs. Similarly, the repartition of graplss resulted in  we have chosen CF to be 0.0001 because the graph imbalance

experimentSecongdand so on. For the first application domains very slight here. Thus, the initial low edge-cut partition
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TABLE Il We used the multilevel undirected diffusion algorithm
Performance of Different Diffusion Schemes because the multilevel directed diffusion algorithm was unable
to balance the graph. This was because the weights of the

Algorithm Edge-Cut D1alV % . . - .
vertices were highly heterogeneous. That is, they differed from
SLDD 2677 510 each other by up to a factor of 1000. We found that the
MLDD 2463 3.16 vertices were often too coarse to be able to be guided by
MLDD-CS 2553 238 the diffusion solution. .For example, quite oft(_en during the
execution of the algorithm, the diffusion solution called for
MLDD-CdS 2673 1.39

vertices totaling a weight of 500 to be migrated, but all of
METIS 2485 97.3 the boundary vertices had much larger weights (i.e., greater
than 700), as all of the lower weight vertices had already
is not perturbed significantly. This allows us to concentrafeen transferred. For some cases, even on the finest graphs,
the power of the multilevel paradigm on minimizinggTaLY it was not possible to achieve balance using the diffusion
instead of decreasing the edge-cute WS indicates results solution. Undirected diffusion allows for more degrees of
from partitioning from scratch with MTIS. We use nine freedom. That is, extremely high weight vertices are more free
graphs with sizes from 31,624 vertices and 46,986 edgest@migrate about, eventually reaching underbalanced partitions
281,706 vertices and 421,172 edges. All of the results af@ Circuitous routes.
obtained using a 64-way partition. The results confirm the robustness of multilevel diffusion.
The results show that the multilevel scheme providéde see that the multilevel undirected diffusion repartitioner
better edge-cut anddfALV compared with the single-level substantially outperforms the single-level scheme. It obtains
scheme. Also, the dynamic suppression is quite effectidewer edge-cut and GTALV results across the board than the
as it marginally increases the edge-cut, while substantiafingle-level scheme. It also obtainsalV results lower than

decreasing OTALV. SLDD-dS in four out of six cases.
With respect to partitioning from scratch, the multilevel
7.2. Helicopter Blade Application scheme again reduces bottoTELV and MaxV while in-

) ) __ creasing edge-cut. Here, however, thetALV and MaxV of
Figure 8 shows the results obtained from repartitioning i p are only slightly improved over that of partitioning from
series of raplo_lly changing adapted meshe_s descrll_)ed abov%&r&tch. In fact, for some graphsaM\V of partitioning from
a 64-way partition. The results are normalized against thosegyaich actually beats that of repartitioning. This is due to the
which METIS was used to partition the imbalanced graph frogy, mpjexity of the imbalance problem, which necessitates mi-
scratch. MLDD-dS indicates the results from the multilevey ation of a large number of vertices in order to balance the
undirected diffusion repartitioning algorithm using dynami raph. For some of these graphs, so much vertex migration

suppression. SLDD-dS indicates the results from the singfg-pecessary that repartitioning brings little benefit here over
level directed diffusion repartitioner with dynamic SUPPressioR,itioning from scratch.

8. PARALLEL FORMULATION OF

FE MLODAS WM SLODS T MeTS MULTILEVEL DIFFUSION
2
1.9
18 We have implemented the multilevel diffusion algorithms in
:: PARMETIS, which contains a parallel formulation of our multi-
level k-way graph partitioning algorithm. Vertices are initially

assumed to be distributed acrgsprocessors. This division of
vertices corresponds to the original partitioning. The coarsen-
ing phase of parallel multilevel diffusion algorithms requires
no communication, as the computed matchings are restricted
to vertices residing on the same processors. Otherwise, this
phase is identical as described in [13].

The parallel formulation of the multilevel diffusion phase
depends on whether we are using directed or undirected dif-
fusion. The parallel formulation of the undirected diffusion
algorithm is modeled after our coarse-grained parallel multi-
level refinement algorithm [13]. The only difference is that
vertices are visited and selected for migration according to
Edge-cut Totaly Maxv the criteria for undirected diffusion described in Section 4.1.
FIG. 8. Repartitioning of helicopter blade application graphs. In the case of directed diffusion, our current implementation

& S & &
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performs directed diffusion only for the coarsest graph. Since TABLE IlI

the coarsest graph is very small (its size is proportional to the The Various Graphs Used in the Experiments
qumber of proqessprs), this is done serially, as the computa- Graph name NUMber of vertices Number of edges
tion does not significantly affect the overall performance and

scalability of our parallel multilevel directed diffusion algo- MRNGA 257000 505048
rithm. Furthermore, we use the additional processors to obtain MRNGB 1017253 2015714

a better directed diffusion as follows. The graph is broadcast NGC 4039160 8016848

to all processors. Each processor then simultaneously balances
the coarsest graph using the directed diffusion algorithm de- MRNGD

scribed in Section 4.1 with dynamic suppression (Section 6.3). ) ]
Since the diffusion scheme is inherently random, each proc&¥nthetically generated graphs are then used as the input to

sor computes a potentially unique partition. The best partitiGh!r parallel multilevel diffusion and partitioning algorithms.
can then be selected by focusing on the edge-cut, dTat¥V, _In all of our experiments, a graph that is 5% load |r_nbalanceq
the MaxV, or the balance. In our experiments, we select tHé @ssumed to be well balanced, and in all experiments this
partition that has the lowest edge-cut. If the coarsest grapHG@d imbalance level is easily achieved. _
too coarse to allow for complete balancing, then the parallel Table IV shows the results obtained by our parallel multi-

undirected diffusion algorithm is used to balance any remai‘?—vel directed and undirected diffusion algorithms for the test
ing imbalances. problems on 64, 128, and 256 processors. For each problem,

The parallel formulation of the multilevel refinement alihiS table shows the edge-cut of the resulting partitioning, the

gorithm is similar to that for undirected diffusion with thetOtaI number of vertices that needs to be movedTéLV),

exception that vertices are moved according to tafine- and the maximum number of vertices that needs to be moved

ment phase vertex migration criter@escribed in Section 4.1. In a;udn?g:c (t)ifrnaem(/ir?zrgggfjrs?rr%ceusirs;;‘&tod uc)o'r:SLY;Isl'lchaes rtgearti
Furthermore, the concepts of vertex cleanness and suppl%@-. " q N omp P
. tioning. The rows labeled “Scratch” show similar performance
sions are also employed to reduceTALV and MaxV. Oth- . . : . ) )
. ; . . S . metrics for the scheme in which the adaptive graph is being
erwise, our multilevel refinement algorithm is identical to o . .
. ; : . repartitioned from scratch using the parallel multileikehay
the coarse-grained parallel multilevel refinement algorithm d

: ; Sértitioning algorithm described in [13]. Finally, the rows la-
scribed in [13]. beled “Imbalance” indicate the load imbalance generated by
our synthetic adaptation scheme for each one of the graph-
processor combinations. As the reader can see, the load im-

We tested our parallel multilevel repartitioning algorithm$alance ranges between 1.42 (42%) and 1.52 (52%). Note that
on a Cray T3D with 256 processors. Each processor on thRNGD could not run on 64 processors due to the limited
T3D is a 150 MHz Dec Alpha (EV4). The processors aramount of memory on each processor.
interconnected via a three dimensional torus network that hasto better compare the three schemes, we graphically
a peak unidirectional bandwidth of 150 Bytes per second andlepicted the results shown in Table IV in the sequence of
small latency. We used Cray’s MPI library for communicatiorgraphs shown in Fig. 9. In particular, Fig. 9a compares the
Cray’s MPI achieves a peak bandwidth of 45 MBytes and ajuality in terms of edge-cut produced by the two multilevel
effective startup time of 57s. diffusion algorithms relative to partitioning from scratch. For

We evaluated the performance of our parallel adaptieach experiment, we computed the ratio of the edge-cut
multilevel diffusion algorithms on four medium to large sizg@roduced by the diffusion algorithms to that of partitioning
graphs arising in finite element computations. These grapinem scratch and plotted it using a bar chart. For example, the
are duals of 3D finite element meshes with tetrahedra elemetists for MRNGB-128 correspond to partitioning the adaptively
We have selected these larger graphs to demonstrate tiedined graph MRNGB on 128 processors. Looking at this
our schemes can perform adaptive repartitioning of vefigure we can see that the edge-cuts of the partitionings
large graphs quickly. The characteristics of these graphs greduced by the two multilevel diffusion algorithms are in
described in Table lIl. general within 5% of the edge-cut produced by partitioning the

For each graph we synthetically generated adaptive gragttaptive graphs from scratch. Furthermore, for some of these
by randomly changing the weights of the vertices. For exargraphs (e.g., MRNGA-256 and MRNGC-128) the multilevel
ple, on 64 processors, we first computed a 64-way partitigiiffusion algorithms produced partitionings whose edge-cut
and moved the graph so that procesBprstores the vertices was slightly better than that of partitioning from scratch. These
that belong to partition. Next, each process® selects a ran- results show that our adaptive multilevel diffusion algorithms
dom number; between zero and the number of vertices thatdre able to produce partitionings whose quality is comparable
stores and randomly selectsof its vertices and changes theirto the quality obtained by the parallel multilevel partitioning
weight from 1 to 3. We found that this scheme leads to grapakjorithm. Comparing the two multilevel diffusion algorithms
that are about 50% load imbalanced, i.e., there are partitidngether, we see that in general they lead to partitionings that
whose weight are 50% higher than the average weight. Thésere comparable edge-cuts.

7833224 15291280

8.1. Experimental Results
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TABLE IV
The Performance of the Parallel Adaptive Repartitioning Schemes on the Four Test Graphs for
64, 128, and 256 Processors on Cray T3D. All Run-Times Are in Seconds

64 Processors 128 Processors 256 Processors
Graph Scheme Cut TotalV MaxV ~ Time Cut TotalV MaxV  Time Cut TotalV MaxV  Time
MRNGA Imbalance 1.4244 1.4391 1.4971

Undirected 26457 24819 2427 0.573 32898 24089 1391 0.424 42536 25423 730 0.436

Directed 25895 25858 2363 0.666 34635 26670 1430 0.547 42502 25620 755 1.066
Scratch 25099 253856 9815 0.902 32855 252054 4991  1.019 43130 256020 2660 2.247
MRNGB Imbalance 1.4876 1.4955 1.4854

Undirected 69428 92806 10625 1.377 87687 94704 5342 1.017 112522 94328 2821 0.817

Directed 67032 94397 10447 1.534 86836 90785 5376 1.174 112199 95074 3028 1.161
Scratch 65395 996825 39444 2.039 85812 1016832 20365 1.799 110459 1016166 10507 3.294
MRNGC Imbalance 1.4715 1.4920 1.4995

Undirected 169336 342078 46182 3.994 217165 358453 26919 2.435 278607 368216 11513 1.689

Directed 169559 386720 44182 4.385 223031 382812 27300 2.685 279832 351109 11299 2.092

Scratch 167617 3943621 166742 5.056 222368 3998118 83983  3.558 281195 3984525 42061 4.352
MRNGD Imbalance 1.4470 1.5152

Undirected 345122 640172 40995 4.145 452386 743892 22439 2.747

Directed 350334 700727 46231 4.511 445263 768296 22902 3.203

Scratch 343354 7487361 156524 5.511 438704 7507463 83205 4.692

The performance in terms on the number of vertices thAt this point if the graph is not balanced, undirected diffusion
need to be moved @TALV and MaxV) is shown in Figs. takes over. Hence, the two schemes obtain results that are quite
9b and 9c, respectively. Looking at these two figures we camilar.
clearly see the advantage of the multilevel diffusion algorithms Finally, Fig. 9d shows the amount of time required by
over partitioning from scratch in significantly reducing thehe two multilevel diffusion algorithms relative to partitioning
number of vertices that needs to be moved in order to achidvem scratch. From this figure we can see that the multilevel
load balance. The multilevel diffusion schemes move fewdiffusion algorithms are considerably faster than partitioning
than 10% of the total number of vertices that are requirgde graph from scratch. In particular, for MRNGD on 256
to be moved by partitioning from scratch (Fig. 9b), and thprocessors, undirected diffusion is about 40% faster than par-
maximum number of vertices that is sent and received by afitjoning from scratch, requiring only 2.75 s (partitioning from
processor is fewer than 30% of that required by partitionirgeratch requires 4.69 s). This run-time difference is mostly
from scratch (Fig. 9c). As was the case with the edge-cut, tae to the fact that the multilevel diffusion algorithms do not
relative performance of directed and undirected diffusion save to compute an initidt-way partitioning of the coarsest
quite similar, with both schemes performing within a couplgraph, as they inherit the original partitioning. Comparing the
percentage points of each other. multilevel undirected diffusion with the directed diffusion al-

Notice that our serial algorithms’ results from Section §orithm we see that the former is faster, and the performance
indicate that directed diffusion is generally more effective thagap increases with the number of processors. This is because
undirected diffusion in keeping edge-cut and vertex movemete directed diffusion algorithm needs to diffuse the coars-
low. However, our parallel formulations of directed anest graph serially, whereas the undirected diffusion algorithm
undirected diffusion have similar performance. This is becaudees not have this serial component. Looking at the run-times
our current parallel implementation of multilevel directeghown in Table IV we can see that both multilevel diffusion
diffusion is a simplified version of the serial algorithmalgorithms scale very well with the number of processors, and
Specifically, as described in Section 8, directed diffusiathey are able to partition graphs with around 8,000,000 ver-
occurs only on the coarsest graph in the parallel formulatiaiices in around 3 s.
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FIG. 9. Comparison of the parallel formulations of directed and undirected relative to partitioning from scratch. Diagram (a) compares the quality in terms
of edge-cuts. Diagram (b) compares the quality in terms of the total number of vertices that need to be roved)(Diagram (c) compares the quality
in terms of the maximum number of vertices that need to be moved in and out of a partitiotVjMDiagram (d) compares the run time of the various
algorithms. In each diagram, the results are normalized with respect to partitioning from scratch. Bars under the baseline indicate thavé¢heliffustde
algorithms perform better than partitioning from scratch.

9. CONCLUSIONS set both CF and SF to zero. This will allow for the maximum
) _ __ movement of vertices to minimize edge-cut. If vertex densities
Our results on a variety of synthetic and applicatiogre homogeneous, set SF to zero, as suppression is ineffective.
meshes show that multilevel diffusion is a robust schemgeyertex densities are highly heterogeneous, then prefer high
for repartitioning a wide variety of adaptive meshes. Tf}?alues of SF (over CF) to strike a trade-off with edge-cut.
resulting edge-cuts are generally close to those resultipghaly, if vertex migration time is most important, then use
from partitioning from scratch, while vertex movement ig, high value for both CF and SF in order to minimize vertex
quite reduced. Furthermore, parameterized heuristics allgyyyement.
for edge-cut, BTALV, or MAXV to be specifically optimized o results also show that for highly complex balancing
depending on aPp“,C_a“O” requirements. Multilevel dnchSIoBroblems, the benefits obtained from repartitioning over parti-
a!so produce; S|gn|f|c§1ntly better edge'C‘.“S compared Wﬂgning from scratch are reduced. The helicopter blade exper
s!ngle-levgl dl_rected dlffu5|on._Our expt_erlments show th ents illustrated that kixV results obtained from multilevel
dlrec_ted dlffu5|0r_1 tends t(_) ob_taln results improved over thoaleffusion might degrade to the point in which they approach
obtained by undirected diffusion. Qr even surpass those of partitioning from scratch for highly

Throughout this paper, we have reported results fro . . .
various values of parameters CF and SF. Our experimeH@Dalanced graphs. In a bandwidth-rich systemxM will

have shown that the use of either one will reduce vert&nd to determine vertex movement time. Therefore, for cer-
movement, while increasing edge-cut slightly. The higher thel@n application domains, it may well be beneficial to partition
parameters are set at, the greater these trade-offs becdhfn Scratch in order to maintain low edge-cut while not giv-
When they are used in conjunction with one another this effdg@ Up much in terms of MxV. Thus, for such applications,

is increased. Thus, for a nice compromise of vertex movemégpartitioning may seldom be preferable to partitioning from
and edge-cut, employing only one parameter or the other wagratch.

usually be sufficient. In general, the appropriate values of The parallel adaptive repartitioning algorithms described
these parameters will be different for different applications. We this paper are available in theARMETIS graph parti-
provide the following general guidelines for specific scenariotioning library that is publicly available on WWW at http:/
If edge-cut of the resulting partition is most important, thefwww.cs.umn.edu/metis.
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