
Dynamic Repartitioning of Adaptively Refined Meshes

Dynamic Repartitioning of Adaptively Refined
Meshes

© Copyright 1998 by IEEE, Inc.

Kirk Schloegel
Dept. of Computer Science and Engineering
University of Minnesota
Army HPC Research Center
Minneapolis, Minnesota
kirk@cs.umn.edu

http://www.cs.umn.edu/~kirk

George Karypis
Dept. of Computer Science and Engineering
University of Minnesota
Army HPC Research Center
Minneapolis, Minnesota
karypis@cs.umn.edu

http://www.cs.umn.edu/~karypis

Vipin Kumar
Dept. of Computer Science and Engineering
University of Minnesota
Army HPC Research Center
Minneapolis, Minnesota
kumar@cs.umn.edu

http://www.cs.umn.edu/~kumar

Abstract:
One ingredient which is viewed as vital to the successful conduct of many large-scale numerical
simulations is the ability to dynamically repartition the underlying adaptive finite element mesh
among the processors so that the computations are balanced and interprocessor communication is
minimized. This requires that a sequence of partitions of the computational mesh be computed
during the course of the computation in which the amount of data migration necessary to realize
subsequent partitions is minimized, while all of the domains of a given partition contain a
roughly equal amount of computational weight. Recently, parallel multilevel graph repartitioning
techniques have been developed that can quickly compute high-quality repartitions for adaptive
and dynamic meshes while minimizing the amount of data which needs to be migrated between

file:///C|/Karypis/Work/001%20Performance%20Review/T...partitioning%20of%20adaptively%20refine%20meshes.htm (1 of 13)8/30/2003 5:56:40 AM

mailto:kirk@cs.umn.edu
http://www.cs.umn.edu/~kirk
mailto:karypis@cs.umn.edu
http://www.cs.umn.edu/~karypis
mailto:kumar@cs.umn.edu
http://www.cs.umn.edu/~kumar

Dynamic Repartitioning of Adaptively Refined Meshes

processors. These algorithms can be categorized as either schemes which compute a new
partition from scratch and then intelligently remap this partition to the original partition (hereafter
referred to as scratch-remap schemes), or multilevel diffusion schemes. Scratch-remap schemes
work quite well for graphs which are highly imbalanced in localized areas. On slightly to
moderately imbalanced graphs and those in which imbalance occurs globally throughout the
graph, however, they result in excessive vertex migration compared to multilevel diffusion
algorithms. On the other hand, diffusion-based schemes work well for slightly imbalanced graphs
and for those in which imbalance occurs globally throughout the graph. However, these schemes
perform poorly on graphs that are highly imbalanced in localized areas, as the propagation of
diffusion over long distances results in excessive edge-cut and vertex migration results. In this
paper, we present two new schemes for adaptive repartitioning: Locally-Matched Multilevel
Scratch-Remap (or LMSR) and Wavefront Diffusion. The LMSR scheme performs purely local
coarsening and partition remapping in a multilevel context. In Wavefront Diffusion, the flow of
vertices move in a wavefront from overbalanced to underbalanced domains. We present
experimental evaluations of our LMSR and Wavefront Diffusion algorithms on synthetically
generated adaptive meshes as well as on some application meshes. We show that our LMSR
algorithm decreases the amount of vertex migration required to balance the graph and produces
repartitionings of similar quality compared to state-of-the-art scratch-remap schemes.
Furthermore, we show that our LMSR algorithm is more scalable in terms of execution time
compared to state-of-the-art scratch-remap schemes. We show that our Wavefront Diffusion
algorithm obtains significantly lower vertex migration requirements, while maintaining similar
edge-cut results compared to state-of-the-art multilevel diffusion algorithms, especially for highly
imbalanced graphs. Furthermore, we compare Wavefront Diffusion with LMSR and show that
the former will result in lower vertex migration requirements and the later will result in higher
quality edge-cut results. These results hold true regardless of the distance which diffusion is
required to propagate in order to balance the graph. Finally, we discuss the run times of our
schemes which are both capable of repartitioning an eight million node graph in under three
seconds on a 128-processor Cray T3E.

Keywords:
Wavefront Diffusion, Multilevel Graph Repartitioning, Scratch-Remap, Multilevel Diffusion

1 Introduction

Graph partitioning is an important problem which has applications in many areas, including scientific
computing. In irregular mesh applications, the computation associated with the mesh can be represented
by a graph that has weights associated with its vertices and edges. The weight on the vertices of the
graph represents the amount of computation associated with a mesh node, and the weight of the edges
represents the amount of interaction between the computations associated with the incident vertices.
Efficient parallel execution of these irregular mesh applications requires the partitioning of the
associated graph into a number of parts equal to the number of processors with the following two
criteria. (i) Each partition has a roughly equal amount of total vertex weight. (ii) The total weight of the

file:///C|/Karypis/Work/001%20Performance%20Review/T...partitioning%20of%20adaptively%20refine%20meshes.htm (2 of 13)8/30/2003 5:56:40 AM

Dynamic Repartitioning of Adaptively Refined Meshes

edges cut by the partitions is minimized. This problem has been well defined and discussed in previous
works [2,4,6].

A large class of scientific and engineering simulations and applications, such as fluid dynamics
simulations, weather simulations, and mesh generation, utilizes dynamically changing meshes and
graphs in order to model adaptive computations. In such applications, the structure of the graph can
change from one phase of the computation to the next. Eventually, as the graph evolves, it needs to be
repartitioned and data associated with the nodes has to be moved between processors before the
computation can start again in order to ensure good load balance. The newly computed partition should
again satisfy the two criteria enumerated above. Additionally, two other requirements are necessary. (iii)
The amount of inter-processor data migration required to realize the new partition is minimized. (iv) The
new partition is computed quickly. While it is easy to find repartitioning schemes that optimize a subset
of these criteria (such as minimizing edge-cuts at the cost of very large interprocessor data migration),
the real challenge is to minimize all four of these simultaneously. A repartitioning scheme which
attempts to meet all four criteria is more general because any one of: (i) application computation time,
(ii) application communication time, (iii) data migration time, or (iv) repartitioning execution time can
dominate the overall run time of an application in the general case.

2 Background

Two strategies for computing a repartitioning of a graph are to either partition the graph again from
scratch and then attempt to intelligently remap the newly computed partition to the original partition, or
to use a diffusive process to migrate vertices from overweighted to underweighted domains. Recently,
repartitioning schemes were presented based on both of these strategies [1,9,11,10,12,13,14]. These
schemes, which we classify as either scratch-remap schemes [1,9,12] or diffusion-based schemes
[11,10,13,14], are all based on the multilevel graph partitioning paradigm. The multilevel graph
partitioning paradigm is able to compute very high quality partitions quickly by first constructing a
sequence of coarsened graphs, partitioning the coarsest of these, and then refining the computed
partition at each finer level graph, starting with the coarsest and working up. The benefit of this
paradigm is that the initial partition can be computed on a very small graph and so is done quickly.
Then, the quality of this partition is greatly improved by simple local heuristics. Since these are applied
at each subsequent finer graph, the result is that the partition refinement algorithm sees multiple views
(from global to very local) of the graph. This magnifies the power of simple heuristics and allows high-
quality partitions to be computed quickly. Recently developed scratch-remap repartitioners have used
this paradigm by partitioning the imbalanced graph from scratch with a multilevel graph partitioner,
while recently developed diffusion-based repartitioners are modifications of the multilevel graph
partitioning algorithm.

Results in [1,10,12] have shown that current diffusion-based schemes are appropriate when diffusion is
not required to propagate far in order to balance the graph. This situation occurs on slightly imbalanced
graphs and those in which imbalance occurs globally throughout the graph. Here diffusion can
significantly reduce the amount of vertex migration required to balance the graph, while maintaining a

file:///C|/Karypis/Work/001%20Performance%20Review/T...partitioning%20of%20adaptively%20refine%20meshes.htm (3 of 13)8/30/2003 5:56:40 AM

file:///C|/Karypis/Work/001%20Performance%20Review/Tenure/Reprints/Confrences%20Highly%20Selective/node10.html#bui93siam
file:///C|/Karypis/Work/001%20Performance%20Review/Tenure/Reprints/Confrences%20Highly%20Selective/node10.html#hendrickson93tr
file:///C|/Karypis/Work/001%20Performance%20Review/Tenure/Reprints/Confrences%20Highly%20Selective/node10.html#karypis97siam

Dynamic Repartitioning of Adaptively Refined Meshes

high quality edge-cut.

Graphs that are highly imbalanced in localized areas require diffusion to propagate over longer
distances. For these class of problems, current diffusion-based repartitioners produce excessive amounts
of vertex migration. This is because diffusion repartitioning ties the domain labels of the balanced
partition to those of the original partition. While this strategy is highly effective when diffusion is not
required to propagate far, it is counter-productive for the opposite case. For extremely imbalanced
graphs, vertex migration results can exceed those obtained by scratch-remap algorithms, which do not
tie the domain labels of the balanced partition to those of the original partition. Also, as the amount of
vertex migration increases so too does the resulting edge-cut (as well as the number of iterations of
diffusion required to balance the graph, and so the run time of the algorithm), since vertex migration
tends to perturb the quality of the original partition.

Current scratch-remap schemes, on the other hand, are less effective on graphs in which diffusion is not
required to propagate far. This is because such schemes result in excessive amounts of vertex migration
in comparison with diffusion schemes for these class of problems. At the same time, the quality of the
edge-cut produced (and the run time required) is similar to diffusion-based schemes assuming that the
original partition is of high quality. This is because diffusion-based schemes will only minimally perturb
the edge-cut here.

Scratch-remap schemes are appropriate for graphs in which diffusion is required to propagate over
longer distances. This is because scratch-remap schemes can consistently produce very high quality
partitions quickly, regardless of the weight characteristics of the graph. Furthermore, since current
diffusion-based schemes obtain excessively high vertex migration requirements for these class of
problems, scratch-remap schemes can match or improve upon them here.

Improving diffusion-based schemes to the point in which they obtain lower vertex migration
requirements than scratch-remap schemes for all problems would result in a clear tradeoff between the
two schemes. That is, scratch-remap schemes would produce the highest quality repartitions for all
problems, while diffusion schemes would produce the lowest amount of vertex migration required for all
problems. Thus, the choice of repartitioners would be clear depending on whether the inter-processor
communications or the cost to redistribute data amoung processors dominanted the run time.

3 Our Contributions

In this paper, we present two new schemes for adaptive repartitioning: Locally-Matched Multilevel
Scratch-Remap (or LMSR) and Wavefront Diffusion. The LMSR scheme performs purely local
coarsening and partition remapping in a multilevel context. In Wavefront Diffusion, the flow of vertices
move in a wavefront from overbalanced to underbalanced domains. We present experimental
evaluations of our LMSR and Wavefront Diffusion algorithms on synthetically generated adaptive
meshes as well as on some application meshes. We show that LMSR decreases the amount of vertex
migration required to balance the graph, is more scalable in terms of execution time, and produces

file:///C|/Karypis/Work/001%20Performance%20Review/T...partitioning%20of%20adaptively%20refine%20meshes.htm (4 of 13)8/30/2003 5:56:40 AM

Dynamic Repartitioning of Adaptively Refined Meshes

repartitionings of similar quality compared to current state-of-the-art scratch-remap schemes. We show
that Wavefront Diffusion obtains significantly lower vertex migration requirements, while maintaining
similar edge-cut results compared to current state-of-the-art multilevel diffusion algorithms, especially
for highly imbalanced graphs. Furthermore, we compare Wavefront Diffusion with LMSR and show that
in general the former results in lower vertex migration requirements and the later results in higher
quality edge-cut results. These results hold true regardless of the distance diffusion is required to
propagate in order to balance the graph. Finally, we discuss the run times of our new schemes which are
both capable of repartitioning an eight million node graph in under three seconds on a 128-processor
Cray T3E.

4 LMSR

Scratch-remap schemes [9] partition the imbalanced graph from scratch utilizing a state-of-the-art graph
partitioner and then remap the newly computed partition to the imbalanced partition such that the
amount of data migration required to realize the new partition is minimized. Note that fast and parallel
multilevel graph partitioning algorithms exist which are able to consistently compute high-quality
partitions for finite-element graphs [6,15]. Hence, the edge-cut and run time results obtained by scratch-
remap schemes are extremely difficult to improve upon. Furthermore, these schemes produce domains
which are balanced to within a small constant. However, even an intelligent remapping of the newly
computed partition results in vertex migration requirements which are significantly higher than those of
diffusion-based repartitioners for all but the most extremely imbalanced problems [12].

The vertex migration required by scratch-remap schemes can be reduced if we can increase the degree of
overlap between many of the domains of the initial partition with domains of the newly computed
partition. One way to maximize this overlap is to partition the graph from scratch using a purely local
coarsening during the coarsening phase of multilevel graph partitioning. This ensures that each coarse
vertex contains vertices from exactly one domain of the old partition. Hence, for any partitioning of this
coarse graph, significant portions of the domains on the newly computed partition will overlap with
domains from the old partition. Also, local coarsening is more scalable than global coarsening because it
requires significantly less inter-processor communication.

Another technique is to perform partition remapping immediately after computing the initial partition
and before multilevel refinement begins. This makes it possible to minimize the edge-cut and maximize
the overlap between the old and new partitions at each level during the multilevel refinement phase
using local refinement heuristics.

We refer to our new scheme that implements both of these enhancements as LMSR.

5 Wavefront Diffusion

Results in [10,12,13] show that multilevel diffusion repartitioning schemes perform well when the

file:///C|/Karypis/Work/001%20Performance%20Review/T...partitioning%20of%20adaptively%20refine%20meshes.htm (5 of 13)8/30/2003 5:56:40 AM

Dynamic Repartitioning of Adaptively Refined Meshes

degree of graph imbalance in the original graph is low to moderate. However, they tend to break down
for graphs that are highly imbalanced in localized areas [10,1]. The reason is that for such graphs,
diffusion is required to propagate over long distances. As a result, many domains are simultaneously
both recipients and donors of vertices during diffusion [3]. For these domains, standard diffusion
algorithms interleave the outgoing flow of vertices with the incoming flow of vertices from neighboring
domains. Such a domain is often forced to move out vertices before it has received all of the vertices it is
supposed to receive from its neighbors. Hence, it will have only a limited choice for selecting good
outgoing vertices with respect to minimizing the edge-cut and the required vertex migration.

To address this problem, we have developed a new diffusion algorithm. The spirit of the algorithm is to
begin the diffusion of vertices from those domains which have no required flow of vertices into them.
Then after these domains reach balance, the diffusion solution is recomputed and the next iteration is
begun on the set of domains whose required flow of vertices into them was satisfied during the previous
iteration, and so on, until all of the domains are balanced. Furthermore, vertices which were migrated in
previous iterations and so are no longer in the same domains as they are assigned on the original
partition (referred to as dirty vertices) are eligible to migrate at any time, since doing so in preference to
unmigrated (or clean) vertices will help to minimize the data migration cost. This is because no matter
how many times a vertex is migrated during the computation of the repartitioning, the actual data
migration cost is paid only once at the end. Our experimental results (not included in this paper) have
shown that as diffusion is required to propagate over greater distances, the percentage of previously
migrated vertices which are again selected to migrate increases as well. This reuse of dirty vertices
results in very low vertex migration requirements, even when diffusion is required to propagate over
extreme distances. We refer to this scheme as Wavefront Diffusion, since the flow of vertices is in a
wavefront from overbalanced domains to underbalanced domains.

Our actual serial implementation of Wavefront Diffusion simplifies the algorithm described above.
Here, we utilize an array, flow, with one element per domain. flowi contains the sum of the vertex weight

which domain i is required to send out to other domains minus the sum of the vertex weight which
domain i is required to receive in from other domains. In each iteration, only the domain, i, with the
maximum value for flowi is allowed to migrate clean vertices. All domains are allowed to migrate dirty

vertices. After each iteration, the diffusion solution is recomputed. Thus, at any iteration, the majority of
domains will only be able to migrate dirty vertices (if they possess them).

6 Parallel LMSR and Parallel Wavefront Diffusion Algorithms

Many efficient parallel formulations are available for partitioning graphs from scratch. The computation
of the remapping phase can be performed serially on a single processor, as its run time is usually much
smaller than the time to move the nodes to their destinations. Therefore, parallelizing scratch-remap
schemes in this way is straightforward.

Parallel versions of multilevel diffusion algorithms have been described in [11,14]. Here, vertices are

file:///C|/Karypis/Work/001%20Performance%20Review/T...partitioning%20of%20adaptively%20refine%20meshes.htm (6 of 13)8/30/2003 5:56:40 AM

Dynamic Repartitioning of Adaptively Refined Meshes

initially assumed to be distributed across p processors. This division of vertices corresponds to the
original partition of a static partitioner and is assumed to be of good quality (i.e., low edge-cut).
However, the sums of the vertex weights of the vertices resident on each processor are assumed to be
variant. Thus, the original partition is not balanced and so there is a need for repartitioning.

Parallel multilevel repartitioning algorithms begin with a coarsening phase in which a sequence Gi = (Vi,

Ei) for i = 0, 1, ..., m, of successively coarser graphs is constructed. Graph G
i+1 is constructed from G

i
 by

first computing a matching of vertices of G
i
 and then collapsing together the matched vertices. The

matchings computed are restricted to vertices residing on the same processors. By adhering to this
restriction, coarsening is almost embarrassingly parallel.

After graph coarsening, the coarsest graph is assembled and broadcast to all of the processors. Next,
depending on its processor number, each processor simultaneously performs some version of the serial
Wavefront Diffusion algorithm as described in Section 5. Processor 0 performs (Sorted) Wavefront
Diffusion with the following modifications. (i) Vertices are sorted with respect to their amount of edge
weight which is cut by the current partition prior to each diffusion iteration. Thus, vertices which are
highly connected to vertices in different domains are selected first for migration. This modification tends
to decrease the perturbation to edge-cut. (ii) The three domains which have the highest values for flowi

at any given time are allowed to migrate clean vertices. This modification tends to decrease the number
of iterations required to balance the graph significantly. The remainder of the processors perform the
serial Wavefront Diffusion algorithm as described in Section 5 with modification (ii) and a unique
random number seed. Thus, each processor is likely to explore a different solution path. After at least
one processor has balanced the graph to within 10%, then all of the computed partitions are compared
and the partition which has the lowest value for (edge-cut balance) is selected. Note that multiple runs of
the sorted version of Wavefront Diffusion will result in identical solutions. Therefore, it is not beneficial
to have more than one processor performing this algorithm.

The parallel formulation of the multilevel refinement phase is described in [11] and modeled after
coarse-grained parallel multilevel refinement algorithm [6]. Each iteration of the parallel multilevel
refinement algorithm consists of two sub-phases. During the first sub-phase, vertices are migrated only
from lower- to higher-numbered domains. During the second sub-phase, vertices are migrated from
higher- to lower-numbered domains. In this way, unexpected edge-cut increases caused by the
simultaneous migration of neighboring vertices is avoided. Furthermore, these schemes avoid any bias
towards the lower- or higher-numbered domains by using a random partition ordering at each step. In
each sub-phase, vertices are visited and selected for migration according to the refinement phase vertex
migration criteria described in [11].

7 Experimental Results

In this section, we present experimental results for the parallel implementations of our LMSR and

file:///C|/Karypis/Work/001%20Performance%20Review/T...partitioning%20of%20adaptively%20refine%20meshes.htm (7 of 13)8/30/2003 5:56:40 AM

Dynamic Repartitioning of Adaptively Refined Meshes

Wavefront Diffusion algorithms. We evaluated the performance of the parallel repartitioning algorithms
on synthetically generated adaptive meshes. These meshes were derived from two large size 3D finite
element meshes of four and eight million nodes. We first computed a p-way partitioning of the graph,
and then redistributed the graph according to this partitioning. This became the initial partitioning that
we used to adjust the weight of the vertices to emulate the effect of adaptation. Each processor generated
a random number, r, between zero and p-1. Then for the processors in which r was less than 0.05p, the
weight of all of the vertices in these processors was set to alpha. The weight of the remaining vertices
was set to one. The weight of edges between adapted vertices was also changed to reflect the higher
degree of connectivity in the adapted graph. For every edge with incident vertices v

i
 and v

j
, its weight

was set to (pow ((min (w
i
, w

j
)), 2/3) (where w

i
 is the weight of vertex v

i
). Since only 5% of the domains

changed the weights of their vertices, the adapted graph is imbalanced in localized areas. Also, the value
of alpha determines the level of imbalance in these localized areas.

Each figure contains six sets of four results. Each set contains results in which alpha was set to 5, 10, 20,
and 30 for a given graph and number of processors. The level of alpha increases from left to right. The
first set is for the four million node finite element graph on 32 processors. The second set is for the eight
million node finite element graph on 32 processors. Together these are labeled 32 Processors. For all of
the experiments, a partition in which no domain contains more than 105% of the average domain weight
is considered to be well-balanced. All of the repartitioning schemes were able to compute well-balanced
partitions for every experiment.

Figure 1 shows the edge-cut, vertex migration cost, and run time results of the state-of-the-art scratch-
remap scheme described in [9] and implemented in ParMeTiS [12] as PARPAMETIS. In this figure, the
results from our LMSR algorithm are normalized against those obtained from PARPAMETIS. Hence, a
bar below the 1.0 index line indicates that our LMSR algorithm obtained results lower than
PARPAMETIS. Here, we can see that the edge-cut results obtained from the two schemes are generally
similar. However, the LMSR algorithm resulted in run time results which decrease in relation to
PARPAMETIS as the number of processors increases. This indicates that our LMSR algorithm scales
better than PARPAMETIS. The reason is that PARPAMETIS does not utilize true local matching. It
utilizes locally-preferred matching. That is, only local vertices are eligible for matching during the first
iteration through the vertices. In the second iteration, all unmatched vertices are eligible. Since global
matching is possible, additional interprocessor communication is required here which is not needed for
purely local matching. This makes our LMSR algorithm more scalable than PARPAMETIS. Finally, the
LMSR algorithm obtains vertex migration costs which are generally lower than those obtained by
PARPAMETIS by up to 40%.

Figure 1

Figures 2 and 3 compare the vertex migration and edge-cut results obtained by the multilevel diffusion

file:///C|/Karypis/Work/001%20Performance%20Review/T...partitioning%20of%20adaptively%20refine%20meshes.htm (8 of 13)8/30/2003 5:56:40 AM

Dynamic Repartitioning of Adaptively Refined Meshes

algorithm, PARUAMETIS, implemented in ParMeTiS [8], with our LMSR algorithm and our
Wavefront Diffusion algorithm. In these figures, the edge-cut (and vertex migration) results from
PARUAMETIS and Wavefront Diffusion are normalized against those obtained from our LMSR
algorithm. Hence, a bar above the 1.0 index line indicates that the LMSR algorithm obtained edge-cut
(or vertex migration) results lower than the indicated algorithm.

In Figure 2, the total amount of vertex migration required is compared. Here PARUAMETIS obtained
generally better results than our LMSR scheme. However, these results tended to converge for higher
levels of imbalance. Wavefront Diffusion, on the other hand, obtained consistently better results
compared to the LMSR algorithm, and increasingly better results as the level of imbalance increased
compared to PARUAMETIS. Such low migration requirements for our Wavefront Diffusion algorithm
could reduce the run times of a class of adaptive applications by a factor of two to three compared with
the same application repartitioned by the other schemes.

Figure 2

Figure 3 shows that our LMSR algorithm obtained edge-cut results which are better than both of the
other schemes across the board. In most cases, the difference is within 20%. Both of the diffusion-based
schemes obtained results which are generally within 10% of each other. This shows that our LMSR
algorithm is able to compute very high-quality repartitions regardless of the level of imbalance of the
graph, and that our Wavefront Diffusion algorithm obtains repartitionings of comparable quality with
state-of-the-art multilevel diffusion repartitioning schemes.

Figure 3

Finally, it is important to note that the run times of all of the parallel implementations compared are
extremely fast. None of the run times for any of the schemes were over two seconds for the four million
node graph or over three seconds for the eight million node graph on 128 processors. All of the schemes
obtained generally similar run times for a given experiment to within 30%.

8 Helicopter Blade Results

Experimental results given in Section 7 were for synthetically generated adaptive meshes. In this
section, we present results from our schemes on an application domain. These experiments were
performed with the serial versions of our algorithms. However, the parallel results for these graphs will
be included in the full-length version of this paper [11]. Figure 4 shows the repartitioning results from a
series of application meshes with a high degree of adaptation at each stage. These graphs are 3-

file:///C|/Karypis/Work/001%20Performance%20Review/T...partitioning%20of%20adaptively%20refine%20meshes.htm (9 of 13)8/30/2003 5:56:40 AM

Dynamic Repartitioning of Adaptively Refined Meshes

dimensional mesh models of a rotating helicopter blade. As the blade spins, the mesh must be adapted
by refining it in the area where the rotor has entered and coarsening it in the area of the mesh where the
rotor has passed through. These meshes were provided by the authors of [9].

Here, the first of a series of six graphs, G1, G1, ... G6, was originally partitioned into 16 domains with

the multilevel graph partitioner implemented in METIS [5,7]. The partition of graph G1 acted as the input

partition for graph G2. Repartitioning the imbalanced graph, G2, resulted in the experiment named First

and the input partition for graph G3. Similarly, the repartition of graph G3 resulted in experiment

Second, and so on, through experiment Fifth. The last set of results is marked Sum. This is the sum of
the raw scores of all five experiments.

Figure 4 gives a comparison of the edge-cut (and vertex migration) results of the five experiments,
(followed by the sum of these) for Wavefront Diffusion, LMSR, and the state-of-the-art scratch-remap
algorithm described in [9] and referred to here as SR. The edge-cut (and vertex migration) results
obtained by Wavefront Diffusion, and LMSR are normalized by those obtained by the SR algorithm.
Hence, a bar below the index line indicates that the corresponding algorithm obtained results lower than
those obtained by the SR algorithm.

Figure 4 shows that the two scratch-remap schemes obtained similar edge-cuts. However, our LMSR
scheme obtained significantly lower vertex migration results compared to SR. Figure 4 also shows that
Wavefront Diffusion results in significantly lower vertex migration requirements at the cost of
somewhat lower quality edge-cut results compared with the scratch-remap schemes. Note that these
results concur with those given in Section 7.

Figure 4

References

1
R. Biswas and L. Oliker.
Experiments with repartitioning and load balancing adaptive meshes.
Technical Report NAS-97-021, NASA Ames Research Center, Moffett Field, CA, October 1997.

2
T. Bui and C. Jones.
A heuristic for reducing fill in sparse matrix factorization.
In 6th SIAM Conf. Parallel Processing for Scientific Computing, pages 445-452, 1993.

file:///C|/Karypis/Work/001%20Performance%20Review/T...partitioning%20of%20adaptively%20refine%20meshes.htm (10 of 13)8/30/2003 5:56:40 AM

Dynamic Repartitioning of Adaptively Refined Meshes

3
R. Diekmann, A. Frommer, and B. Monien.
Nearest neighbor load balancing on graphs.
Technical report, University of Paderborn, Department of Mathematics and Computer Science,
1998.

4
Bruce Hendrickson and Robert Leland.
A multilevel algorithm for partitioning graphs.
Technical Report SAND93-1301, Sandia National Laboratories, 1993.

5
G. Karypis and V. Kumar.
Multilevel k-way partitioning scheme for irregular graphs.
Technical Report TR 95-064, Department of Computer Science, University of Minnesota, 1995.

6
G. Karypis and V. Kumar.
A coarse-grain parallel multilevel k-way partitioning algorithm.
In Proceedings of the 8th SIAM conference on Parallel Processing for Scientific Computing,
1997.

7
G. Karypis and V. Kumar.
METIS 3.0: Unstructured graph partitioning and sparse matrix ordering system.
Technical Report 97-061, Department of Computer Science, University of Minnesota, 1997.

8
G. Karypis, K. Schloegel, and V. Kumar.
PARMETIS: Parallel graph partitioning and sparse matrix ordering library.
Technical report, University of Minnesota, Department of Computer Science and Engineering,
1997.

9
L. Oliker and R. Biswas.
Plum: Parallel load balancing for adaptive unstructured meshes.
Technical Report NAS-97-020, NASA Ames Research Center, Moffett Field, CA, 1997.

10
K. Schloegel, G. Karypis, and V. Kumar.
Multilevel diffusion schemes for repartitioning of adaptive meshes.
Journal of Parallel and Distributed Computing, 47(2):109-124, 1997.

file:///C|/Karypis/Work/001%20Performance%20Review/T...partitioning%20of%20adaptively%20refine%20meshes.htm (11 of 13)8/30/2003 5:56:40 AM

Dynamic Repartitioning of Adaptively Refined Meshes

11
K. Schloegel, G. Karypis, and V. Kumar.
Dynamic Repartitioning of Adaptively Refined Meshes.
University of Minnesota, Department of Computer Science and Engineering, 1998.

12
K. Schloegel, G. Karypis, V. Kumar, R. Biswas, and L. Oliker.
A performance study of diffusive vs. remapped load-balancing schemes.
ISCA 11th Int'l Conference on Parallel and Distributed Computing Systems, September 1998.

13
C. Walshaw, M. Cross, and M. G. Everett.
Dynamic load-balancing for parallel adaptive unstructured meshes.
Parallel Processing for Scientific Computing, 1997.

14
C. Walshaw, M. Cross, and M. G. Everett.
Parallel dynamic graph partitioning for adaptive unstructured meshes.
Journal of Parallel and Distributed Computing, 47(2):102-108, 1997.

15
C. Walshaw, M. Cross, S. Johnson, and M. G. Everett.
Jostle: Partitioning of unstructured meshes for massively parallel machines.
Proc. Parallel CFD'94, Kyoto, 1994.

Author Biography

Kirk Schloegel Kirk Schloegel is currently working on his Ph.D. in Computer Science at the University
of Minnesota. He received his M.Sc. at the University of Edinburgh, Edinburgh, Scotland. His research
interests include parallel algorithm design and parallel computing.

George Karypis George Karypis received his Ph.D. in Computer Science at the University of
Minnesota, and he is currently an assistant professor at the department of Computer Science &
Engineering at the University of Minnesota. His research interests spans the areas of parallel algorithm
design, applications of parallel processing in scientific computing and optimization, sparse matrix
computations, parallel programming languages and libraries, and data mining. His recent work has been
in the areas of parallel sparse direct solvers, serial and parallel graph partitioning algorithms, parallel
matrix ordering algorithms, and scalable parallel preconditioners. His research has resulted in the
development of software libraries for unstructured mesh partitioning (METIS and ParMETIS), and for
parallel Cholesky factorization (PSPASES). He has author of over 20 research articles, and a coauthor of

file:///C|/Karypis/Work/001%20Performance%20Review/T...partitioning%20of%20adaptively%20refine%20meshes.htm (12 of 13)8/30/2003 5:56:40 AM

Dynamic Repartitioning of Adaptively Refined Meshes

a widely used text book ``Introduction to Parallel Computing''.

Vipin Kumar Vipin Kumar received his Ph.D. in Computer Science at the University of Maryland, and
he is currently a professor at the department of Computer Science & Engineering at the University of
Minnesota. His current research interests include parallel computing, parallel algorithms for scientific
computing problems, and data mining. His research has resulted in the development of highly efficient
parallel algorithms and software for sparse matrix factorization (PSPASES), graph partitioning (METIS
and ParMETIS) and dense hierarchical solvers. Kumar's research in performance analysis resulted in the
development of the isoefficiency metric for analyzing the scalability of parallel algorithms. He is author
of over 100 research articles, and a coauthor of a widely used text book ``Introduction to Parallel
Computing''. Kumar has given over 50 invited talks at various conferences, workshops, national labs,
and has served as chair/co-chair for many conferences/workshops in the area of parallel computing.
Kumar serves on the editorial boards of IEEE Parallel and Distributed Technology, Parallel Computing,
the Journal of Parallel and Distributed Computing, and served on the editorial board of IEEE
Transactions of Data and Knowledge Engineering during 93-97. He is a senior member of IEEE, a
member of SIAM, and ACM.

Permission to make digital or hard copies of part or all of this work or personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
SC '98, Orlando, FL, USA
(c) IEEE 1998 0-89791-984-X/98/0011 $3.50

file:///C|/Karypis/Work/001%20Performance%20Review/T...partitioning%20of%20adaptively%20refine%20meshes.htm (13 of 13)8/30/2003 5:56:40 AM

	Local Disk
	Dynamic Repartitioning of Adaptively Refined Meshes

