
Scalable Parallel Data Mining for Association
Rules ∗

Eui-Hong (Sam) Han George Karypis, Vipin Kumar

Department of Computer Science

University of Minnesota

4-192 EECS Bldg., 200 Union St. SE

Minneapolis, MN 55455, USA

fhan,karypis,kumarg@cs.umn.edu

Last updated on July 15, 1997 at 10:31am

Abstract

One of the important problems in data mining is discovering association rules from databases of transactions where

each transaction consists of a set of items. The most time consuming operation in this discovery process is the compu-

tation of the frequency of the occurrences of interesting subset of items (called candidates) in the database of transac-

tions. To prune the exponentially large space of candidates, most existing algorithms consider only those candidates

that have a user defined minimum support. Even with the pruning, the task of finding all association rules requires a

lot of computation power and memory. Parallel computers offer a potential solution to the computation requirement

of this task, provided efficient and scalable parallel algorithms can be designed. In this paper, we present two new par-

allel algorithms for mining association rules. The Intelligent Data Distribution algorithm efficiently uses aggregate

memory of the parallel computer by employing intelligent candidate partitioning scheme and uses efficient communi-

cation mechanism to move data among the processors. The Hybrid Distribution algorithm further improves upon the

Intelligent Data Distribution algorithm by dynamically partitioning the candidate set to maintain good load balance.

The experimental results on a Cray T3D parallel computer show that the Hybrid Distribution algorithm scales linearly,

exploits the aggregate memory better, and can generate more association rules with a single scan of database per pass.

Keywords: Data mining, parallel processing, association rules, load balance, scalability.

∗This work was supported by NSF grant ASC-9634719, Army Research Office contract DA/DAAH04-95-1-0538, Cray Research Inc. Fellow-
ship, and IBM partnership award, the content of which does not necessarily reflect the policy of the government, and no official endorsement should
be inferred. Access to computing facilities was provided by AHPCRC, Minnesota Supercomputer Institute, Cray Research Inc., and NSF grant
CDA-9414015. See http://www.cs.umn.edu/∼han for other related papers.

1 Introduction

One of the important problems in data mining [SAD+93] is discovering association rules from databases of transac-

tions, where each transaction contains a set of items. The most time consuming operation in this discovery process

is the computation of the frequencies of the occurrence of subsets of items, also called candidates, in the database of

transactions. Since usually such transaction-based databases contain a large number of distinct items, the total number

of candidates is prohibitively large. Hence, current association rule discovery techniques [AS94, HS95, SON95, SA95]

try to prune the search space by requiring a minimum level of support for candidates under consideration. Support is a

measure of the number of occurrences of the candidates in database transactions. Apriori [AS94] is a recent state-of-

the-art algorithm that aggressively prunes the set of potential candidates of size k by using the following observation:

a candidate of size k can meet the minimum level of support only if all of its subsets also meet the minimum level of

support. In the kth iteration, this algorithm computes the occurrences of potential candidates of size k in each of the

transactions. To do this task efficiently, the algorithm maintains all potential candidates of size k in a hash tree. This

algorithm does not require the transactions to stay in main memory, but requires the hash trees to stay in main memory.

Even with the highly effective pruning method of Apriori, the task of finding all association rules can require a lot of

computation power that is available only in parallel computers. Furthermore, the size of the main memory in the serial

computer puts an upper limit on the number of the candidates that can be considered in any iteration without requiring

multiple scans of the data. This effectively puts a lower bound on the minimum level of support imposed on candidates

under consideration. Parallel computers also offer increased memory to solve this problem.

Two parallel algorithms, Count Distribution and Data Distribution were proposed in [AS96]. The Count Distribu-

tion algorithm scales linearly and has excellent speedup and sizeup behavior with respect to the number of transac-

tions [AS96]. However, this algorithm works only when the entire hash tree in each pass of the algorithm fits into the

main memory of single processor of the parallel computers. Hence, the Count Distribution algorithm, like its sequential

counterpart Apriori, is unscalable with respect to the increasing size of candidate set. The Data Distribution algorithm

addresses the memory problem of the Count Distribution algorithm by partitioning the candidate set and assigning a

partition to each processor in the system. However, this algorithm suffers from three types of inefficiency. First, the

algorithm results in high communication overhead due to data movement. Second, the schedule for interactions among

processors is such that it can cause processors to idle. Third, each transaction has to visit multiple hash trees causing

redundant computation.

In this paper, we present two parallel algorithms for mining association rules. We first present Intelligent Data Dis-

tribution algorithm that improves upon the Data Distribution algorithm by minimizing communication and idling over-

head, and by eliminating redundant computation. The Hybrid Distribution algorithm further improves upon the Intel-

ligent Data Distribution algorithm by dynamically grouping processors and partitioning the candidate set accordingly

to maintain good load balance. The experimental results on a Cray T3D parallel computer show that the Hybrid Dis-

tribution algorithm scales linearly, exploits the aggregate memory efficiently, and can generate more association rules

with a single scan of database per pass.

The rest of this paper is organized as follows. Section 2 provides an overview of the serial algorithm for mining

association rules. Section 3 describes existing and proposed parallel algorithms. Section 4 presents the performance

analysis of the algorithms. Experimental results are shown in Section 5. Section 6 contains conclusions. A preliminary

version of this paper appeared in [HKK97].

1

TID Items
1 Bread, Coke, Milk
2 Beer, Bread
3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Diaper, Milk

Table 1: Transactions from supermarket.

2 Basic Concepts

Let T be the set of transactions where each transaction is a subset of the item-set I . Let C be a subset of I , then we

define the support count of C with respect to T to be:

σ(C) = |{t|t ∈ T,C ⊆ t}|.

Thus σ(C) is the number of transactions that contain C . For example, consider a set of transactions from supermarket

as shown in Table 1. The items set I for these transactions is fBread, Beer, Coke, Diaper, Milkg. The support count

of fDiaper, Milkg is σ(Diaper,Milk) = 3, whereas σ(Diaper,Milk, Beer) = 2.

An association rule is an expression of the form X
s,αH⇒ Y , where X ⊆ I and Y ⊆ I . The support s of the rule

X
s,αH⇒ Y is defined as σ(X ∪ Y)/|T |, and the confidence α is defined as σ(X ∪ Y)/σ(X). For example, consider

a rule fDiaper, Milkg H⇒ fBeerg, i.e. presence of diaper and milk in a transaction tends to indicate the presence of

beer in the transaction. The support of this rule is σ(Diaper,Milk, Beer)/5 = 40%. The confidence of this rule is

σ(Diaper,Milk, Beer)/σ(Diaper,Milk) = 66%. A rule that has a very high confidence (i.e., close to 1.0) is often

very important, because it provides an accurate prediction on the association of the items in the rule. The support of a

rule is also important, since it indicates how frequent the rule is in the transactions. Rules that have very small support

are often uninteresting, since they do not describe significantly large populations. This is one of the reasons why most

algorithms [AS94, HS95, SON95] disregard any rules that do not satisfy the minimum support condition specified by

the user. This filtering due to the minimum required support is also critical in reducing the number of derived association

rules to a manageable size. Note that the total number of possible rules is proportional to the number of subsets of the

item-set I , which is 2|I |. Hence the filtering is absolutely necessary in most practical settings.

The task of discovering an association rule is to find all rules X
s,αH⇒ Y , such that s is greater than a given mini-

mum support threshold and α is greater than a given minimum confidence threshold. The association rule discovery

is composed of two steps. The first step is to discover all the frequent item-sets (candidate sets that have more support

than the minimum support threshold specified). The second step is to generate association rules from these frequent

item-sets. The computation of finding the frequent item-sets is much more expensive than finding the rules from these

frequent item-sets. Hence in this paper, we only focus on the first step. The parallel implementation of the second step

is straightforward and is discussed in [AS96].

A number of algorithms have been developed for discovering frequent item-sets [AIS93, AS94, HS95]. Our parallel

algorithms are based on the Apriori algorithm [AS94] that has smaller computational complexity compared to other

algorithms. In the rest of this section, we briefly describe the Apriori algorithm. The reader should refer to [AS94] for

further details.

The high level structure of the Apriori algorithm is given in Figure 1. The Apriori algorithm consists of a number of

2

1. F1 = f frequent 1-item-setsg ;
2. for (k = 2; Fk−1 6= φ; k++) f
3. Ck = apriori gen(Fk−1)
4. for all transactions t ∈ T f
5. subset(Ck , t)
6. g
7. Fk = fc ∈ Ck | c.count≥ minsupg
8. g
9. Answer =

⋃
Fk

Figure 1: Apriori Algorithm

passes. Initially F1 contains all the items (i.e., item set of size one) that satisfy the minimum support requirement. Dur-

ing pass k, the algorithm finds the set of frequent item-sets Fk of size k that satisfy the minimum support requirement.

The algorithm terminates when Fk is empty. In each pass, the algorithm first generates Ck , the candidate item-sets of

size k. Function apriori gen(Fk−1) constructs Ck by extending frequent item-sets of size k−1. This ensures that all the

subsets of size k− 1 of a new candidate item-set are in Fk−1. Once the candidate item-sets are found, their frequencies

are computed by counting how many transactions contain these candidate item-sets. Finally, Fk is generated by prun-

ing Ck to eliminate item-sets with frequencies smaller than the minimum support. The union of the frequent item-sets,⋃
Fk , is the frequent item-sets from which we generate association rules.

Computing the counts of the candidate item-sets is the most computationally expensive step of the algorithm. One

naive way to compute these counts is to perform string-matching of each transaction against each candidate item-

set. A faster way of performing this operation is to use a candidate hash tree in which the candidate item-sets are

hashed [AS94]. Here we explain this via an example to facilitate the discussions of parallel algorithms and their anal-

ysis.

Figure 2 shows one example of the candidate hash tree with candidates of size 3. The internal nodes of the hash

tree have hash tables that contain links to child nodes. The leaf nodes contain the candidate item-sets. A hash tree of

candidate item-sets is constructed as follows. Initially, the hash tree contains only a root node, which is a leaf node

containing no candidate item-set. When each candidate item-set is generated, the items in the set are stored in sorted

order. Each candidate item-set is inserted into the hash tree by hashing each successive item at the internal nodes and

then following the links in the hash table. Once a leaf is reached, the candidate item-set is inserted at the leaf if the

total number of candidate item-sets are less than the maximum allowed. If the total number of candidate item-sets at

the leaf exceeds the maximum allowed and the depth of the leaf is less than k, the leaf node is converted into an internal

node and child nodes are created for the new internal node. The candidate item-sets are distributed to the child nodes

according to the hash values of the items. For example, the candidate item set f1 2 4g is inserted by hashing item 1 at

the root to reach the left child node of the root, hashing item 2 at that node to reach the middle child node, hashing item

3 to reach the left child node which is a leaf node.

The subset function traverses the hash tree from the root with every item in a transaction as a possible starting item

of a candidate. In the next level of the tree, all the items of the transaction following the starting item are hashed. This is

done recursively until a leaf is reached. At this time, all the candidates at the leaf are checked against the transaction and

their counts are updated accordingly. Figure 2 shows the subset operation at the first level of the tree with transaction

f1 2 3 5 6g. The item 1 is hashed to the left child node of the root and the following transaction f2 3 5 6g is applied

3

2,5,8

1,4,7 3,6,9

Hash Function

1 2 3 5 6

3 4 5 3 5 6

2 3 5 6

3 5 6

5 6

1 +

2 +

3 +

2 3 4

Transaction

Candidate Hash Tree

3 6 71 3 61 4 5

1 2 4 1 2 5 1 5 9

6 8 9

3 5 7

4 5 7 4 5 8

3 6 8

5 6 7

Figure 2: Subset operation on the root of a candidate hash tree.

1 2 3 5 6

3 4 5 3 5 6

3 5 61 2 +

1 3 + 5 6

1 5 + 6

2 3 5 6

3 5 6

5 6

1 +

2 +

3 +

2 3 4

Transaction

3 6 71 3 61 4 5

1 2 4 1 2 5 1 5 9

6 8 9

3 5 7

4 5 7 4 5 8

3 6 8

5 6 7

Candidate Hash Tree

Figure 3: Subset operation on the left most subtree of the root of a candidate hash tree.

4

2{1, 2}

{1, 3}

{2, 3}

{2, 4}

{3, 4}

{4, 5}

5

3

7

6

2

Proc 0 Proc 1 Proc 2 Proc 3

N/P

Data

Count

N/P

Data

Count

N/P

Data

Count

N/P

Data

Count

N: number of data items

M: size of candidate set

P: number of processors

Global Reduction

Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree

7{1, 2}

{1, 3}

{2, 3}

{2, 4}

{3, 4}

{4, 5}

3

1

1

3

9

0{1, 2}

{1, 3}

{2, 3}

{2, 4}

{3, 4}

{4, 5}

2

8

2

6

6

3{1, 2}

{1, 3}

{2, 3}

{2, 4}

{3, 4}

{4, 5}

4

6

7

2

0

M M M M

Figure 4: Count Distribution (CD) Algorithm

recursively to the left child node. The item 2 is hashed to the middle child node of the root and the whole transaction

is checked against two candidate item-sets in the middle child node. Then item 3 is hashed to the right child node of

the root and the following transaction f5 6g is applied recursively to the right child node. Figure 3 shows the subset

operation on the left child node of the root. Here the items 2 and 5 are hashed to the middle child node and the following

transactions f3 5 6g and f6g respectively are applied recursively to the middle child node. The item 3 is hashed to the

right child node and the remaining transaction f5 6g is applied recursively to the right child node.

3 Parallel Algorithms

In this section, we will focus on the parallelization of the task that finds all frequent item-sets. We first discuss two

parallel algorithms proposed in [AS96] to help motivate our parallel formulations. In all our discussions, we assume

that the transactions are evenly distributed among the processors.

3.1 Count Distribution Algorithm

In the Count Distribution (CD) algorithm proposed in [AS96], each processor computes how many times all the candi-

dates appear in the locally stored transactions. This is done by building the entire hash tree that corresponds to all the

candidates and then performing a single pass over the locally stored transactions to collect the counts. The global counts

of the candidates are computed by summing these individual counts using a global reduction operation [KGGK94]. This

algorithm is illustrated in Figure 4. Note that since each processor needs to build a hash tree for all the candidates, these

hash trees are identical at each processor. Thus, excluding the global reduction, each processor in the CD algorithm

executes the serial Apriori algorithm on the locally stored transactions.

5

This algorithm has been shown to scale linearly with the number of transactions [AS96]. This is because each proces-

sor can compute the counts independently of the other processors and needs to communicate with the other processors

only once at the end of the computation step. However, this algorithm works well only when the hash trees can fit into

the main memory of each processor. If the number of candidates is large, then the hash tree does not fit into the main

memory. In this case, this algorithm has to partition the hash tree and compute the counts by scanning the database

multiple times, once for each partition of the hash tree. Note that the number of candidates increases if either the num-

ber of distinct items in the database increases or if the minimum support level of the association rules decreases. Thus

the CD algorithm is effective for small number of distinct items and a high minimum support level.

3.2 Data Distribution Algorithm

The Data Distribution (DD) algorithm [AS96] addresses the memory problem of the CD algorithm by partitioning the

candidate item-sets among the processors. This partitioning is done in a round robin fashion. Each processor is re-

sponsible for computing the counts of its locally stored subset of the candidate item-sets for all the transactions in the

database. In order to do that, each processor needs to scan the portions of the transactions assigned to the other proces-

sors as well as its locally stored portion of the transactions. In the DD algorithm, this is done by having each processor

receive the portions of the transactions stored in the other processors as follows. Each processor allocates P buffers

(each one page long and one for each processor). At processor Pi , the i th buffer is used to store transactions from the lo-

cally stored database and the remaining buffers are used to store transactions from the other processors, such that buffer

j stores transactions from processor Pj . Now each processor Pi checks the P buffers to see which one contains data.

Let k be this buffer (ties are broken in favor of buffers of other processors and ties among buffers of other processors are

broken arbitrarily). The processor processes the transactions in this buffer and updates the counts of its own candidate

subset. If this buffer corresponds to the buffer that stores local transactions (i.e., k = i), then it is sent to all the other

processors (via asynchronous sends), and a new page is read from the local database. If this buffer corresponds to a

buffer that stores transactions from another processor (i.e., k 6= i), then it is cleared and an asynchronous receive request

is issued to processor Pk . This continues until every processor has processed all the transactions. Having computed the

counts of its candidate item-sets, each processor finds the frequent item-sets from its candidate item-set and these fre-

quent item-sets are sent to every other processor using an all-to-all broadcast operation [KGGK94]. Figure 5 shows the

high level operations of the algorithm. Note that each processor has a different set of candidates in the candidate hash

tree.

This algorithm exploits the total available memory better than CD, as it partitions the candidate set among proces-

sors. As the number of processors increases, the number of candidates that the algorithm can handle also increases.

However, as reported in [AS96], the performance of this algorithm is significantly worse than the CD algorithm. The

run time of this algorithm is 10 to 20 times more than that of the CD algorithm on 16 processors [AS96]. The problem

lies with the communication pattern of the algorithm and the redundant work that is performed in processing all the

transactions.

The communication pattern of this algorithm causes three problems. First, during each pass of the algorithm each

processor sends to all the other processors the portion of the database that resides locally. In particular, each processor

reads the locally stored portion of the database one page at a time and sends it to all the other processors by issuing

P − 1 send operations. Similarly, each processor issues a receive operation from each other processor in order to re-

ceive these pages. If the interconnection network of the underlying parallel computer is fully connected (i.e., there

is a direct link between all pairs of processors) and each processor can receive data on all incoming links simultane-

6

Proc 0 Proc 1 Proc 2 Proc 3

N/P N/P N/P

M/P M/P M/P M/P

Local Data Remote Data

CountCount

Local Data Remote Data

CountCount

Local Data Remote Data

CountCount

Local Data Remote Data

CountCount

N/PData

N: number of data items

M: size of candidate set

P: number of processors

Data Data

Broadcast Broadcast Broadcast

All-to-all Broadcast

Data

Broadcast Broadcast

Data

Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree

{1, 3}

{3, 4}

{4, 7}

9

2

3

{1, 4}

{3, 5}

{5, 6}

5

1

2

{2, 3}

{4, 5}

{5, 7}

4

6

7

{1, 2}

{2, 5}

{4, 6}

3

7

5

Figure 5: Data Distribution (DD) Algorithm

ously, then this communication pattern will lead to a very good performance. In particular, if O(N/P) is the size of the

database assigned locally to each processor, the amount of time spent in the communication will be O(N). However,

on all realistic parallel computers, the processors are connected via a sparser networks (such as 2D, 3D or hypercube)

and a processor can receive data from (or send data to) only one other processor at a time. On such machines, this

communication pattern will take significantly more than O(N) time because of contention.

Second, with finite number of communication buffers in each processor, the proposed all-to-all communication

scheme causes processors to idle. For instance, consider the case when one processor finishes its operation on local

data and sends the buffer to all other processors. Now if the communication buffer of any receiving processors is full,

the send operation is blocked.

Third, if we look at the size of the candidate sets as a function of the number of passes of the algorithm, we see that

in the first few passes, the size of the candidate sets increases and after that it decreases. In particular, during the last

several passes of the algorithm, there are only a small number of items in the candidate sets. However, each processor

in the DD algorithm still sends the locally stored portions of the database to all the other processors. Thus, even though

the computation decreases, the amount of communication remains the same.

The redundant work is introduced due to the fact that every processor has to process every single transaction in the

database. In CD (see Figure 4), only N/P transactions go through each hash tree of M candidates, whereas in DD (see

Figure 5), all N transactions have to go through each hash tree of M/P candidates. Although, the number of candidates

stored at each processor has been reduced by a factor of P, the amount of computation performed for each transaction

has not been proportionally reduced. If the amount of work required for each transaction to be checked against the hash

tree of M/P candidates is 1/P of that of the hash tree of M candidates, then there is no extra work. As discussed in

Section 4, in general, the amount of work per transaction will go down by a factor much smaller than P.

7

while (!done) f
FillBuffer(fd, SBuf);
for (k = 0; k < P-1; ++k) f

/* send/receive data in non-blocking pipeline */
MPI Irecv(RBuf, left);
MPI Isend(SBuf, right);

/* process transactions in SBuf and update hash tree */
Subset(HTree, SBuf);

MPI Waitall();

/* swap two buffers */
tmp = SBuf;
SBuf = RBuf;
RBuf = tmp;

g
/* process transactions in SBuf and update hash tree */
Subset(HTree, SBuf);

g

Figure 6: Pseudo Code for Data Movements

3.3 Intelligent Data Distribution Algorithm

We developed the Intelligent Data Distribution (IDD) algorithm that solves the problems of the DD algorithm discussed

in Section 3.2. In IDD, the locally stored portions of the database are sent to all the other processors by using a ring-

based all-to-all broadcast described in [KGGK94]. This operation does not suffer from the contention problems of the

DD algorithm and it takes O(N) time on any parallel architecture that can be embedded in a ring. Figure 6 shows the

pseudo code for this data movement operation. In our algorithm, the processors form a logical ring and each processor

determines its right and left neighboring processors. Each processor has one send buffer (SBuf) and one receive buffer

(RBuf). Initially, the SBuf is filled with one block of local data. Then each processor initiates an asynchronous send

operation to the right neighboring processor with SBuf and an asynchronous receive operation to the left neighboring

processor with RBuf. While these asynchronous operations are proceeding, each processor processes the transactions

in SBuf and collects the counts of the candidates assigned to the processor. After this operation, each processor waits

until these asynchronous operations complete. Then the roles of SBuf and RBuf are switched and the above operations

continue for P−1 times. Compared to DD, where all the processors send data to all other processors, we perform only

a point-to-point communication between neighbors, thus eliminating any communication contention. Furthermore, if

the time to process a buffer does not vary much, then there is little time lost in idling.

In order to eliminate the redundant work due to the partitioning of the candidate item-sets, we must find a fast way to

check whether a given transaction can potentially contain any of the candidates stored at each processor. This cannot be

done by partitioning Ck in a round-robin fashion. However, if we partition Ck among processors in such a way that each

processor gets item-sets that begin only with a subset of all possible items, then we can check the items of a transaction

against this subset to determine if the hash tree contains candidates starting with these items. We traverse the hash tree

with only the items in the transaction that belong to this subset. Thus, we solve the redundant work problem of DD by

8

Proc 0 Proc 1 Proc 2 Proc 3

N/P N/P N/P

Local Data Remote Data Local Data Remote Data Local Data Remote Data Local Data Remote Data

N/PData DataData

N: number of data items

M: size of candidate set

P: number of processors

Shift Shift Shift

Data

Shift

Data

Shift

M/P M/P M/P M/P

2, 5 3, 64

All-to-all Broadcast

Count Count

1, 7

Count Count Count Count Count Count

Candidate Hash Tree Candidate Hash TreeCandidate Hash Tree Candidate Hash Tree

Bit Map Bit Map Bit Map Bit Map

{2, 3}

{2, 5}

{5, 6}

2

6

9

{4, 5}

{4, 6}

{4, 7}

2

6

9

{3, 4}

{3, 5}

{6, 7}

2

6

9

{1, 2}

{1, 3}

{7, 8}

2

6

9

Figure 7: Intelligent Data Distribution (IDD) Algorithm

the intelligent partitioning of Ck .

Figure 7 shows the high level picture of the algorithm. In this example, Processor 0 has all the candidates starting

with items 1 and 7, Processor 1 has all the candidates starting with 2 and 5, and so on. Each processor keeps the first

items of the candidates it has in a bit-map. In the Apriori algorithm, at the root level of hash tree, every item in a

transaction is hashed and checked against the hash tree. However, in our algorithm, at the root level, each processor

filters every item of the transaction by checking against the bit-map to see if the processor contains candidates starting

with that item of the transaction. If the processor does not contain the candidates starting with that item, the processing

steps involved with that item as the first item in the candidate can be skipped. This reduces the amount of transaction

data that has to go through the hash tree; thus, reducing the computation. For example, let f1 2 3 4 5 6 7 8g be a

transaction that processor 0 is processing in the subset function discussed in Section 2. At the top level of the hash

tree, processor 0 will only proceed with items 1 and 7 (i.e., 1 + 2 3 4 5 6 7 8 and 7 + 8). When the page containing

this transaction is shifted to processor 1, this processor will only process items starting with 2 and 5 (i.e., 2 + 3 4 5 6

7 8 and 5 + 6 7 8). Figure 8 shows how this scheme works when a processor contains only those candidate item-sets

that start with 1, 3 and 5. Thus for each transaction in the database, our approach partitions the amount of work to be

performed among processors, thus eliminating any redundant work. Note that both the judicious partitioning of the

hash tree (indirectly caused by the partitioning of candidate item-set) and the filtering step are required to eliminate

this redundant work.

The intelligent partitioning of the candidate set used in IDD requires our algorithm to have a good load balancing.

One of the criteria of a good partitioning involved here is to have an equal number of candidates in all the processors.

This gives about the same size hash tree in all the processors and thus provides good load balancing among processors.

Note that in the DD algorithm, this was accomplished by distributing candidates in a round robin fashion. A naive

9

3 4 5

1 2 3 5 6

2 3 5 6

3 5 6

5 6

1 +

2 +

3 +

Candidate Hash Tree

3 6 71 3 61 4 5

1 2 4 1 2 5 1 5 9

Transaction

5 6 7

Skipped!!
bitmap

1, 3, 5

3 6 83 5 7

3 5 6

Figure 8: Subset operation on the root of a candidate hash tree in IDD.

method for assigning candidates to processors can lead to a significant load imbalance. For instance, consider a database

with 100 distinct items numbered from 1 to 100 and that the database transactions have more data items numbered with

1 to 50. If we partition the candidates between two processors and assign all the candidates starting with items 1 to 50 to

processor P0 and candidates starting with items 51 to 100 to processor P1, then there would be more work for processor

P0.

To achieve a load-balanced distribution of the candidate item-sets, we use a partitioning algorithm that is based on

bin-packing [PS82]. For each item, we first compute the number of candidate item-sets starting with this particular

item. Note that at this time we do not actually store the candidate item-sets, but just store the number of candidate

item-sets starting with each item. We then use a bin-packing algorithm to partition these items in P buckets such that

the numbers of the candidate item-sets starting with these items in each bucket are equal. To remove any data skew,

our bin-packing algorithm randomly selects the item to be assigned next in a bin. Once the location of each candidate

item-set is determined, then each processor locally regenerates and stores candidate item-sets that are assigned to this

processor. Figure 7 shows the partitioned candidate hash tree and its corresponding bitmaps in each processor. We were

able to achieve less than 5% of load imbalance with the bin packing method described here.

3.4 Hybrid Algorithm

The IDD algorithm exploits the total system memory by partitioning the candidate set among all processors. The av-

erage number of candidates assigned to each processor is M/P, where M is the number of total candidates. As more

processors are used, the number of candidates assigned to each processor decreases. This has two implications. First,

with fewer number of candidates per processor, it is much more difficult to balance the work. Second, the smaller

number of candidates gives a smaller hash tree and less computation work per transaction. Eventually the amount of

10

computation may become less than the communication involved. This would be more evident in the later passes of the

algorithm as the hash tree size further decreases dramatically. This reduces overall efficiency of the parallel algorithm.

This will be an even more serious problem in a system that cannot perform asynchronous communication.

The Hybrid Distribution (HD) algorithm addresses the above problem by combining the CD and the IDD algorithms

in the following way. Consider a P-processor system in which the processors are split into G equal size groups, each

containing P/G processors. In the HD algorithm, we execute the CD algorithm as if there were only P/G processors.

That is, we partition the transactions of the database into P/G parts each of size N/(P/G), and assign the task of com-

puting the counts of the candidate set Ck for each subset of the transactions to each one of these groups of processors.

Within each group, these counts are computed using the IDD algorithm. That is, the transactions and the candidate set

Ck are partitioned among the processors of each group, so that each processor gets roughly |Ck |/G candidate item-sets

and N/P transactions. Now, each group of processors computes the counts using the IDD algorithm, and the overall

counts are computing by performing a reduction operation among the P/G groups of processors.

The HD algorithm can be better visualized if we think of the processors as being arranged in a two dimensional grid

of G rows and P/G columns. The transactions are partitioned equally among the P processors. The candidate set Ck

is partitioned among the processors of each column of this grid. This partitioning of Ck is identical for each column

of processors; i.e., the processors along each row of the grid get the same subset of Ck . Figure 9 illustrates the HD

algorithm for a 3× 4 grid of processors. In this example, the HD algorithm executes the CD algorithm as if there were

only 4 processors, where the 4 processors correspond to the 4 processor columns. That is, the database transactions

are partitioned in 4 parts, and each one of these 4 hypothetical processors computes the local counts of all the can-

didate item-sets. Then the global counts can be computed by performing the global reduction operation discussed in

Section 3.1. However, since each one of these hypothetical processors is made up of 3 processors, the computation of

local counts of the candidate item-sets in a hypothetical processor requires the computation of the counts of the can-

didate item-sets on the database transactions sitting on the 3 processors. This operation is performed by executing the

IDD algorithm within each of 4 hypothetical processors. This is shown in the step 1 of Figure 9. Note that processors in

the same row have exactly the same candidates, and candidate sets along the each column partition the total candidate

set. At the end of this operation, each processor has complete count of its local candidates for all the transactions located

in the processors of the same column (i.e., of a hypothetical processor). Now a reduction operation is performed along

the rows such that all processors in each row have the sum of the counts for the candidates in the same row. At this

point, the count associated with each candidate item-set corresponds to the entire database of transactions. Now each

processor finds frequent item-sets by dropping all those candidate item-sets whose frequency is less than the threshold

for minimum support. These candidate item-sets are shown as shaded in Figure 9(b). In the next step, each processor

performs all-to-all broadcast operation along the columns of the processor mesh. At this point, all the processors have

the frequent sets and are ready to proceed to the next pass.

The HD algorithm determines the configuration of the processor grid dynamically. In particular, the HD algorithm

partitions the candidate set into a big enough section and assign a group of processors to each partition. Let m be the

number of candidate item-sets such that each processor can hold the hash tree constructed from m candidate item-sets

in memory. If the total number of candidates M is less than m, then the HD algorithm makes G equal to 1, which means

that the CD algorithm is run on all the processors. Otherwise G is set to dM/me.
The HD algorithm inherits all the good features of the IDD algorithm. It also provides good load balance and enough

computation work by maintaining minimum number of candidates per processor. At the same time, the amount of data

movement in this algorithm has been cut down to 1/G of the IDD.

11

1, 2

4, 5

7, 8

1

0

3

2, 3

8, 9

5, 6

3

1

2

6, 8

6, 7

3, 4 0

2

3

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

8, 9

7, 8 9

8

Frequent Item Set

All-to-all
Broadcast

All-to-all
Broadcast

All-to-all
Broadcast

All-to-all
Broadcast

Step 2: Reduction Operation Along the Rows

Step 3: All-to-all Broadcast Operation Along the Columns

Step 1: Partitioning of Candidate Sets and Data Movement Along the Columns

Data Shift

Data Shift

Data Shift

Data Shift

Data Shift

Data Shift

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Data Shift

Data Shift

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Candidate Hash Tree

Data Shift Data Shift Data Shift Data Shift

1, 2

4, 5

7, 8

0

1

2

2, 3

8, 9

5, 6

0

1

2

6, 8

6, 7

3, 4 1

4

0

1, 2

4, 5

7, 8

2

3

1

2, 3

8, 9

5, 6

0

0

2

6, 8

6, 7

3, 4 0

1

1 6, 8

6, 7

3, 4 1

0

1

2, 3

8, 9

5, 6

1

1

2

1, 2

4, 5

7, 8

0

2

3

Candidate Hash Tree Candidate Hash TreeCandidate Hash TreeCandidate Hash Tree

Candidate Hash Tree Candidate Hash TreeCandidate Hash TreeCandidate Hash Tree

Candidate Hash Tree Candidate Hash TreeCandidate Hash TreeCandidate Hash Tree

6, 8

6, 7

3, 4 2

7

5 6, 8

6, 7

3, 4 2

7

5 6, 8

6, 7

3, 4 2

7

5 6, 8

6, 7

3, 4 2

7

5

1, 2

4, 5

7, 8

3

6

9

1, 2

4, 5

7, 8

3

6

9

1, 2

4, 5

7, 8

3

6

9

1, 2

4, 5

7, 8

3

6

9

2, 3

8, 9

5, 6

4

3

8

2, 3

8, 9

5, 6

4

3

8

2, 3

8, 9

5, 6

4

3

8

2, 3

8, 9

5, 6

4

3

8

Figure 9: Hybrid Distribution (HD) Algorithm in 3× 4 Processor Mesh (G = 3, P = 12)

12

symbol definition
N Total number of transactions
P Number of processors
M Total number of candidates
G Number of partitions of candidates in the HD algorithm
k Pass number in Apriori algorithm
I Average number of items in a transaction
C Average number of potential candidates in a transaction
S Average number of candidates at the leaf node
L Average number of leaves in the hash tree for the serial Apriori algorithm

ttravers Cost of hash tree traversal per potential candidate
tcheck Cost of checking at the leaf with S candidates
Vi, j Expected number of leaves visited with i potential candidates and j leaves

Table 2: Symbols used in the analysis.

4 Performance Analysis

In this section, we analyze the amount of work done by each algorithm. Throughout the analysis, we ignore the cost of

communication. Table 2 describes the symbols used in this section.

As discussed in Section 2, the bulk of the computation is performed by the subset function. Consider a transaction

that has I items. During the kth pass of the algorithm, this transaction has C =
(

I

k

)
potential candidates that need

to be checked against the candidate hash tree. Note that for a given transaction, if one potential candidate visits a leaf

node, then all the candidates of this transaction are checked against the leaf node. As a result, if this node is revisited

due to a different candidate from the same transaction, no checking is performed. Clearly the total cost of checking at

the leaf nodes is directly proportional to the number of distinct leaf nodes visited with the transaction. We assume that

the average number of candidate item-sets at the leaf nodes is S. Hence the average number of leaf nodes in a hash tree

is L = M/S. In the implementation of the algorithm, the desired value of S can be obtained by adjusting the branching

factor of the hash tree. In general, the cost of traversal for each potential candidate will depend on the depth of the leaf

node in the hash tree reached by the traversal. To simplify the analysis, we assume that the cost of each traversal is the

same. Hence, the total traversal cost if directly proportional to C . For each potential candidate, we define ttravers to be

the cost associated with the traversal of the hash tree and tcheck to be the cost associated with checking the candidate

item-sets of the reached leaf node.

Note that the number of distinct leaves visited by a transaction is in general smaller than the number of potential

candidates C . This is because different potential candidates may lead to the same leaf node. In general, if C is relatively

large with respect to the number of leaf nodes in the hash tree, then the number of distinct leaf nodes visited will be

smaller than C . We can compute the expected number of distinct leaf nodes visited as follows. To simplify the analysis,

we assume that each traversal of the hash tree due to a different potential candidate is equally likely to lead to any leaf

node of the hash tree.

Let Vi, j be the expected number of distinct leaf nodes visited when the transaction has i potential candidates, and

the hash tree has j leaf nodes.

V1, j = 1

Vi, j = Vi−1, j × (Prob. of reaching a previously visited node)+ (Vi−1, j + 1)× (Prob. of reaching a new node)

13

= Vi−1, j
Vi−1, j

j
+ (Vi−1, j + 1)

j − Vi−1, j

j

= 1+ j − 1

j
Vi−1, j

=
1−

(
j−1

j

)i

1−
(

j−1
j

)
= j i − (j − 1)i

j i−1
(1)

Note that for large j , Vi, j ' i . This can be shown by taking limit on Equation 1:

lim
j→∞

Vi, j = lim
j→∞

j i − (j − 1)i

j i−1

= [i(i − 1) · · · 3 · 2] j − [i(i − 1) · · · 3 · 2] (j − 1)

(i − 1)(i − 2) · · · 2 · 1
= i j − i(j − 1)

= i (2)

This shows that if the hash tree size is much larger than the number of potential candidates in a transaction, then each

potential candidate is likely to visit a distinct leaf node in the hash tree.

Serial Apriori algorithm Recall that in the serial Apriori algorithm, the average number of leaf nodes in the hash

tree is L = M/S. Hence the number of distinct leaf visited per transaction is VC,L , and the computation time per

transaction for visiting the hash tree is:

Ttrans = C × ttravers + VC,L × tcheck

So the run time of the serial algorithm for processing N transactions is:

T serial
comp = N × Ttrans

= N × C × ttravers + N × VC,L × tcheck (3)

The CD algorithm In the CD algorithm the entire set of candidates is replicated at each processor. Hence the aver-

age number of leaf nodes in the local hash tree at each processor is L = M/S, which is the same as in the serial Apriori

algorithm. Thus the CD algorithm performs the same computation per transactions as the serial algorithm, but each

processor handles only N/P number of transactions. Hence the run time of the CD algorithm is:

T CD
comp =

N

P
× Ttrans

= N

P
× C × ttravers + N

P
× VC,L × tcheck (4)

Comparing Equation 4 to Equation 3, we see that CD performs no redundant computation. In particular, both the time

for traversal and for checking scales down by a factor of P.

14

The DD algorithm In the DD algorithm, the number of candidates per processor is M/P, as the candidate set is

partitioned. Hence the average number of leaf nodes in the local hash tree of each processor is L/P. Therefor, the

number of distinct leaf nodes visited per transaction is VC, L
P

, and the computation time per transaction is:

T DD
trans = C × ttravers + VC, L

P
× tcheck

The number of transactions processed by each processor is N , as the transactions are shifted around the processors.

Hence, the computation per processor of the DD algorithm is:

T DD
comp = N × T DD

trans

= N × C × ttravers + N × VC, L
P
× tcheck (5)

Comparing Equation 5 with the serial complexity (Equation 3), we see that the DD algorithm does not reduce the

computation associated with the hash tree traversal. For both the serial Apriori and the DD algorithm, this cost is

N×C×ttravers . However, the DD algorithm is able to reduce the cost associated with the checking at the leaf nodes. In

particular, it reduces the serial cost of N×VC,L× tcheck down to N×VC, L
P
× tcheck . However, because VC, L

P
> VC,L/P,

the reduction achieved in this part is less than a factor of P. We can easily see this if we consider the case when L is

very large. In this case, VC, L
P
' C and VC,L/P ' C/P by Equation 2. Thus, the number of leaf nodes checked over all

the processors by the DD algorithm is higher than that of the serial algorithm. This is why the DD algorithm performs

redundant computation.

The IDD algorithm In the IDD algorithm, just like the DD algorithm, the average number of leaf nodes in the local

hash tree of each processor is L/P. However, the average number of potential candidates that need to be checked for

each transaction at each processor is much less than DD, because of the intelligent partitioning of candidates set and

the use of bitmap to prune at the root of the hash tree. More precisely, the number of potential candidates that need to

be checked for a transaction is roughly C/P assuming that we have a good balanced partition. So the computation per

transaction is:

T I DD
trans = C

P
× ttravers + V C

P ,
L
P
× tcheck

Thus the computation per processor is:

T I DD
comp = N × T I DD

trans

= N × C

P
× ttravers + N × V C

P ,
L
P
× tcheck (6)

Comparing Equation 6 to Equation 3, we see that the IDD algorithm is successful in reducing the cost associated with

the hash tree traversal linearly. It also reduces the checking cost from N × VC,L × tcheck down to N × V C
P ,

L
P
× tcheck .

Note that for sufficiently large L, VC,L ' C and V C
P ,

L
P
' C/P. This shows that IDD is also able to linearly reduce the

cost of checking at the leaf nodes, and thus unlike DD, it performs no redundant work. We instrumented our algorithms

to verify that the average number of distinct leaf node visited by IDD is indeed much less than DD. Figure 10 shows

that V C
P ,

L
P

of IDD goes down by factor of P, but VC, L
P

of DD does not go down by factor of P. However, P must be

relatively small for IDD to have a good load balance. If P becomes large with fixed M , the problem of load imbalance

discussed in Section 3 makes some processors work on more than 1/P of items in a transaction at the root of the hash

15

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35

A
ve

ra
ge

 N
um

be
r

of
 D

is
tin

ct
 L

ea
f N

od
e

V
is

ite
d

P
er

 T
ra

ns
ac

tio
n

Number of processors

DD
IDD

Figure 10: Comparison of DD and IDD in terms of the average number of distinct leaf node visited per transaction with 50K trans-
actions per processor and 0.2% minimum support.

tree.

The HD algorithm In the HD algorithm, the number of potential candidates per transactions is C/G and the number

of candidates per processor is M/G. So the computation time per transaction is:

T H D
trans =

C

G
× ttravers + V C

G ,
L
G
× tcheck

The total number of transactions each processor has to process is G N/P. Thus the computation per processor is:

T H D
comp =

G × N

P
× T H D

trans

= G × N

P
× C

G
× ttravers + G × N

P
× V C

G ,
L
G
× tcheck (7)

Compared to the serial algorithm, Equation 7 shows that the HD algorithm reduces the computation linearly with

respect to the hash tree traversal cost. The traversal cost is reduced from N ×C× ttravers down to N ×C× ttravers
P . The

cost of checking at the leaf nodes is reduced from N × VC,L × tcheck down to (G × N × V C
G ,

L
G
× tcheck)/P. Note that

for sufficiently large L, N × VC,L ' NC and G × N × V C
G ,

L
G
/P ' N × C/P. Thus, the HD algorithm has a linear

speedup with respect to the cost of checking at the leaf nodes.

5 Experimental Results

We implemented our parallel algorithms on a 128-processor Cray T3D parallel computer. Each processor on the T3D is

a 150Mhz Dec Alpha (EV4), and has 64Mbytes of memory. The processors are interconnected via a three dimensional

torus network that has a peak unidirectional bandwidth of 150Mbytes per second, and a small latency. For communica-

tion we used the message passing interface (MPI). Our experiments have shown that for 16Kbyte messages we obtain

a bandwidth of 74Mbytes/seconds and an effective startup time of 150 microseconds.

16

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120 140

R
es

po
ns

e
tim

e
(s

ec
.)

Number of processors

CD
IDD
HD
DD

DD + comm.

Figure 11: Scaleup result with 100K transactions and 0.25% minimum support.

We generated a synthetic dataset using a tool provided by [Pro96] and described in [AS94]. The parameters for the

data set chosen are average transaction length of 15 and average size of frequent item sets of 6. Data sets with 1000

transactions (63KB) were generated for different processors. Due to the absence of a true parallel I/O system on the

T3D system, we kept a set of transactions in a main memory buffer and read the transactions from the buffer instead

of the actual disks. For the experiments involving larger data sets, we read the same data set multiple times. We also

performed similar experiments on an IBM SP2 in which the entire database resided on disks. Our experiments (not

reported here) show that the I/O requirements do not change the relative performance of the various schemes. We do

present the results of one experiment on 16-processor SP2 for comparing CD to IDD and HD when CD scans database

multiple times due to the partitioned hash tree.

To compare the scalability of the four schemes (CD, DD, IDD and HD), we performed scaleup tests with 100K

transactions per processor and minimum support of 0.25%. We could not use minimum support smaller than 0.25%

because the CD algorithm ran out of main memory for storing the hash tree. For this experiment, in the HD algorithm

we have set the threshold on the number of candidates for switching to the CD algorithm very low to show the validity

of our approach. With 0.25% support, the HD algorithm switched to CD algorithm in pass 7 of total 12 passes and

90.7% of the overall response time of the serial code was spent in the first 6 passes. These scaleup results are shown

in Figure 11.

As noted in [AS96], the DD algorithm scales very poorly. However, the performance achieved by IDD is much

better than that of the DD algorithm. In particular, on 32 processors, IDD is faster than DD by a factor of 4.4. It can

be seen that the performance gap between IDD and DD widens as the number of processors increases. IDD performs

better than DD because of the better communication mechanism for data movements and the intelligent partitioning

of the candidate set. To show the effects of these two improvements, we replaced the communication mechanism of

the DD algorithm with that of the IDD. The scaleup result of this improvement is shown as “DD+comm” in Figure 11.

Hence the response time reduction from DD to DD+comm is due to the the better communication mechanism for data

movements, and the reduction from DD+comm to IDD is due to the intelligent partitioning of the candidate set.

Note that the response time of IDD increases as we increase the number of processors. This is due to the load balanc-

17

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

R
es

po
ns

e
tim

e
(s

ec
.)

Number of transactions per processor (K)

count
intelligent data

hybrid

Figure 12: Sizeup result with 16 processors and 0.25% minimum support.

ing problem discussed in Section 3, where the number of candidates per processor decreases as the number of processors

increases. Looking at the performance of the HD algorithm, we see that response time remains almost constant as we

increase the number of processors while keeping the number of transactions per processor and the minimum support

fixed. Comparing against CD, we see that HD actually performs better as the number of processors increases. Its per-

formance on 128 processors is 9.5% better than CD. This performance advantage of HD over CD is due to the smaller

cost of reduction in HD, because the number of processors involved in global reduction operation of counts is much

less in HD than in CD.

We measured how our algorithms perform as we increase the number of transactions per processor from 50K(3.2MB)

to 800K(50.4MB). For these experiments, we fixed the number of processors at 16 and the minimum support at 0.25%.

These results are shown in Figure 12. From this figure, we can see that CD and HD perform almost identically. For both

algorithms, the response time increases linearly with the number of transactions. IDD also scales linearly, but because

of its load imbalance problem, its performance is somewhat worse.

Our experiments so far have shown that the performance of HD and CD are quite comparable if the entire hash

tree can reside on each processor. However, the real advantage of HD (and IDD) over CD is that they do not require

the whole hash tree to reside on each processor, and thus better exploit the available memory. This allows us to use a

smaller minimum support in the Apriori algorithm.

To verify this, we performed experiments in which we fixed the number of transactions per processor to 50K and

successively decreased the minimum support level. These experiments for 16 and 64 processors are shown in Figures 13

and 14 respectively. A couple of interesting observations can be made from these results. First, both IDD and HD

successfully ran using lower support levels that CD could not run with. In particular, IDD and HD ran down to a support

level of 0.06% on 16 processors and 0.04% on 64 processors. In contrast, CD could only run down to a support level

of 0.25% and ran out of memory for the lower supports. The support level for IDD and HD becomes smaller with the

increasing number of processors, because the IDD and HD algorithms can exploit the aggregate memory of the larger

number of processors.

The second thing to notice is that HD performs better than IDD both on 16 and 64 processors, and the relative perfor-

18

0

100

200

300

400

500

600

0.5 0.25 0.1 0.06

R
es

po
ns

e
tim

e
(s

ec
.)

Minimum support (%)

(211 K)

(345 K)

(1083 K)

(2408 K)

CD
IDD
HD

simple hybrid

Figure 13: Response time on 16 processors with 50K transactions as the minimum support varies. At each support level, the total
number of candidate item-sets is shown in parenthesis

mance of HD compared to IDD get better as the number of processors increases. As discussed earlier, this performance

difference is due to the load imbalance. As the number of processors increases, this load imbalance gets worse. How-

ever, on 16 processors, IDD is 37% worse than HD for support level 0.25%, but only 18% worse for support of 0.06%.

This is because as the support level decreases, the number of candidates (shown in parenthesis in Figures 13 and 14)

increases which improves the load balance.

Figures 13 and 14 also show the performance of a simple hybrid algorithm obtained by combining CD and IDD.

In this scheme, in each pass of the Apriori algorithm, we perform CD if the hash table can fit in the memory of each

processors or IDD if it can not. As we can see from these results, this simple hybrid algorithm performs worse than HD.

In particular, the relative performance of this scheme compared to HD gets worse as the number of processors increases.

For example, for a support level of 0.06%, it is 6% worse on 16 processors and 17% worse on 64 processors. Thus the

HD algorithm achieves better performance by gradually adjusting the subsets of processors that perform IDD and CD.

This is because of the following two reasons. First, the candidate set is split among fewer number of processors which

minimizes load imbalance and second, the reduction operation to obtain the counts in CD is performed among fewer

processors, which decreases the communication overhead.

Note that an alternative method to handle large candidate set in CD is to partition them such that each partition fits in

the main memory. Now the entire set of local transactions have to be read at each processor as many time as the number

of partitions. This method increases the I/O cost. On the system in which I/O is scalable and fast (e.g., IBM SP2), this

cost may be acceptable. We implemented the CD algorithm to partition the hash tree and read database multiple times

in case the hash tree does not fit into main memory. Figure 15 shows the performance comparison of CD, IDD and HD

on 16-processor IBM SP2 machine as the number of candidates increases by lowering minimum support. Unlike the

earlier experiments on Cray T3D machine, the whole transactions were read in from the file. Figure 15 shows that as

the number of candidates increases both IDD and HD outperform CD. This is due to the increased I/O time required

for multiple scan of the database and increased communication time required for global reduction operation of multiple

partitions of the candidate frequencies. Note that even on IBM SP2, the penalty due to higher I/O cost is about 8% for

1 million candidates, 11% for 3 million candidates and 25% for 11 million candidates. The I/O penalty increases as the

19

0

200

400

600

800

1000

1200

0.5 0.25 0.1 0.060.04

R
es

po
ns

e
tim

e
(s

ec
.)

Minimum support (%)

(211 K)
(345 K)

(1083 K)

(2408 K)

(5232 K)

CD
IDD
HD

simple hybrid

Figure 14: Response time on 64 processors with 50K transactions as the minimum support varies. At each support level, the total
number of candidate item-sets is shown in parenthesis

Number of processors 1 2 4 8 16 32 64
Successful down to 0.25 0.2 0.15 0.1 0.06 0.04 0.03
Ran out of memory at 0.2 0.15 0.1 0.06 0.04 0.03 0.02

Table 3: Minimum support (%) reachable with different number of processors in our algorithms.

number of candidates increases. On systems with slower I/O, the penalty can be much larger.

In another experiment, we varied the number of processors from 2 to 64 and measured how low we can go with

minimum support for the IDD and HD algorithms. Table 3 shows the result for these algorithms. The result shows

that as we have more processors, these algorithms can handle lower minimum support. Table 4 shows how the HD

algorithm chose the processor configuration based on the number of candidates at each pass with 64 processors and

0.04% minimum support.

6 Conclusion

In this paper, we proposed two new parallel algorithms for mining association rules. The IDD algorithm utilizes total

main memory available more effectively than the CD algorithm. This algorithms improves over the DD algorithm

which has high communication overhead and redundant work. As shown in Section 4, for each transaction the DD

Pass 2 3 4 5 6 7 8 9 10
Configuration 8× 8 64× 1 4× 16 2× 32 2× 32 2× 32 2× 32 2× 32 1× 64
No of Cand. 351K 4348K 115K 76K 56K 34K 16K 6K 2K

Table 4: Processor configuration and number of candidates of the HD algorithm with 64 processors and 0.04% minimum support
for each pass. Note that 64× 1 configuration is the same as the DD algorithm and 1× 64 is the same as the CD algorithm. The
total number of pass was 13 and all passes after 9 had 1× 64 configuration.

20

0

200

400

600

800

1000

0 2 4 6 8 10 12

R
es

po
ns

e
tim

e
(s

ec
.)

Number of Candidates (in milliions)

HD
CD
IDD

Figure 15: Response time on 16 processor IBM SP2 with 100K transactions as the minimum support varies from 0.1% to 0.025%.

algorithm performs substantially more work overall than the serial Apriori algorithm. The communication and idling

overheads were reduced using a better data movement communication mechanism, and redundant work was reduced by

partitioning the candidate set intelligently and using bit maps to prune away unnecessary computation. Another useful

feature of IDD is that it is well suited for the system environment with single source of data base. For instance, when

all the data is coming from a database server or a single file system, one processor can read data from the single source

and pass the data along the communication pipe line defined in the algorithm. However, as the number of available

processors increases, the efficiency of this algorithm decreases due to load imbalance, unless the amount of work is

increased by having more number of candidates.

The HD combines the advantages of CD and IDD. This algorithm partitions candidate sets just like the IDD to exploit

the aggregate main memory, but dynamically determines the number of partitions such that the partitioned candidate

set fits into the main memory of each processor and each processor has enough number of candidates for computation.

It also exploits the advantage of CD by just exchanging counts information and moving around the minimum number

of transactions among the smaller subset of processors.

The experimental results on a 128-processor Cray T3D parallel machine show that the HD algorithm scales just as

well as the CD algorithm with respect to the number of transactions. However, it exploits the aggregate main memory

more efficiently and thus is able to discover more association rules with much smaller minimum support with a single

scan of database per pass. This parallel formulation is particularly useful in domains where the size of transaction is

very large (e.g., similarity tables in molecular biology [HKKM97], generalized association rules [HF95, SA95], or

sequential patterns [MTV95, SA96]).

References

[AIS93] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large

databases. In Proc. of 1993 ACM-SIGMOD Int. Conf. on Management of Data, Washington, D.C., 1993.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. of the 20th VLDB

Conference, pages 487–499, Santiago, Chile, 1994.

21

[AS96] R. Agrawal and J.C. Shafer. Parallel mining of association rules. IEEE Transactions on Knowledge and

Data Eng., 8(6):962–969, December 1996.

[HF95] J. Han and Y. Fu. Discovery of multiple–level association rules from large databases. In Proc. of the 21st

VLDB Conference, Zurich, Switzerland, 1995.

[HKK97] E.H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association rules. In Proc. of 1997

ACM-SIGMOD Int. Conf. on Management of Data, Tucson, Arizona, 1997.

[HKKM97] E.H. Han, G. Karypis, V. Kumar, and B. Mobasher. Clustering based on association rule hypergraphs.

Technical Report TR-97-019, Department of Computer Science, University of Minnesota, Minneapolis,

1997.

[HS95] M. A. W. Houtsma and A. N. Swami. Set-oriented mining for association rules in relational databases. In

Proc. of the 11th Int’l Conf. on Data Eng., pages 25–33, Taipei, Taiwan, 1995.

[KGGK94] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to Parallel Computing:

Algorithm Design and Analysis. Benjamin Cummings/ Addison Wesley, Redwod City, 1994.

[MTV95] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering frequent episodes in sequences. In Proc. of

the First Int’l Conference on Knowledge Discovery and Data Mining, pages 210–215, Montreal, Quebec,

1995.

[Pro96] IBM Quest Data Mining Project. Quest synthetic data generation code.

http://www.almaden.ibm.com/cs/quest/syndata.html, 1996.

[PS82] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Prentice-

Hall, Englewood Cliffs, NJ, 1982.

[SA95] R. Srikant and R. Agrawal. Mining generalized association rules. In Proc. of the 21st VLDB Conference,

pages 407–419, Zurich, Switzerland, 1995.

[SA96] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improvements.

In Proc. of the Fifth Int’l Conference on Extending Database Technology, Avignon, France, 1996.

[SAD+93] M. Stonebraker, R. Agrawal, U. Dayal, E. J. Neuhold, and A. Reuter. DBMS research at a crossroads:

The vienna update. In Proc. of the 19th VLDB Conference, pages 688–692, Dublin, Ireland, 1993.

[SON95] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large

databases. In Proc. of the 21st VLDB Conference, pages 432–443, Zurich, Switzerland, 1995.

22

Contents

1 Introduction 1

2 Basic Concepts 2

3 Parallel Algorithms 5

3.1 Count Distribution Algorithm . 5

3.2 Data Distribution Algorithm . 6

3.3 Intelligent Data Distribution Algorithm . 8

3.4 Hybrid Algorithm . 10

4 Performance Analysis 13

5 Experimental Results 16

6 Conclusion 20

List of Figures

1 Apriori Algorithm . 3

2 Subset operation on the root of a candidate hash tree. 4

3 Subset operation on the left most subtree of the root of a candidate hash tree. 4

4 Count Distribution (CD) Algorithm . 5

5 Data Distribution (DD) Algorithm . 7

6 Pseudo Code for Data Movements . 8

7 Intelligent Data Distribution (IDD) Algorithm . 9

8 Subset operation on the root of a candidate hash tree in IDD. 10

9 Hybrid Distribution (HD) Algorithm in 3× 4 Processor Mesh (G = 3, P = 12) 12

10 Comparison of DD and IDD in terms of the average number of distinct leaf node visited per transaction

with 50K transactions per processor and 0.2% minimum support. 16

11 Scaleup result with 100K transactions and 0.25% minimum support. 17

12 Sizeup result with 16 processors and 0.25% minimum support. 18

13 Response time on 16 processors with 50K transactions as the minimum support varies. At each support

level, the total number of candidate item-sets is shown in parenthesis 19

14 Response time on 64 processors with 50K transactions as the minimum support varies. At each support

level, the total number of candidate item-sets is shown in parenthesis 20

15 Response time on 16 processor IBM SP2 with 100K transactions as the minimum support varies from

0.1% to 0.025%. 21

List of Tables

1 Transactions from supermarket. 2

2 Symbols used in the analysis. 13

23

3 Minimum support (%) reachable with different number of processors in our algorithms. 20

4 Processor configuration and number of candidates of the HD algorithm with 64 processors and 0.04%

minimum support for each pass. Note that 64× 1 configuration is the same as the DD algorithm and

1 × 64 is the same as the CD algorithm. The total number of pass was 13 and all passes after 9 had

1× 64 configuration. 20

24

