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Abstract. In recent years, there have been increasing efforts in applying
association rule mining to build Associative Classification (AC) models.
However, the similar area that applies association rule mining to build
Associative Regression (AR) models has not been well explored. In this
work, we fill this gap by presenting a novel regression model based on
association rules called AREM. AREM starts with finding a set of re-
gression rules by applying the instance based pruning strategy, in which
the best rules for each instance are discovered and combined. Then a
probabilistic model is trained by applying the EM algorithm, in which
the right hand side of the rules and their importance weights are up-
dated. The extensive experimental evaluation shows that our model can
perform better than both the previously proposed AR model and some
of the state of the art regression models, including Boosted Regression
Trees, SVR, CART and Cubist, with the Mean Squared Error (MSE)
being used as the performance metric.
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1 Introduction

In recent years, there have been increasing efforts in applying association rule
mining to build classification models [1] [2] [3] [4] [5], which have resulted in
the area of Associative Classification (AC) modeling. Several studies [1] [2] [3]
have provided empirical evidence that AC classifiers can outperform tree-based
[6] and rule-induction based models [7] [8]. The good performance of the AC
models can be attributed to the fact that by using a bottom-up approach to
rule discovery (either via frequent itemset mining or instance-based rule mining)
they can discover better rules than the traditional heuristic-driven top-down
approaches.

Regression is a data mining task that is applicable to a wide-range of ap-
plication domains. However, despite the success of association rule mining for
classification, it has not been extensively applied to develop models for regres-
sion. We are only aware of the Regression Based on Association (RBA) method
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developed by Ozgur et al. [9] that uses association rule mining to derive a set
of regression rules. Since regression models need to predict a continuous value,
whereas the classification models need to predict a categorical value, the methods
developed for AC modeling are in general not applicable for solving regression
problems.

Motivated by the success of AC modeling, we study the problem of applying
the association rule mining to build an Associative Regression (AR) model. We
believe this is an important problem for the following two reasons: First, an
AR model is built upon a set of regression rules, which in many cases, can be
easily interpreted by domain experts and thus provide valuable insights. Second,
the good performance of the well studied AC classifiers leads us to believe that
the AR model may potentially perform better than the tree-based [10] [11] and
rule-induction based [12] regression models.

We present an associative regression model utilizing expectation maximiza-
tion [13], called AREM. An AR model consists of three major components: (i)
the method used to identify the sets of itemsets that form the left hand sides
of the rules, (ii) the method used to estimate the right hand sides of the rules,
and (iii) the method used to compute a prediction. Drawing upon approaches
used for developing AC models, AREM uses an instance-based approach to se-
lect a subset of frequent itemsets that are used to form the left hand side of
the rules. However, unlike existing AC and AR models, it develops and utilizes
a probabilistic model coupled with an EM-based optimization approach to de-
termine the right hand side of the rules and also assign a weight to each rule
that is used during prediction. The advantage of this probabilistic model is that
it allows AREM to capture the interactions of the various rules and to learn
the parameters that lead to more accurate predictions. Our experimental evalu-
ation shows that AREM outperforms several state of the art regression models
including RBA [9], Boosted Regression Trees [10], SVR [14], CART [11] and
Cubist [12] on many data sets, with the Mean Square Error (MSE) being used
as the performance metric.

The remainder of this paper is organized as follows. Section 2 introduces some
notations and definitions. Section 3 presents the related work in this area. AREM
is formally presented in Section 4. In Section 5, we explain the experimental
design and results for model evaluation. And finally Section 6 concludes.

2 Notations And Definitions

The methods developed in this work apply to datasets whose instances are de-
scribed by a set of features that are present. Such datasets occur naturally in
market basket transactions (features represent the set of products purchased) or
bag-of-word modeling of documents (features correspond to the set of words in
the document). We will refer to these features as items. Note that other types of
datasets can be converted to the above format via discretization techniques [15].

Let the data set D = {(τi, yi)|i = 1, 2, ..., N} be a set of N instances. The
instance (with index) i is a tuple (τi, yi), where τi is a set of items (or, an
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itemset), and yi is the real-valued target variable. Given an itemset x, and an
instance (τi, yi), we say, x is contained in (τi, yi), or, (τi, yi) contains x, if x ⊆ τi.
The support of itemset x, is defined as the number of instances in D that contain
x. The itemset x is frequent if its support is not less than s0, where s0 is the
user specified parameter. For itemset x, we define its mean (µx) and standard
deviation (σx) as computed from the set of target variables from instances in D
that contain x.

A regression rule is of the form rx : x→ αx. The rule’s left hand side (LHS)
x is an itemset.The rule’s right hand side (RHS) αx is the target value predicted
by this rule. Each rule is also associated with a positive value wx which is used
as the weight when combining multiple rules together for making predictions.
The rule rx is frequent if its itemset x is frequent.

3 Related Work

To our best knowledge, the RBA [9] model is the only previous work on associa-
tive regression. It starts with mining the set of frequent itemsets which form the
set of rules’ LHS. For each frequent itemset x, RBA computes the rule’s RHS as
the mean of x. It also computes the standard deviation σx of x. These rules are
then ranked by variance (i.e., σ2

x) from small to large. The database sequential
coverage is applied to prune rules which are ranked low. For making predictions,
three weighting schemes for wx are developed: (1) equal, where rules are equally
weighted, (2) supp, where the rule rx is weighted by the support of x, and (3)
inv-var, where the rule’s weight is inverse proportional to the variance σ2

x.
Associative Classification (AC) [16] is an area that applies similar techniques,

but the focus is on the Classification task. Among the many methods developed
for AC modeling [1] [2] [3] [5], Harmony [4] is the model that employs a similar
rule pruning strategy to AREM: it mines the highest confidence rules for each
instance and combines them to the final rule set.

AR and AC models are descriptive in that they can be easily interpreted by
end users. Tree based and rule induction based models are another two groups of
descriptive models. The classification and regression tree (CART) [11] partitions
the input space into smaller, rectangular regions, and assigns the average of the
target variables as the predicted value to each region. Cubist [12] is a rule based
algorithm and fits a linear regression model to each of the regions. Boosting [10] is
a technique to build ensemble models by training each new model to emphasize
the training instances that previous models misclassified. Boosted regression
trees have shown to be arguably the best algorithms for web-ranking [17].

4 The AREM Model

The AREM model training consists of two major components. First, it discovers
a set of frequent regression rules rx : x→ µx, where µx is the mean value of x in
D. We denote this set of rules by R. Second, for each rx ∈ R, AREM updates
its RHS to a new value αx by learning a probabilistic model. The EM algorithm
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is applied for model learning where αx is learned together with the rule’s weight
wx.

For the rule discovery component (i.e., the first component above), AREM
follows a two-step approach to find the rule set R. First, it uses the FP Growth
algorithm [18] to find all frequent itemsets x in D. For each frequent itemset x,
AREM generates the rule rx : x → µx, where µx is the mean value of x in D.
Let F be this set of frequent rules. Second, for each training instance i, let Fi
be the set of rules rx from F such that x ⊆ τi. AREM selects K rules from Fi
to form the set Ri. Finally, R is the union of these rules Ri over all training
instances i in D. Since R will in general contain fewer rules than F , this step
applies instance based approach to prune the initial set of frequent rules.

Using the set of updated rulesR with the associated weights, AREM predicts
the target variable of a test itemset τ as follows. First, it identifies the set of rules
Rτ = {rx1

, . . . , rxm} ⊆ R whose LHS are subsets of τ (i.e., (xi → αxi) ∈ Rτ if
xi ⊆ τ), then it eliminates from Rτ all but the k rules that have the highest wxi
values among them. This set of rules, denoted by Rkτ , is then used to predict the
target variable using the formula

ŷ =

∑
rxi∈Rkτ

wxiαxi∑
rxi∈Rkτ

wxi
, (1)

which is nothing more than the average of the RHS of the k rules weighted by
their corresponding wxi values. In the case when the test itemset τ is not covered
by rules in R, i.e., |Rτ | = 0, we simply predict ŷ as the global mean of target
variables in database D.

AREM model requires the specification of four parameters: (i) the minimum
support s0, (ii) the number of rules K that are selected for each training instance,
(iii) the number of EM steps M for rule parameter learning, and (iv) the number
of rules k from R that are used for predicting the target variable. Even though
the optimal values of these parameters need to be determined using a cross-
validation framework, our experience has been that the performance of AREM
remains consistently good for a wide range of these values.

In the rest of this section we describe the probabilistic model that we devel-
oped for estimating from D the αx and wx parameters of the rules in R and the
method used to select for each training instance i the K rules from Fi.

4.1 The Probabilistic Model

Let X be the set of itemsets of rules in R (i.e., X = {x|rx ∈ R}). Consider
an arbitrary training instance (τ, y). The goal of the probabilistic model is to
specify the probability of target variable y given τ , i.e., P [y|τ ]. We want to relate
this quantity to the set of itemsets in X . To this end, we treat itemset x as a
random variable that takes values in X and write P [y|τ ] as

P [y|τ ] =
∑
x

P [y, x|τ ] =
∑
x

P [y|τ, x]P [x|τ ],
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where P [y|τ, x] is the probability of generating the target variable y given τ and
x, which is generated from τ with probability P [x|τ ]. Our goal then becomes to
specify P [y|τ, x] and P [x|τ ] and relate them to αx and wx.

In order to specify P [y|τ, x], we first assume the conditional independence
P [y|τ, x] = P [y|x]. That is, we assume that once the itemset x is known, the
probability of y is not dependent on τ , which simplifies our model so that the
dependency of τ is fully captured in P [x|τ ]. Given that, we then model P [y|x] as
a Normal distribution whose mean is the RHS of the rule x→ αx and standard
deviation βx. That is,

P [y|x] = N (y|αx, β2
x). (2)

Next, we specify P [x|τ ] by considering how AREM makes predictions. In
order to simplify this discussion we ignore the fact that AREM picks the top k
rules (i.e., it uses the set of rules in Rkτ ) and assume that it predicts the target
value by using all the rules in Rτ . Specifically, Equation 1 now becomes

ŷ =

∑
rxi∈Rτ

wxiαxi∑
rxi∈Rτ

wxi
=

∑
x

αx
Ix⊆τwx∑
x′⊆τ wx′

, (3)

where Ix⊆τ is the indicator function which takes value 1 (0) when x ⊆ τ is true
(false).

From the probabilistic modeling point of view, we predict the target variable
as the expected value of y given τ , that is,

ŷ = E[y|τ ] =
∑
x

E[y|τ, x]P [x|τ ]. (4)

From Equation 2, we get E[y|τ, x] = αx. To specify P [x|τ ], we compare Equation
3 with 4, and get

P [x|τ ] =
Ix⊆τwx∑
x′⊆τ wx′

. (5)

To summarize, we have reached a two step model P [y, x|τ ] = P [y|x]P [x|τ ].
In the first step, a regression rule’s LHS x ∈ X is generated based on τ with
probability P [x|τ ] given by Equation 5. In the second step, the target variable
y is generated by x with probability P [y|x] given by Equation 2.

4.2 EM Algorithm: Learning αx, βx and wx

Denote by θ = {αx, βx, wx|x ∈ X} the complete set of model parameters. The
maximum likelihood estimation of θ given the training data set is to maximize

L(θ) =
∑
i

log (P [yi|τi,θ]) =
∑
i

log (
∑
xi

P [yi, xi|τi,θ]), (6)

where we have introduced xi to denote the itemset generated by our probabilistic
model for instance i. The difficulty of this optimization problem comes from the
summation inside the logarithmic function. This is due to the existence of the
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hidden variables xi, which are not directly observable from the training data set.
EM algorithm is the standard approach to solve this problem.

EM algorithm is an iterative optimization technique. In the following, we
add a subscript t to all model parameters to denote the parameters used by
EM algorithm at iteration t. For each iteration t, EM algorithm finds the up-
dated set of parameters θt+1 given the current parameter estimations θt. This
is accomplished by maximizing the function

Q(θt+1,θt) =
∑
i

∑
xi

P [xi|τi, yi,θt] log(P [yi, xi|τi,θt+1]). (7)

This optimization problem is much easier than the original one for Equation 6,
due to the fact that the logarithmic function is now inside the summation. The
EM algorithm at iteration t is splitted into an E-step which computes πi,xi,t =
P [xi|τi, yi,θt] and an M-step which optimizes Q(θt+1,θt) given πi,xi,t. After
each iteration, the log-likelihood function L is guaranteed to be increased, that
is, L(θt+1) ≥ L(θt).

At iteration t = 0, we initialize the weight wx,0 to one and αx,0, βx,0 to the
mean and standard deviation of x in D. For the E-step, we first apply Bayes’
Theorem so that

πi,xi,t = P [xi|τi, yi,θt] =
P [yi|τi, xi,θt]P [xi|τi,θt]

P [yi|τi,θt]
∝ P [yi|τi, xi,θt]P [xi|τi,θt].

According to Equations 5 and 2, we have

P [yi|τi, xi,θt]P [xi|τi,θt] ∝ N (yi|αxi,t, β2
xi,t)wxi,tIxi⊆τi .

Combining these two Equations, we get

πi,xi,t =
N (yi|αxi,t, β2

xi,t)wxi,tIxi⊆τi∑
x′⊆τi N (yi|αx′,t, β2

x′,t)wx′,t
. (8)

For the M-step, we split P [yi, xi|τi,θt+1] as P [yi|xi,θt+1]P [xi|τi,θt+1], so that
Q = Q1 + Q2, where Q1 contains only αx,t+1, βx,t+1 and Q2 contains only
wx,t+1.

Next, we optimize Q1 which is given by

Q1 =
∑
i

∑
xi⊆τi

πi,xi,t log(P [yi|xi,θt+1]).

By changing the order of summation, we can write Q1 =
∑
xQx, where

Qx =
∑
i:x⊆τi

πi,x,t log(P [yi|x,θt+1]).

One can see that different itemsets are decoupled from each other, so we only
need to solveQx for ∀x ∈ X . Observe thatQx is nothing but the weighted version
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of the log-likelihood function of model P [y|x,θt+1] = N (y|αx,t+1, β
2
x,t+1), where

the weights are given by πi,x,t for instance i. The solution is straightforward:

αx,t+1 =

∑
i:x⊆τi πi,x,tyi∑
i:x⊆τi πi,x,t

, (9)

and,

β2
x,t+1 =

∑
i:x⊆τi πi,x,t(yi − αx,t+1)2∑

i:x⊆τi πi,x,t
. (10)

In Equations 9 and 10, the parameters αx and βx are the weighted mean and
standard deviation where the weight of instance i at iteration t is given by πi,x,t.
This weighting mechanism can help to remove the outlier instance whose πi,x,t
is small.

Now, we optimize Q2 which is given by

Q2 =
∑
i

∑
xi⊆τi

πi,xi,t log(P [xi|τi,θt+1]).

By plugging Equation 5 into Q2, and taking the derivative, we get

∂Q2

∂wx,t+1
=

∑
i:x⊆τi

(
πi,x,t
wx,t+1

− 1∑
x′⊆τi wx′,t+1

).

One can see that different weights wx,t+1 are coupled in the above equation. So
the exact analytical solution becomes impossible. To ensure the simplicity and
computational efficiency of our approach, we make an approximation here by
replacing t + 1 by t in the second term of RHS. Then by setting the derivative
to zero, we get

wx,t+1

wx,t
=

∑
i:x⊆τi πi,x,t∑

i:x⊆τi
wx,t∑

x′⊆τi
wx′,t

. (11)

From Equations 9, 10 and 11, we see that πi,x plays the key role of relating
parameters αx and βx to weights wx, so that they can interact with each other
and be optimized consistently.

Finally, we note that AREM introduces a parameter M which controls the
number of EM-steps. After the EM algorithm is completed, the rule’s RHS and
weight are finalized to be αx,M and wx,M .

4.3 Instance Based Rule Mining

The instance based rule mining is applied in the rule discovery component of
AREM discussed at the beginning of Section 4, which selects K rules from Fi
to form Ri for each training instance i. For this, AREM first ranks rules in Fi
by some “quality” metric, and then select the top K rules. The “quality” metric
captures the quality of a rule from an instance’s perspective. From our proba-
bilistic model, P [x|τi, yi] is the natural choice for the “quality” metric: a rule is
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Table 1. Data Set Summary

Data Set
BestBuy CitySearch Yelp

Airline Socmob Pollen Spacega
dep wf dep wf dep wf

# of instances 10k 10k 10k 10k 10k 10k 10k 1156 3848 3107
# of items 1347 1010 1530 1080 2273 1662 676 44 17 24
density (%)a 1.29 1.52 1.36 1.95 1.35 1.94 1.63 11.36 23.53 25.00

# of trialsb 20 20 20 20 20 20 20 200 50 60
a
The “density” captures how sparse the data set is. It is the percentage of
non-zero entries if the data is converted into the matrix format.

b
Number of trials the data set is randomized and then splitted into 80%
training set, 10% validation set and 10% testing set.

better if it has a higher probability of being generated by the instance. We use
the initialized rule parameters wx,0, αx,0 and βx,0 for computing P [x|τi, yi]. From
P [x|τi, yi] ∝ P [x, yi|τi] ∝ N (yi|αx,0, β2

x,0)wx,0, We have that for the ranking’s
purpose P [x|τi, yi] is equivalent to N (yi|αx,0, β2

x,0), where wx,0 = 1 is dropped.
Thus, AREM uses N (yi|αx,0, β2

x,0) for rule ranking for each instance.

4.4 Comparing AREM With RBA

We summarize the main differences between AREM and RBA as follows. First,
in determining a small set of itemsets to form the final rules’ LHS, AREM applies
an instance based approach, while RBA applies the database sequential coverage
technique. Second, in determining the final rules’ RHS, AREM learns them in
the EM framework, while RBA simply uses the mean of the rules’ itemsets. It
turns out that, in AREM, the rule’s RHS is the weighted mean, which is likely
to be a better estimation than the unweighted mean used by RBA. Third, in
determining the rule weights used for predictions, AREM learns them together
with rules’ RHS, while RBA pre-specifies methods for computing them. These
pre-specified methods may be reasonable but they are not optimized. Finally, in
determining top k rules used for making predictions, AREM selects rules with
the highest weights, while RBA selects rules with the smallest variance. Our
choice is consistent with our probabilistic model in that rules with higher chance
of being generated (see Equation 5) are more important and should be selected.

5 Experimental Study

5.1 Data Sets

We evaluate the performance of AREM on 10 data sets summarized in Table
1. The first six data sets are randomly sampled from user reviews downloaded
from three websites: “BestBuy” [19], “CitySearch” [20], and “Yelp” [21]. Each
instance corresponds to the review of a product where the target variable to
predict is the user’s rating which ranges from one to five. The review text is
parsed and a set of features, or items, is extracted. We constructed two types
of features: “dep” and “wf”. For “dep”, the Stanford dependencies [22] between
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words in each sentence are extracted. Each dependency is a triplet containing
the name of the relation, the governor and the dependent. For “wf”, words in
the review text are extracted. We remove the infrequent items whose relative
supports (that is, the support divided by |D|) are less than 0.5%. The “Airline”
data set is downloaded from DataExpo09 competition [23]. The last three data
sets are downloaded from CMU StatLib [24].

5.2 Models

For model comparison’s purpose, we focus on descriptive models and select sev-
eral state of the art tree-based and rule-based regression models. The support
vector regression (SVR) [14] is an exception. It is included because it is one of
the best known and standard models for regression.
SVR We use “libsvm” [25] for SVR, and use only the linear kernel. Model
parameters tuned are: C and ε, where ε is the size of ε-insensitive tube, and C
controls the model complexity.
CARTk This group of models contain the Classification And Regression Tree
(CART) [11] and the Boosted Regression Tree [10] where CART of fixed size
is acting as the weak learners. So, CARTk stands for CART being boosted k
times [26]. We tuned three parameters for CARTk: depth, leaf and lrate, where
depth is the maximum depth of the tree, leaf is the minimum number of leaf
samples of the tree, and lrate is the learning rate of the gradient boosting method.
CUBISTk Cubist [12] is a rule based algorithm which has the option of build-
ing committee models. The number of members in the committee is captured
in k. We tuned two binary parameters for CUBISTk: UB (unbiased), and CP
(composite). Parameter UB instructs CUBIST to make each rule approximately
unbiased. Parameter CP instructs CUBIST to construct the composite model.
RBAk We implemented the RBA model following [9]. Here k is the number of
top ranked rules used for prediction. We tuned two parameters for RBAk: s0 and
weight, where s0 is the minimum support threshold, and weight is the weighting
scheme used for prediction, which can take three values supp, inv-var and equal.
AREMk Here, k is the number of top ranked rules used for prediction. We
tuned three parameters for AREMk: s0, K and M , where s0 is the minimum sup-
port threshold, K is the number of high quality rules for each training instance
during pruning, and M is the number of EM steps during model training.

The parameter k in the above models (except SVR) can be uniformly inter-
preted as the number of rules used for making predictions. For our experimental
study, we choose k to be 1, 5, 10, 15 and 20 for all four models. The rationale of
choosing these values comes from the following: if k is too large, these models’
strength of being interpretable essentially disappears; on the other hand, if k is
too small, the performance may not be satisfactory. We choose the maximum k
value to be 20 as a compromise from these two extreme case considerations.

5.3 Evaluation

We used the Mean Squared Error (MSE) between the actual and predicted
target variable’s values as the performance metric. For each (model, data) pair,
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Table 2. Model Comparison: Average MSE

model\data BestBuy CitySearch Yelp
Airline Socmob Pollen Spacega

dep wf dep wf dep wf
SVR 0.945 0.810 0.961 0.814 0.935 0.770 0.643 0.535 0.469 0.480
CART1 1.014 0.875 1.131 0.974 1.118 0.924 0.649 0.440 0.487 0.488
CART5 0.937 0.815 0.997 0.847 0.994 0.804 0.640 0.349 0.481 0.480
CART10 0.921 0.799 0.962 0.827 0.962 0.782 0.642 0.349 0.482 0.481
CART15 0.913 0.790 0.956 0.809 0.946 0.765 0.640 0.349 0.483 0.482
CART20 0.909 0.787 0.949 0.814 0.939 0.755 0.640 0.341 0.483 0.484
CUBIST1 1.043 0.880 1.210 0.990 1.130 0.959 0.658 0.363 0.501 0.490
CUBIST5 1.070 0.937 1.213 0.966 1.129 0.949 0.663 0.367 0.500 0.494
CUBIST10 1.074 0.943 1.216 0.973 1.138 0.946 0.664 0.370 0.499 0.492
CUBIST15 1.080 0.947 1.218 0.976 1.138 0.944 0.664 0.369 0.499 0.493
CUBIST20 1.081 0.951 1.221 0.985 1.137 0.944 0.664 0.369 0.499 0.493
RBA1 1.111 1.004 1.200 1.141 1.156 1.023 0.730 0.533 0.507 0.530
RBA5 0.969 0.898 1.044 0.928 1.026 0.930 0.682 0.562 0.496 0.496
RBA10 0.964 0.878 1.041 0.894 1.019 0.915 0.685 0.594 0.497 0.496
RBA15 0.962 0.872 1.040 0.893 1.015 0.904 0.685 0.603 0.497 0.497
RBA20 0.964 0.872 1.038 0.890 1.013 0.903 0.685 0.603 0.497 0.497
AREM1 1.248 1.235 1.354 1.248 1.311 1.241 0.754 0.421 0.581 0.628
AREM5 0.875 0.763 0.908 0.844 0.953 0.799 0.670 0.307 0.499 0.529
AREM10 0.862 0.751 0.896 0.784 0.920 0.753 0.657 0.299 0.483 0.507
AREM15 0.864 0.753 0.894 0.773 0.921 0.748 0.652 0.299 0.481 0.490
AREM20 0.865 0.758 0.899 0.770 0.926 0.749 0.646 0.300 0.481 0.483

we first identified a set of parameter configurations that was likely to achieve
the best performance. The model was then trained on the training set and MSE
was calculated on the validation set for each of the parameter configurations.
Then we selected the parameter configuration that gives the best MSE on the
validation set, and computed the corresponding MSE on the testing set. This
process is repeated for the number of trials shown in Table 1. Finally, we reported
the average MSE on all testing trials.

For a given data set, in order to compare model m1 to model m2, we take into
account the distribution of the MSE values computed on multiple testing trials
for each model. Let µ1, σ1, n1 (µ2, σ2, n2) be the mean, standard deviation and
the number of observations of the set of MSE values for model m1 (m2), respec-
tively. We introduce µm1−m2

= µ2 − µ1 and σm1−m2
=

√
σ2
1/n1 + σ2

2/n2. The
quantity µm1−m2

/σm1−m2
is used in statistical testing [27] for the comparison

of two population means. Under the null hypothesis that two population means
are the same, µm1−m2/σm1−m2 can be assumed to have the Normal distribution
N (0, 1). So the more deviated from zero this quantity is, the more likely that
two models are performing differently.

5.4 Experimental Results

The average MSE for the discussed set of models on the various data sets are
shown in the Table 2, where the best results have been highlighted. Table 3
shows the quantity µm1−m2

/σm1−m2
for comparing AREMk to the rest of the

models. Note that CART1 is the standard CART model, in contrast to CARTk
which stands for the boosted regression tree. For easy comparison, we derive the
win-tie-loss from Table 3 and present them in Table 4.
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Table 3. Compare AREMk To Other Models: µm1−m2/σm1−m2

Model\Data
BestBuy CitySearch Yelp

Airline Socmob Pollen Spacega
dep wf dep wf dep wf

CARTk 2.86 2.71 4.26 2.65 1.73 0.56 -0.61 2.29 0.09 -0.12
SVR 4.65 4.16 4.97 2.95 1.26 1.80 -0.35 10.51 -2.14 -0.11
RBAk 4.98 8.15 10.18 8.11 8.64 12.17 3.15 9.68 2.74 0.52
CART1 7.89 8.36 16.78 11.48 16.50 13.84 0.23 6.77 1.15 0.23
CUBISTk 8.04 7.50 20.25 11.49 16.43 13.76 1.03 3.49 3.15 0.31

Table 4. Compare AREMk To Other Models: win-tie-loss

comparing criteriaa\model CARTk SVRk RBAk CART1 CUBISTk
|µm1−m2 | ≥ σm1−m2 6-4-0 7-2-1 9-1-0 8-2-0 9-1-0
|µm1−m2

| ≥ 2σm1−m2
5-5-0 5-4-1 9-1-0 7-3-0 8-2-0

|µm1−m2
| ≥ 3σm1−m2

1-9-0 4-6-0 8-2-0 7-3-0 8-2-0
a It is a tie if |µm1−m2 | < nσm1−m2 . Otherwise, it is a win

or loss depending on the sign of µm1−m2 .

Tables 3 and 4 show that AREM is performing better than all competing
methods on most of the data sets. For almost all cases, AREM is either better
or at least as good as the competing method (with the only exception on “Pollen”
when compared to SVR). It is also interesting to observe that AREM performs
almost uniformly well on the review data sets, but not as uniform on the rest of
the data sets. Given that the review data sets have much larger number of items
(see Table 1), we think this is an indication that AREM is more suitable for high-
dimensional and sparse data sets. Finally, from Table 2, we can see how different
k values affect the AREM’s performance. When k = 1, the performance is not
satisfactory. This is not surprising because our probabilistic model is optimized
for large number of rules. However, as k becomes sufficiently large (15 or 20),
the performance improves considerably and remains quite stable.

6 Conclusions

We have proposed a novel regression model based on association rules called
AREM. AREM applies the instance based rule mining approach to discover
a set of high quality rules. Then the rules’ RHS and importance weights are
learned consistently within the EM framework. Experiments based on 10 in
house and public datasets show our model can perform better than RBA [9],
Boosted Regression Trees [10], SVR [14], CART [11] and Cubist [12].
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