Scalable Parallel Data Mining for Association
Rules *

Eui-Hong (Sam) Han George Karypis, Vipin Kumar

Department of Computer Science
University of Minnesota
4-192 EECS Bldg., 200 Union St. SE
Minneapolis, MN 55455, USA

{han,karypis,kumar} @cs.umn.edu

Last updated on July 15, 1997 at 10:31am

Abstract

One of theimportant problemsin datamining is discovering association rulesfrom databases of transactionswhere
each transaction consists of a set of items. The most time consuming operation in thisdiscovery processisthe compu-
tation of the frequency of the occurrences of interesting subset of items (called candidates) in the database of transac-
tions. To prune the exponentially large space of candidates, most existing algorithms consider only those candidates
that have a user defined minimum support. Even with the pruning, the task of finding all association rules requires a
lot of computation power and memory. Parallel computers offer a potential solution to the computation requirement
of thistask, provided efficient and scalable parallel agorithms can be designed. Inthis paper, we present two new par-
allel algorithms for mining association rules. The Intelligent Data Distribution algorithm efficiently uses aggregate
memory of the parallel computer by employing intelligent candidate partitioning scheme and uses efficient communi-
cation mechanism to move data among the processors. The Hybrid Distribution algorithm further improves upon the
Intelligent Data Distribution algorithm by dynamically partitioning the candidate set to maintain good load balance.
The experimentd resultsonaCray T3D parallel computer show that the Hybrid Distribution algorithm scaleslinearly,
exploits the aggregate memory better, and can generate more associ ation rules with a single scan of database per pass.

Keywords. Datamining, parallel processing, association rules, load balance, scalability.

*This work was supported by NSF grant ASC-9634719, Army Research Office contract DA/DAAH04-95-1-0538, Cray Research Inc. Fellow-
ship, and IBM partnership award, the content of which does not necessarily reflect the policy of the government, and no official endorsement should
be inferred. Access to computing facilities was provided by AHPCRC, Minnesota Supercomputer Institute, Cray Research Inc., and NSF grant
CDA-9414015. See http://www.cs.umn.edu/~han for other related papers.

1 Introduction

One of the important problems in data mining [SAD93] is discovering association rules from databases of transac-
tions, where each transaction contains a set of items. The most time consuming operation in this discovery process
is the computation of the frequencies of the occurrence of subsets of items, also called candidates, in the database of
transactions. Since usually such transaction-based databases contain alarge number of distinct items, the total number
of candidatesis prohibitively large. Hence, current association rulediscovery techniques[A S94, HS95, SON95, SA95]
try to prune the search space by requiring aminimum level of support for candidates under consideration. Supportisa
measure of the number of occurrences of the candidates in database transactions. Apriori [AS94] is arecent state-of -
the-art algorithm that aggressively prunes the set of potential candidates of size k by using the following observation:
a candidate of size k can meet the minimum level of support only if all of its subsets also meet the minimum level of
support. In the k' iteration, this algorithm computes the occurrences of potential candidates of size k in each of the
transactions. To do this task efficiently, the algorithm maintains all potential candidates of size k in ahash tree. This
algorithm does not require the transactionsto stay in main memory, but requiresthe hash treesto stay in main memory.

Evenwith the highly effective pruning method of Apriori, thetask of finding all association rulescan requirealot of
computation power that isavailable only in parallel computers. Furthermore, the size of the main memory in the serial
computer puts an upper limit on the number of the candidatesthat can be considered in any iteration without requiring
multiple scans of the data. Thiseffectively putsalower bound on the minimum level of support imposed on candidates
under consideration. Parallel computers also offer increased memory to solve this problem.

Two parallel algorithms, Count Distribution and Data Distribution were proposed in [AS96]. The Count Distribu-
tion algorithm scales linearly and has excellent speedup and sizeup behavior with respect to the number of transac-
tions[AS96]. However, this algorithm works only when the entire hash tree in each pass of the algorithm fits into the
main memory of single processor of the parallel computers. Hence, the Count Distribution algorithm, likeits sequential
counterpart Apriori, is unscalable with respect to the increasing size of candidate set. The Data Distribution algorithm
addresses the memory problem of the Count Distribution algorithm by partitioning the candidate set and assigning a
partition to each processor in the system. However, this algorithm suffers from three types of inefficiency. First, the
algorithm resultsin high communication overhead due to datamovement. Second, the schedulefor interactionsamong
processorsis such that it can cause processorsto idle. Third, each transaction has to visit multiple hash trees causing
redundant computation.

In this paper, we present two parallel algorithmsfor mining association rules. We first present Intelligent Data Dis-
tribution algorithm that improves upon the Data Distribution algorithm by minimizing communicationand idling over-
head, and by eliminating redundant computation. The Hybrid Distribution algorithm further improves upon the Intel-
ligent Data Distribution algorithm by dynamically grouping processors and partitioning the candidate set accordingly
to maintain good load balance. The experimental results on a Cray T3D parallel computer show that the Hybrid Dis-
tribution algorithm scales linearly, exploits the aggregate memory efficiently, and can generate more association rules
with a single scan of database per pass.

The rest of this paper is organized as follows. Section 2 provides an overview of the serial algorithm for mining
association rules. Section 3 describes existing and proposed parallel algorithms. Section 4 presents the performance
analysis of thealgorithms. Experimental results are shown in Section 5. Section 6 containsconclusions. A preliminary
version of this paper appeared in [HKK97].

Items

Bread, Coke, Milk

Beer, Bread

Beer, Coke, Diaper, Milk
Beer, Bread, Diaper, Milk
Coke, Diaper, Milk

m.booNH:'
O

Table 1: Transactions from supermarket.
2 Basic Concepts

Let T be the set of transactions where each transaction is a subset of the item-set |. Let C be a subset of |, then we
define the support count of C with respectto T to be:

o(C)=|{tlt e T,C C t}].

Thuso (C) isthe number of transactionsthat contain C. For example, consider a set of transactions from supermarket
asshownin Table 1. Theitemsset | for these transactionsis {Bread, Beer, Coke, Diaper, Milk}. The support count
of {Diaper, Milk} iso (Diaper, Milk) = 3, whereaso (Diaper, Milk, Beer) = 2.

An association rule is an expression of the form X =% Y, where X € | and Y < I. The support s of the rule
X =% Y isdefined as o (X U Y)/|T|, and the confidence « is defined as o (X U Y) /o (X). For example, consider
arule {Diaper, Milk} = {Beer}, i.e. presence of diaper and milk in a transaction tends to indicate the presence of
beer in the transaction. The support of thisruleis o (Diaper, Milk, Beer)/5 = 40%. The confidence of thisruleis
o(Diaper, Milk, Beer)/o (Diaper, Milk) = 66%. A rulethat has a very high confidence (i.e., closeto 1.0) is often
very important, because it provides an accurate prediction on the association of the itemsin the rule. The support of a
ruleis aso important, sinceit indicates how frequent theruleisin the transactions. Rulesthat have very small support
are often uninteresting, since they do not describe significantly large populations. Thisis one of the reasons why most
algorithms [AS94, HS95, SON95] disregard any rules that do not satisfy the minimum support condition specified by
theuser. Thisfiltering dueto the minimum required supportisalso critical in reducing the number of derived association
rules to a manageable size. Note that the total number of possible rulesis proportional to the number of subsets of the
item-set |, whichis 2!'l. Hence the filtering is absolutely necessary in most practical settings.

The task of discovering an association ruleisto find all rules X =% Y, such that s is greater than a given mini-
mum support threshold and « is greater than a given minimum confidence threshold. The association rule discovery
is composed of two steps. Thefirst step isto discover all the frequent item-sets (candidate sets that have more support
than the minimum support threshold specified). The second step is to generate association rules from these frequent
item-sets. The computation of finding the frequent item-sets is much more expensive than finding the rules from these
frequent item-sets. Hence in this paper, we only focuson thefirst step. The parallel implementation of the second step
is straightforward and is discussed in [AS96].

A number of algorithmshave been devel oped for discovering frequent item-sets[Al1S93, AS94, HS95]. Our parallel
algorithms are based on the Apriori algorithm [AS94] that has smaller computational complexity compared to other
algorithms. In therest of this section, we briefly describe the Apriori algorithm. The reader should refer to [AS94] for
further details.

Thehigh level structure of the Apriori algorithmisgivenin Figure 1. The Apriori algorithm consists of a number of

. F1 = { frequent 1-item-sets} ;

Cfor (k=2 Feer # ¢ k+) {

Cy = apriori_gen(F¢_1)

for al transactionst € T {
subset(Cy, t)

}

F« = {c e C« | c.count > minsup}

COENODUIAWN P

>~

nswer = Fx

Figure 1: Apriori Algorithm

passes. Initialy F; containsall theitems (i.e., item set of size one) that satisfy the minimum support requirement. Dur-
ing pass k, the algorithm finds the set of frequent item-sets Fy of sizek that satisfy the minimum support requirement.
The algorithm terminates when Fy is empty. In each pass, the algorithm first generates Cy, the candidate item-sets of
sizek. Function apriori_gen(Fy-1) constructs Cy by extending frequent item-sets of sizek — 1. Thisensuresthat all the
subsets of sizek — 1 of anew candidateitem-set arein F¢_;. Oncethe candidate item-sets are found, their frequencies
are computed by counting how many transactions contain these candidate item-sets. Finally, Fy is generated by prun-
ing Cy to eliminate item-sets with frequencies smaller than the minimum support. The union of the frequent item-sets,
| Fx, isthe frequent item-sets from which we generate association rules.

Computing the counts of the candidate item-sets is the most computationally expensive step of the algorithm. One
naive way to compute these counts is to perform string-matching of each transaction against each candidate item-
set. A faster way of performing this operation is to use a candidate hash tree in which the candidate item-sets are
hashed [AS94]. Here we explain this via an example to facilitate the discussions of parallel agorithmsand their anal-
ysSis.

Figure 2 shows one example of the candidate hash tree with candidates of size 3. The internal nodes of the hash
tree have hash tables that contain links to child nodes. The leaf nodes contain the candidate item-sets. A hash tree of
candidate item-sets is constructed as follows. Initially, the hash tree contains only a root node, which is a leaf node
containing no candidate item-set. When each candidate item-set is generated, the items in the set are stored in sorted
order. Each candidate item-set is inserted into the hash tree by hashing each successive item at the internal nodes and
then following the links in the hash table. Once a le&f is reached, the candidate item-set is inserted at the lesf if the
total number of candidate item-sets are less than the maximum allowed. If the total number of candidate item-sets at
theleaf exceedsthe maximum allowed and the depth of the leaf islessthank, the leaf nodeis converted into aninternal
node and child nodes are created for the new internal node. The candidate item-sets are distributed to the child nodes
according to the hash values of the items. For example, the candidate item set {1 2 4} isinserted by hashing item 1 at
theroot to reach the | eft child node of the root, hashing item 2 at that node to reach the middle child node, hashing item
3 to reach the left child node which isaleaf node.

The subset function traverses the hash tree from the root with every item in atransaction as a possible starting item
of acandidate. Inthenext level of thetree, all theitemsof thetransaction following the starting item are hashed. Thisis
donerecursively until aleaf isreached. Atthistime, al the candidatesat the leaf are checked against thetransaction and
their counts are updated accordingly. Figure 2 shows the subset operation at the first level of the tree with transaction
{12356}. Theitem 1 is hashed to the |eft child node of the root and the following transaction {2 3 5 6} is applied

Hash Function

3,6,9

Transaction e
e 356

! N / /
Candidate Hash Tree / / K
! / /
1 / /
! / /
y y
234
567
145 (136 [345] [356] [367
357 |368
689
124| |125| [159]

457| |458

Figure 2: Subset operation on the root of a candidate hash tree.

1+ 2358

Transaction -7
/ 2+

|345] 367
357 [368
689

[136]

124| [125| |159]
457| |4s8

Figure 3: Subset operation on the left most subtree of the root of a candidate hash tree.

Proc 0 Proc 1 Proc 2 Proc 3

Data Data Data Data
N/P N/P N/P N/P
Count Count Count Count
Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree
{1, 2} 2 {1,2} 7 {1,2} 0 {1, 2} 3
{13 | 5 {13 | 3 {13 | 2| {13} | 4]
{2, 3} 3 {2,3} 1 {2,3} 8 {2, 3} 6
M M M M
{24 | 7 {24 |1 {24 | 2 {24 | 7
{34 | 6 {34 | 3 {34 | 6 {34 | 2
{4, 5} 2 {4, 5} 9 {4, 5} 6 {4, 5} 0
ASANE _ - <~ _ ~ ~~_ 7 7

N: number of dataitems

M: size of candidate set

P: number of processors

Figure 4: Count Distribution (CD) Algorithm

recursively to the left child node. Theitem 2 is hashed to the middle child node of the root and the whole transaction
is checked against two candidate item-sets in the middle child node. Then item 3 is hashed to the right child node of
the root and the following transaction {5 6} is applied recursively to the right child node. Figure 3 shows the subset
operation on theleft child node of theroot. Heretheitems 2 and 5 are hashed to the middl e child node and thefollowing
transactions {3 5 6} and {6} respectively are applied recursively to the middle child node. Theitem 3 is hashed to the
right child node and the remaining transaction {5 6} is applied recursively to the right child node.

3 Parallel Algorithms

In this section, we will focus on the parall€elization of the task that finds all frequent item-sets. We first discuss two
parallel agorithms proposed in [AS96] to help motivate our parallel formulations. In all our discussions, we assume
that the transactions are evenly distributed among the processors.

3.1 Count Distribution Algorithm

In the Count Distribution (CD) algorithm proposed in [AS96], each processor computes how many times all the candi-

dates appear in the locally stored transactions. Thisis done by building the entire hash tree that correspondsto all the
candidatesand then performing asingle passover thelocally stored transactionsto collect the counts. The global counts
of the candidatesare computed by summing theseindividual countsusing aglobal reduction operation[KGGK94]. This
algorithmisillustrated in Figure 4. Notethat since each processor needsto build ahash treefor all the candidates, these

hash trees are identical at each processor. Thus, excluding the global reduction, each processor in the CD agorithm

executes the serial Apriori algorithm on the locally stored transactions.

Thisalgorithm has been shown to scalelinearly with the number of transactions[AS96]. Thisisbecauseeach proces-
sor can compute the counts independently of the other processors and needs to communicate with the other processors
only once at the end of the computation step. However, this algorithm works well only when the hash trees can fit into
the main memory of each processor. If the number of candidatesis large, then the hash tree does not fit into the main
memory. In this case, this algorithm has to partition the hash tree and compute the counts by scanning the database
multiple times, oncefor each partition of the hash tree. Note that the number of candidatesincreasesif either the num-
ber of distinct itemsin the database increases or if the minimum support level of the association rules decreases. Thus
the CD agorithm is effective for small number of distinct items and a high minimum support level.

3.2 Data Distribution Algorithm

The Data Distribution (DD) algorithm [AS96] addresses the memory problem of the CD agorithm by partitioning the
candidate item-sets among the processors. This partitioning is done in a round robin fashion. Each processor is re-
sponsible for computing the counts of its locally stored subset of the candidate item-sets for all the transactionsin the
database. In order to do that, each processor needsto scan the portions of the transactions assigned to the other proces-
sorsaswell asitslocally stored portion of the transactions. In the DD algorithm, thisis done by having each processor
receive the portions of the transactions stored in the other processors as follows. Each processor alocates P buffers
(each one pagelong and onefor each processor). At processor Py, thei t" buffer is used to storetransactionsfromthelo-
cally stored database and the remaining buffersare used to store transactionsfrom the other processors, such that buffer
j storestransactions from processor P;. Now each processor P; checksthe P buffersto see which one contains data.
Let k bethisbuffer (tiesarebrokenin favor of buffersof other processorsand tiesamong buffersof other processorsare
broken arbitrarily). The processor processes the transactionsin this buffer and updates the counts of its own candidate
subset. If this buffer correspondsto the buffer that storeslocal transactions (i.e., k = i), then it is sent to all the other
processors (via asynchronous sends), and a new page is read from the local database. If this buffer correspondsto a
buffer that storestransactionsfrom another processor (i.e., k # i), thenitiscleared and an asynchronousreceiverequest
isissued to processor Py. Thiscontinuesuntil every processor has processed all the transactions. Having computed the
counts of its candidate item-sets, each processor finds the frequent item-sets from its candidate item-set and these fre-
guent item-sets are sent to every other processor using an all-to-all broadcast operation [KGGK 94]. Figure5 showsthe
high level operations of the algorithm. Note that each processor has a different set of candidatesin the candidate hash
tree.

This algorithm exploits the total available memory better than CD, asit partitions the candidate set among proces-
sors. As the number of processors increases, the number of candidates that the algorithm can handle also increases.
However, as reported in [AS96], the performance of this algorithm is significantly worse than the CD agorithm. The
run time of thisalgorithmis 10 to 20 times more than that of the CD algorithm on 16 processors[AS96]. The problem
lies with the communication pattern of the algorithm and the redundant work that is performed in processing all the
transactions.

The communication pattern of this algorithm causes three problems. First, during each pass of the algorithm each
processor sends to all the other processors the portion of the database that resides locally. In particular, each processor
reads the locally stored portion of the database one page at a time and sends it to all the other processors by issuing
P — 1 send operations. Similarly, each processor issues a receive operation from each other processor in order to re-
ceive these pages. If the interconnection network of the underlying parallel computer is fully connected (i.e., there
isadirect link between all pairs of processors) and each processor can receive data on all incoming links simultane-

Proc 0 Proc 1 Proc 2 Proc 3

Data
< =

Broadcast

Loca Data Remote Data Local Data Remote Data Loca Data Remote Data Local Data Remote Data

fffff | L | L | L |

! | | | | | | |

| | | | | | | |
| | | |

N/P w .| Daa |N/P ‘ .| Data|N/P ‘ .| paa |N/P ‘ |

| | - - - = | I < | [| |

} : Broadcast : : Broadcast : : Broadcast : :

| | 1 | 1 | 1 1

Count Count Count Count Count Count Count Cour

Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree

{1,2} 3 {1, 3} 9 {1, 4} 5 {2,3} 4

Data
=< =

Broadcast

MIP | {2,5} | 7 MIP | {34 | 2 MIP | {35 |1 M/P | {4,5} | 6
{4,6} | 5 {47 |3 {56 | 2 5% | 7
AN 7 ASE - ~ T
_ All-to-all Broadcast
N: number of dataitems S o -7

M: size of candidate set Se - ____ -

P: number of processors

Figure 5: Data Distribution (DD) Algorithm

oudly, then this communi cation pattern will lead to avery good performance. In particular, if O(N/P) isthesize of the
database assigned locally to each processor, the amount of time spent in the communication will be O(N). However,
on al realigtic parallel computers, the processors are connected via a sparser networks (such as 2D, 3D or hypercube)
and a processor can receive data from (or send data to) only one other processor at atime. On such machines, this
communication pattern will take significantly morethan O(N) time because of contention.

Second, with finite number of communication buffers in each processor, the proposed all-to-all communication
scheme causes processors to idle. For instance, consider the case when one processor finishes its operation on local
data and sends the buffer to al other processors. Now if the communication buffer of any receiving processorsisfull,
the send operation is blocked.

Third, if welook at the size of the candidate sets as a function of the number of passes of the algorithm, we see that
in the first few passes, the size of the candidate sets increases and after that it decreases. In particular, during the last
several passes of the algorithm, there are only a small number of itemsin the candidate sets. However, each processor
inthe DD algorithm still sendsthelocally stored portions of the database to all the other processors. Thus, even though
the computation decreases, the amount of communication remains the same.

The redundant work is introduced due to the fact that every processor has to process every single transaction in the
database. In CD (seeFigure4), only N/ P transactions go through each hash tree of M candidates, whereasin DD (see
Figureb), all N transactionshaveto go through each hash treeof M /P candidates. Although, the number of candidates
stored at each processor has been reduced by afactor of P, the amount of computation performed for each transaction
has not been proportionally reduced. If the amount of work required for each transaction to be checked against the hash
tree of M/P candidatesis 1/P of that of the hash tree of M candidates, then there is no extrawork. As discussed in
Section 4, in general, the amount of work per transaction will go down by afactor much smaller than P.

while (Idone) {
FillBuffer(fd, SBuf);
for (k=0; k < P-1; ++k) {
/* send/receive data in non-blocking pipeline */
MPI _Irecv(RBUf, |eft);
MPI _Isend(SBuf, right);

/* process transactionsin SBuf and update hash tree */
Subset(HTree, SBuf);

MPI_Waitall();

[* swap two buffers*/

tmp = SBuf;

SBuf = RBUf;

RBuf = tmp;
}
[* processtransactions in SBuf and update hash tree */
Subset(HTree, SBuf);

}

Figure 6: Pseudo Code for Data Movements
3.3 Intelligent Data Distribution Algorithm

We devel opedthe Intelligent Data Distribution (IDD) a gorithm that solvesthe problemsof the DD al gorithm discussed
in Section 3.2. In IDD, the locally stored portions of the database are sent to all the other processors by using aring-
based all-to-all broadcast described in [K GGK 94]. This operation does not suffer from the contention problems of the
DD agorithm and it takes O(N) time on any parallel architecture that can be embedded in aring. Figure 6 shows the
pseudo code for this data movement operation. In our algorithm, the processorsform alogical ring and each processor
determinesits right and left neighboring processors. Each processor has one send buffer (SBuf) and one receive buffer
(RBuf). Initially, the SBuf isfilled with one block of local data. Then each processor initiates an asynchronous send
operation to the right neighboring processor with SBuf and an asynchronous receive operation to the left neighboring
processor with RBuf. While these asynchronous operations are proceeding, each processor processes the transactions
in SBuf and collects the counts of the candidates assigned to the processor. After this operation, each processor waits
until these asynchronousoperations complete. Then the roles of SBuf and RBuf are switched and the above operations
continuefor P — 1 times. Compared to DD, where all the processors send datato all other processors, we performonly
a point-to-point communication between neighbors, thus eliminating any communication contention. Furthermore, if
the time to process a buffer does not vary much, then thereislittletimelost in idling.

In order to eliminate the redundant work dueto the partitioning of the candidate item-sets, we must find afast way to
check whether agiven transaction can potentially contain any of the candidates stored at each processor. Thiscannot be
doneby partitioning Cy in around-robinfashion. However, if we partition C, among processorsin such away that each
processor getsitem-sets that begin only with asubset of al possibleitems, then we can check theitems of atransaction
against this subset to determineif the hash tree contains candidates starting with these items. We traverse the hash tree
with only the items in the transaction that belong to this subset. Thus, we solve the redundant work problem of DD by

Proc O Proc 1 Proc 2 Proc 3

Local Data Remote Data Local Data Remote Data Local Data Remote Data Loca Data Remote Data
r A o r
| | | | | | | |
|
Data | N/P 1 .| Data |N/P ! | | Data | N/P) 1 | | Data |N/P 1 |
-— - | | === | I | T | |
Shift ! ! Shift | ! Shift ! ! Shift ! !
| | 1 | 1 | 1 1
Coun Count Coun Count| Coun Count Coun Count

Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree Candidate Hash Tree

{12 {23 | 2 {4 5} {3.4

mp | (L3} | 6 mp | 129 | 6 mp | {46 | 6 mp | 139

{8 | 9 {56 |9 {47 |9 {6, 7}

= Z =

/
\!
/|
\
/

\

N: number of dataitems T -7

M: size of candidate set

P: number of processors

Figure 7: Intelligent Data Distribution (IDD) Algorithm

the intelligent partitioning of C.

Figure 7 shows the high level picture of the algorithm. In this example, Processor 0 has all the candidates starting
with items 1 and 7, Processor 1 has al the candidates starting with 2 and 5, and so on. Each processor keeps the first
items of the candidates it has in a bit-map. In the Apriori algorithm, at the root level of hash tree, every itemin a
transaction is hashed and checked against the hash tree. However, in our algorithm, at the root level, each processor
filters every item of the transaction by checking against the bit-map to seeif the processor contains candidates starting
with that item of the transaction. If the processor does not contain the candidates starting with that item, the processing
steps involved with that item as the first item in the candidate can be skipped. This reduces the amount of transaction
data that has to go through the hash tree; thus, reducing the computation. For example, let {123456 7 8} bea
transaction that processor 0 is processing in the subset function discussed in Section 2. At the top level of the hash
tree, processor 0 will only proceed with items1and 7 (i.e, 1+ 23456 7 8 and 7 + 8). When the page containing
this transaction is shifted to processor 1, this processor will only processitems starting with2 and5(i.e,2+ 3456
78and5 + 67 8). Figure 8 shows how this scheme works when a processor contains only those candidate item-sets
that start with 1, 3 and 5. Thus for each transaction in the database, our approach partitions the amount of work to be
performed among processors, thus eliminating any redundant work. Note that both the judicious partitioning of the
hash tree (indirectly caused by the partitioning of candidate item-set) and the filtering step are required to eliminate
this redundant work.

Theintelligent partitioning of the candidate set used in IDD requires our algorithm to have a good load balancing.
One of the criteria of a good partitioning involved here is to have an equal number of candidatesin all the processors.
This givesabout the same size hash treein al the processors and thus provides good |oad balancing among processors.
Note that in the DD algorithm, this was accomplished by distributing candidates in a round robin fashion. A naive

Transaction bitmap L7 24 Skipped!!

145 (136 [345]| |356][367
357|368

(124] |125] |159]

Figure 8: Subset operation on the root of a candidate hash tree in IDD.

method for assigning candidatesto processorscan lead to asignificant load imbal ance. For instance, consider adatabase
with 100 distinct items numbered from 1 to 100 and that the database transactions have more dataitems numbered with
1to 50. If we partition the candidates between two processorsand assign al the candidates starting with items 1 to 50 to
processor Py and candidates starting with items 51 to 100 to processor Py, then there would be more work for processor
Po.

To achieve aload-balanced distribution of the candidate item-sets, we use a partitioning algorithm that is based on
bin-packing [PS82]. For each item, we first compute the number of candidate item-sets starting with this particular
item. Note that at this time we do not actually store the candidate item-sets, but just store the number of candidate
item-sets starting with each item. We then use a bin-packing algorithm to partition these itemsin P buckets such that
the numbers of the candidate item-sets starting with these items in each bucket are equal. To remove any data skew,
our bin-packing algorithm randomly selects the item to be assigned next in abin. Once the location of each candidate
item-set is determined, then each processor locally regenerates and stores candidate item-sets that are assigned to this
processor. Figure 7 showsthe partitioned candidate hash tree and its corresponding bitmapsin each processor. We were
able to achieve less than 5% of load imbalance with the bin packing method described here.

3.4 Hybrid Algorithm

The IDD agorithm exploitsthe total system memory by partitioning the candidate set among all processors. The av-
erage number of candidates assigned to each processor is M /P, where M is the number of total candidates. As more
processors are used, the number of candidates assigned to each processor decreases. This hastwo implications. First,
with fewer number of candidates per processor, it is much more difficult to balance the work. Second, the smaller
number of candidates gives a smaller hash tree and less computation work per transaction. Eventually the amount of

10

computation may become |ess than the communication involved. Thiswould be more evident in the later passes of the
algorithm as the hash tree size further decreases dramatically. Thisreducesoveral efficiency of the parallel algorithm.
Thiswill be an even more serious problem in a system that cannot perform asynchronous communication.

TheHybrid Distribution (HD) algorithm addresses the above problem by combiningthe CD and the|DD agorithms
in the following way. Consider a P-processor system in which the processors are split into G equal size groups, each
containing P/ G processors. Inthe HD agorithm, we execute the CD algorithm asif therewere only P/ G processors.
That is, we partition the transactions of the databaseinto P/ G partseach of size N/(P/G), and assign the task of com-
puting the counts of the candidate set Cy for each subset of the transactionsto each one of these groups of processors.
Within each group, these counts are computed using the IDD algorithm. That is, the transactions and the candidate set
Cx are partitioned among the processors of each group, so that each processor getsroughly |Cx|/ G candidate item-sets
and N/P transactions. Now, each group of processors computes the counts using the IDD algorithm, and the overall
counts are computing by performing a reduction operation among the P/ G groups of processors.

The HD agorithm can be better visualized if we think of the processorsas being arrangedin atwo dimensional grid
of G rowsand P/G columns. The transactions are partitioned equally among the P processors. The candidate set Cy
is partitioned among the processors of each column of this grid. This partitioning of Cy isidentical for each column
of processors; i.e., the processors along each row of the grid get the same subset of Cy. Figure 9 illustrates the HD
algorithm for a3 x 4 grid of processors. In this example, the HD algorithm executesthe CD algorithm asif there were
only 4 processors, where the 4 processors correspond to the 4 processor columns. That is, the database transactions
are partitioned in 4 parts, and each one of these 4 hypothetical processors computes the local counts of all the can-
didate item-sets. Then the global counts can be computed by performing the global reduction operation discussed in
Section 3.1. However, since each one of these hypothetical processorsis made up of 3 processors, the computation of
local counts of the candidate item-sets in a hypothetical processor requires the computation of the counts of the can-
didate item-sets on the database transactions sitting on the 3 processors. This operation is performed by executing the
IDD algorithm within each of 4 hypothetical processors. Thisisshowninthestep 1 of Figure 9. Notethat processorsin
the same row have exactly the same candidates, and candidate sets along the each column partition the total candidate
set. At theend of thisoperation, each processor has complete count of itslocal candidatesfor all thetransactionslocated
in the processors of the same column (i.e., of ahypothetical processor). Now areduction operation is performed along
the rows such that all processors in each row have the sum of the counts for the candidates in the same row. At this
point, the count associated with each candidate item-set correspondsto the entire database of transactions. Now each
processor finds frequent item-sets by dropping all those candidate item-sets whose frequency is less than the threshold
for minimum support. These candidate item-sets are shown as shaded in Figure 9(b). In the next step, each processor
performsall-to-all broadcast operation along the columns of the processor mesh. At this point, all the processors have
the frequent sets and are ready to proceed to the next pass.

The HD algorithm determines the configuration of the processor grid dynamically. In particular, the HD algorithm
partitions the candidate set into a big enough section and assign a group of processors to each partition. Let m be the
number of candidate item-sets such that each processor can hold the hash tree constructed from m candidate item-sets
in memory. If thetotal number of candidates M islessthan m, then the HD algorithm makes G equal to 1, which means
that the CD algorithmisrun on all the processors. Otherwise G issetto [M/m].

TheHD algorithminheritsall the good features of the IDD algorithm. It also providesgood load balance and enough
computation work by maintai ning minimum number of candidates per processor. At the sametime, the amount of data
movement in this algorithm has been cut down to 1/ G of the IDD.

11

Step 1: Partitioning of Candidate Sets and Data Movement Along the Columns

,
Y

\

Candidate Hash Tree
1,21
45| 0
7,8| 3

\
\
\
\
|

V Data Shift

Candidate Hash Tree
2,33
56| 1
89| 2

Data Shift

V' Data Shift

Candidate Hash Tree

34| 0

6,7 2

6,8 3
|

,
Y

N
N

Candidate Hash Tree
1,2| 0
45| 1
7,8| 2

\
\
\
\
I

Y Data Shift

Candidate Hash Tree
2,30
56| 1
89| 2

V Data Shift

Candidate Hash Tree
34| 1
6,7 4
6,8 0

Data Shift

,
Y

Candidate Hash Tree
1,2| 2
4,5 3
78| 1

Y Data Shift

Candidate Hash Tree
230
56| 0
89| 2

V Data Shift

Candidate Hash Tree
34| 0
6,71
6,8 1

Data Shift

Candidate Hash Tree
1,2| 0
4,5 2
7,8 3

V Data Shift

Candidate Hash Tree
23| 1
56| 1
89| 2

V Data Shift

Candidate Hash Tree
34| 1
6,7
6,8

|
\
' Data Shift
|
‘

Candidate Hash Tree
1,2| 3
45| 6
7,819

Candidate Hash Tree
23| 4
56
8,9

Candidate Hash Tree
34| 2
67| 7
6,8 5

Candidate Hash Tree
1,2|3
4,5
7.8

Candidate Hash Tree
23| 4
56
8,9

Candidate Hash Tree
34| 2
67| 7
6,8 5

Step 3: All-to-all Broadcast Operation Along the Columns

Frequent Item Set

7,8
8,9

Frequent Item Set

7,8
8,9

Frequent Item Set

7,8
8,9

Figure 9: Hybrid Distribution (HD) Algorithm in 3 x 4 Processor Mesh (G = 3, P

’

Freguent Item Set

7,8
8,9

Frequent Item Set

7,8
8,9

Frequent Item Set

7,8
8,9

Candidate Hash Tree
1,2| 3
45| 6
7,89

Candidate Hash Tree
23| 4
56
8,9

Candidate Hash Tree
34| 2
67| 7
6,8 5

Frequent Item Set

7,8
8,9

Frequent Item Set

7,8
8,9

Frequent Item Set

7,8
8,9

12

Candidate Hash Tree
1,2| 3
4,5| 6
7,89

v

Candidate Hash Tree
23| 4
56| 3
89| 8

Candidate Hash Tree
34| 2
67| 7
6,8 5

Frequent Item Set

7,8
8,9

Frequent Item Set

7,8
8,9

Frequent Item Set

7,8
8,9

12)

symbol | definition
Total number of transactions
Number of processors
Total number of candidates
Number of partitions of candidatesin the HD algorithm
Pass number in Apriori algorithm
Average number of itemsin atransaction
Average number of potential candidatesin atransaction
Average number of candidates at the leaf node
Average number of leavesin the hash tree for the serial Apriori algorithm
tiravers | Cost of hash tree traversal per potential candidate
teheck Cost of checking at the leaf with S candidates
Vi Expected number of leavesvisited with i potential candidatesand j leaves

—lwno -0z 2

Table 2: Symbols used in the analysis.

4 Performance Analysis

In this section, we analyze the amount of work done by each algorithm. Throughout the analysis, we ignore the cost of
communication. Table 2 describes the symbols used in this section.
Asdiscussed in Section 2, the bulk of the computation is performed by the subset function. Consider a transaction

I
that has | items. During the k™" pass of the algorithm, this transaction has C = (" potential candidates that need

to be checked against the candidate hash tree. Note that for a given transaction, if one potential candidate visits aleaf
node, then all the candidates of this transaction are checked against the leaf node. As aresult, if thisnodeisrevisited
dueto adifferent candidate from the same transaction, no checking is performed. Clearly the total cost of checking at
the leaf nodesis directly proportional to the number of distinct leaf nodes visited with the transaction. We assume that
the average number of candidateitem-sets at the leaf nodesis S. Hence the average number of leaf nodesin ahash tree
isL = M/S. Intheimplementation of the algorithm, the desired value of S can be obtained by adjusting the branching
factor of the hash tree. In general, the cost of traversal for each potential candidate will depend on the depth of the leaf
node in the hash tree reached by the traversal. To simplify the analysis, we assume that the cost of each traversal isthe
same. Hence, the total traversal cost if directly proportional to C. For each potential candidate, we define ti; 5,ers to be
the cost associated with the traversal of the hash tree and theck t0 be the cost associated with checking the candidate
item-sets of the reached leaf node.

Note that the number of distinct leaves visited by a transaction is in general smaller than the number of potential
candidatesC. Thisisbecause different potential candidates may lead to the sameleaf node. Ingenerd, if C isrelatively
large with respect to the number of leaf nodes in the hash tree, then the number of distinct leaf nodes visited will be
smaller than C. We can computethe expected number of distinct leaf nodesvisited asfollows. To ssimplify theanalysis,
we assume that each traversal of the hash tree due to a different potential candidateis equally likely to lead to any leaf
node of the hash tree.

Let Vi ; be the expected number of distinct leaf nodes visited when the transaction hasi potential candidates, and
the hash tree has j leaf nodes.

Vij = 1

Vij = Vi_1j x (Prob. of reaching apreviously visited node) + (Vi_1 j + 1) x (Prob. of reaching anew node)

13

Vi i — Vi
— Vi 'jl”+<vi_1,,»+1)’%'“

i —1
= 1+’Tvi,1,,-

- (1)
= ()

RPN
| J.(iJ_l))

Note that for large j, Vi j > i. This can be shown by taking limit on Equation 1:

N
limvi;, = fim1=U-b

oo joee it
ii—-1---3-2j—[i(i—-1---3-2](j -1
(i—-1(0-2---2-1
= ij—i(-1

= 2

This shows that if the hash tree size is much larger than the number of potential candidatesin atransaction, then each
potential candidateislikely to visit adistinct leaf node in the hash tree.

Serial Apriori algorithm Recall that in the seria Apriori algorithm, the average number of leaf nodesin the hash
treeisL = M/S. Hence the number of distinct leaf visited per transaction is V¢ |, and the computation time per
transaction for visiting the hash treeis:

Tirans = C X travers + Vo L X teheck
So the run time of the serial algorithm for processing N transactionsis:
TS — N x Tirans

comp

= N xC X travers + N x Ve L X teheck (3

The CDalgorithm Inthe CD agorithm the entire set of candidatesisreplicated at each processor. Hence the aver-
age number of leaf nodesin thelocal hash tree at each processoris L = M/ S, whichisthe sameasin the serial Apriori
algorithm. Thus the CD algorithm performs the same computation per transactions as the serial algorithm, but each
processor handlesonly N/P number of transactions. Hence the run time of the CD algorithmis:

N
Tc%r%p = E X Ttrans
N N
= E x C X travers + E X VC,L X tcheck (4)

Comparing Equation 4 to Equation 3, we see that CD performs no redundant computation. In particular, both the time
for traversal and for checking scales down by afactor of P.

14

The DD algorithm Inthe DD algorithm, the number of candidates per processor is M/ P, as the candidate set is
partitioned. Hence the average number of leaf nodes in the local hash tree of each processor isL/P. Therefor, the
number of distinct leaf nodes visited per transaction is VC!% , and the computation time per transaction is:

DD
Tirans = C X lravers + VC,% X teheck

The number of transactions processed by each processor is N, as the transactions are shifted around the processors.
Hence, the computation per processor of the DD algorithmiis:

Tclgn?p = Nx TtrDaas
= N x C X tyapers + N x VC’% X teheck (5)

Comparing Equation 5 with the serial complexity (Equation 3), we see that the DD algorithm does not reduce the
computation associated with the hash tree traversal. For both the serial Apriori and the DD agorithm, this cost is
N x C x tiravers. However, the DD agorithmisableto reducethe cost associated with the checking at theleaf nodes. In
particular, it reducesthe serial cost of N x V| X teheck dOwnto N x VC’% X tcheck. HOWeEVET, becausevc’% > Ve.L/P,
the reduction achieved in this part is less than a factor of P. We can easily see thisif we consider the casewhen L is
very large. Inthiscase, VC,% ~ Cand V¢, /P ~ C/P by Equation 2. Thus, the number of leaf nodes checked over all
the processors by the DD algorithmis higher than that of the serial algorithm. Thisiswhy the DD algorithm performs
redundant computation.

The IDD algorithm Inthe DD agorithm, just like the DD a gorithm, the average number of leaf nodesin the local
hash tree of each processor is L /P. However, the average number of potential candidates that need to be checked for
each transaction at each processor is much less than DD, because of the intelligent partitioning of candidates set and
the use of bitmap to prune at the root of the hash tree. More precisely, the number of potential candidatesthat need to
be checked for atransactionisroughly C/P assuming that we have agood balanced partition. So the computation per
transaction is:

TIDD

trans = P X ttravers + V%’ X Tcheck

L
B

Thus the computation per processor is.

TlDD — NXTlDD

comp trans

X Tcheck (6)

c L
PP

C
NxExttravers+NxV

Comparing Equation 6 to Equation 3, we see that the IDD algorithmis successful in reducing the cost associated with
the hash tree traversal linearly. It also reduces the checking cost from N x Ve | X teheck downto N x V%,% X teheck-
Note that for sufficiently large L, Ve ~ C and V%,% ~ C/P. Thisshowsthat IDD isaso ableto linearly reducethe
cost of checking at the leaf nodes, and thus unlike DD, it performsno redundant work. We instrumented our algorithms
to verify that the average number of distinct leaf node visited by IDD isindeed much less than DD. Figure 10 shows
that V%,% of IDD goes down by factor of P, but VC,% of DD does not go down by factor of P. However, P must be
relatively small for IDD to have agood |oad balance. If P becomeslarge with fixed M, the problem of load imbalance
discussed in Section 3 makes some processorswork on morethan 1/ P of itemsin atransaction at the root of the hash

15

80

DD —<—
IDD -

60 [

50 -

40 -

30 -

20 -

10 | |

Average Number of Distinct Leaf Node Visited Per Transaction

0 5 10 15 20 25 30 35
Number of processors

Figure 10: Comparison of DD and /DD in terms of the average number of distinct leaf node visited per transaction with 50K trans-
actions per processor and 0.2% minimum support.

tree.

The HDalgorithm IntheHD agorithm, the number of potential candidates per transactionsis C/ G and the number
of candidates per processor is M/ G. So the computation time per transaction is:

X Tcheck

C
Ttr'alr?s = 6Xttfavef$+v%,

L
G

The total number of transactions each processor hasto processis GN/P. Thusthe computation per processor is:

Gx N
TclgrEp = P X Ttr'alr?s
G x N C G x N
= P X G X liravers + P X V%% X Tcheck (7)

Compared to the seria algorithm, Equation 7 shows that the HD algorithm reduces the computation linearly with
respect to the hash tree traversal cost. Thetraversal cost isreduced from N x C x tirqers downto N x C x “T“ The
cost of checking at the leaf nodesis reduced from N x Ve | X teheck downto (G x N x V%’é X teheck)/ P. Note that
for sufficiently large L, N x Ve ~ NC and G x N x V%’%/P ~ N x C/P. Thus, the HD agorithm has alinear
speedup with respect to the cost of checking at the leaf nodes.

5 Experimental Results

Weimplemented our parallel algorithmson a128-processor Cray T3D parallel computer. Each processor onthe T3D is
a150Mhz Dec Alpha(EV4), and has 64Mbytes of memory. The processors are interconnected via a three dimensional
torus network that hasa peak unidirectional bandwidth of 150Mbytes per second, and asmall latency. For communica-
tion we used the message passing interface (MPI). Our experiments have shown that for 16K byte messages we obtain
a bandwidth of 74Mbytes/seconds and an effective startup time of 150 microseconds.

16

CD —+—
2500 | IDB I
HD -8--
_-"DD %
DD.+ comm. -4
2000 | x i
I
) : .
3 1500 | , T g
[i
2 X “
5 ;
o
© 1000 [: g
; - A
X P
/A
500 |- % a7 g
- o
N o e
Bt & . R —=p
0 Il Il Il Il Il Il
0 20 40 60 80 100 120 140

Number of processors
Figure 11: Scaleup result with 100K transactions and 0.25% minimum support.

We generated a synthetic dataset using atool provided by [Pro96] and described in [AS94]. The parametersfor the
data set chosen are average transaction length of 15 and average size of frequent item sets of 6. Data sets with 1000
transactions (63K B) were generated for different processors. Due to the absence of atrue parallel 1/0 system on the
T3D system, we kept a set of transactions in a main memory buffer and read the transactions from the buffer instead
of the actual disks. For the experimentsinvolving larger data sets, we read the same data set multiple times. We also
performed similar experiments on an IBM SP2 in which the entire database resided on disks. Our experiments (not
reported here) show that the 1/0 requirements do not change the relative performance of the various schemes. We do
present the results of one experiment on 16-processor SP2 for comparing CD to IDD and HD when CD scans database
multiple times due to the partitioned hash tree.

To compare the scalahility of the four schemes (CD, DD, IDD and HD), we performed scaleup tests with 100K
transactions per processor and minimum support of 0.25%. We could not use minimum support smaller than 0.25%
because the CD algorithm ran out of main memory for storing the hash tree. For this experiment, in the HD algorithm
we have set the threshold on the number of candidatesfor switching to the CD algorithm very low to show the validity
of our approach. With 0.25% support, the HD algorithm switched to CD agorithm in pass 7 of total 12 passes and
90.7% of the overall response time of the serial code was spent in the first 6 passes. These scaleup results are shown
in Figure 11.

As noted in [AS96], the DD algorithm scales very poorly. However, the performance achieved by IDD is much
better than that of the DD algorithm. In particular, on 32 processors, IDD is faster than DD by afactor of 4.4. It can
be seen that the performance gap between IDD and DD widens as the number of processorsincreases. IDD performs
better than DD because of the better communication mechanism for data movements and the intelligent partitioning
of the candidate set. To show the effects of these two improvements, we replaced the communication mechanism of
the DD agorithm with that of the IDD. The scaleup result of thisimprovement is shown as“DD+comm” in Figure 11.
Hence the response time reduction from DD to DD+comm is due to the the better communication mechanism for data
movements, and the reduction from DD+comm to IDD is due to the intelligent partitioning of the candidate set.

Notethat the responsetime of IDD increasesaswe increase the number of processors. Thisisdueto theload balanc-

17

3000

count —<—
intelligent data —+-
- hybrid -8--

2500 | i
2000 |- .

1500

Response time (sec.)

1000

500

0 Il Il Il Il
0 200 400 600 800 1000
Number of transactions per processor (K)

Figure 12: Sizeup result with 16 processors and 0.25% minimum support.

ing problem discussed in Section 3, wherethe number of candidates per processor decreasesasthe number of processors
increases. Looking at the performance of the HD algorithm, we see that response time remains almost constant as we
increase the number of processors while keeping the number of transactions per processor and the minimum support
fixed. Comparing against CD, we see that HD actually performsbetter as the number of processorsincreases. Its per-
formance on 128 processorsis 9.5% better than CD. This performance advantage of HD over CD isdueto the smaller
cost of reduction in HD, because the number of processorsinvolved in global reduction operation of counts is much
lessin HD thanin CD.

We measured how our algorithmsperform asweincreasethe number of transactionsper processor from50K (3.2MB)
to 800K (50.4MB). For these experiments, we fixed the number of processorsat 16 and the minimum support at 0.25%.
Theseresultsare shownin Figure 12. Fromthisfigure, we can seethat CD and HD perform almost identically. For both
algorithms, the response time increases linearly with the number of transactions. IDD also scales linearly, but because
of itsload imbalance problem, its performance is somewhat worse.

Our experiments so far have shown that the performance of HD and CD are quite comparable if the entire hash
tree can reside on each processor. However, the real advantage of HD (and IDD) over CD is that they do not require
the whole hash tree to reside on each processor, and thus better exploit the available memory. This allows usto use a
smaller minimum support in the Apriori algorithm.

To verify this, we performed experiments in which we fixed the number of transactions per processor to 50K and
successively decreased the minimum supportlevel. These experimentsfor 16 and 64 processorsare shownin Figures13
and 14 respectively. A couple of interesting observations can be made from these results. First, both IDD and HD
successfully ran using lower support levelsthat CD could not runwith. Inparticular, IDD and HD ran down to asupport
level of 0.06% on 16 processors and 0.04% on 64 processors. |n contrast, CD could only run down to a support level
of 0.25% and ran out of memory for the lower supports. The support level for IDD and HD becomes smaller with the
increasing number of processors, because the IDD and HD algorithms can exploit the aggregate memory of the larger
number of processors.

The second thing to noticeisthat HD performsbetter than | DD both on 16 and 64 processors, and therel ative perfor-

18

600 CD —<—]
IDD -
HD -8--

simple hybrid -x

500 - 1

400 | -
+
// X
// =

300 | / /(2408 K) i

7 8

(1083 K)

Response time (sec.)

200
,/"k/

100 |- (345 K) e

(211 K)

0 Il Il Il Il
0.5 0.25 0.1 0.06
Minimum support (%)

Figure 13: Response time on 16 processors with 50K transactions as the minimum support varies. At each support level, the total
number of candidate item-sets is shown in parenthesis

mance of HD comparedto I DD get better asthe number of processorsincreases. Asdiscussed earlier, thisperformance
differenceis dueto the load imbalance. Asthe number of processorsincreases, this|load imbalance gets worse. How-
ever, on 16 processors, IDD is 37% worse than HD for support level 0.25%, but only 18% worse for support of 0.06%.
Thisis because as the support level decreases, the number of candidates (shown in parenthesisin Figures 13 and 14)
increases which improvesthe load balance.

Figures 13 and 14 aso show the performance of a smple hybrid algorithm obtained by combining CD and IDD.
In this scheme, in each pass of the Apriori algorithm, we perform CD if the hash table can fit in the memory of each
processorsor IDD if it can not. Aswe can seefrom these results, thissimple hybrid algorithm performsworsethan HD.
In particular, therelative performance of this scheme comparedto HD getsworse asthe number of processorsincreases.
For example, for asupport level of 0.06%, it is 6% worse on 16 processorsand 17% worse on 64 processors. Thusthe
HD algorithm achieves better performance by gradually adjusting the subsets of processorsthat perform IDD and CD.
Thisis because of the following two reasons. First, the candidate set is split among fewer number of processorswhich
minimizes load imbalance and second, the reduction operation to obtain the countsin CD is performed among fewer
processors, which decreases the communication overhead.

Note that an alternative method to handlelarge candidate set in CD isto partition them such that each partition fitsin
the main memory. Now the entire set of local transactionshaveto be read at each processor as many time as the number
of partitions. This method increasesthe 1/O cost. On the system in which 1/O isscalable and fast (e.g., IBM SP2), this
cost may be acceptable. We implemented the CD algorithm to partition the hash tree and read database multiple times
in case the hash tree does not fit into main memory. Figure 15 shows the performance comparison of CD, IDD and HD
on 16-processor IBM SP2 machine as the number of candidates increases by lowering minimum support. Unlike the
earlier experimentson Cray T3D machine, the whole transactions were read in from the file. Figure 15 shows that as
the number of candidates increases both IDD and HD outperform CD. Thisis due to the increased 1/0 time required
for multiple scan of the database and increased communication time required for global reduction operation of multiple
partitions of the candidate frequencies. Note that even on IBM SP2, the penalty dueto higher 1/0 cost is about 8% for
1 million candidates, 11% for 3 million candidates and 25% for 11 million candidates. The 1/O penalty increases asthe

19

T
CD —+—
IDD —+-
1200) HD -&-- |
simple hybrid -x
1000 | + E
n /
3 800 e]
[}
£
2 X
5 600 [i
§ 9(5232 K)
A X/
400 | cod 1
X (2408 K)
200 | (1083 K) b
+
M K)
0 (211 K) ‘ ‘ L
0.5 0.25 0.1 0.06.04

Minimum subpon (%)

Figure 14: Response time on 64 processors with 50K transactions as the minimum support varies. At each support level, the total
number of candidate item-sets is shown in parenthesis

Number of processors | 1 2 4 8 16 32 64
Successful down to 025| 02 | 015| 01 | 0.06 | 0.04 | 0.03
Ran out of memoryat | 0.2 | 0.15| 0.1 | 0.06 | 0.04 | 0.03 | 0.02

Table 3: Minimum support (%) reachable with different number of processors in our algorithms.

number of candidatesincreases. On systems with slower 1/0O, the penalty can be much larger.

In another experiment, we varied the number of processors from 2 to 64 and measured how low we can go with
minimum support for the IDD and HD algorithms. Table 3 shows the result for these algorithms. The result shows
that as we have more processors, these algorithms can handle lower minimum support. Table 4 shows how the HD
algorithm chose the processor configuration based on the number of candidates at each pass with 64 processors and
0.04% minimum support.

6 Conclusion

In this paper, we proposed two new parallel algorithmsfor mining association rules. The IDD algorithm utilizes total
main memory available more effectively than the CD algorithm. This agorithms improves over the DD agorithm
which has high communication overhead and redundant work. As shown in Section 4, for each transaction the DD

Pass 2 3 4 5 6 7 8 9 10
Configuration | 8 x 8 | 64x 1| 4x16 | 2x32 | 2x32|2x32|2x32|2x32|1x64
No of Cand. 351K | 4348K | 115K 76K 56K 34K 16K 6K 2K

Table 4: Processor configuration and number of candidates of the HD algorithm with 64 processors and 0.04% minimum support
for each pass. Note that 64 x 1 configuration is the same as the DD algorithm and 1 x 64 is the same as the CD algorithm. The
total number of pass was 13 and all passes after 9 had 1 x 64 configuration.

20

HD —<—
1000 |- €D =

IDD -8--

800 - 4

600

Response time (sec.)

400 -

200

0 Il Il Il Il Il
0 2 4 6 8 10 12
Number of Candidates (in millions)

Figure 15: Response time on 16 processor IBM SP2 with 100K transactions as the minimum support varies from 0.1% to 0.025%.

algorithm performs substantially more work overall than the serial Apriori algorithm. The communication and idling
overheadswerereduced using a better datamovement communication mechanism, and redundant work was reduced by
partitioning the candidate set intelligently and using bit mapsto prune away unnecessary computation. Another useful
feature of IDD isthat it iswell suited for the system environment with single source of data base. For instance, when
all the datais coming from adatabase server or asinglefile system, one processor can read data from the single source
and pass the data along the communication pipe line defined in the algorithm. However, as the number of available
processors increases, the efficiency of this algorithm decreases due to load imbalance, unless the amount of work is
increased by having more number of candidates.

TheHD combinesthe advantagesof CD and IDD. Thisalgorithm partitionscandidate setsjust likethe IDD to expl oit
the aggregate main memory, but dynamically determines the number of partitions such that the partitioned candidate
set fits into the main memory of each processor and each processor has enough number of candidatesfor computation.
It also exploits the advantage of CD by just exchanging counts information and moving around the minimum number
of transactions among the smaller subset of processors.

The experimental results on a 128-processor Cray T3D parallel machine show that the HD agorithm scales just as
well asthe CD algorithm with respect to the number of transactions. However, it exploitsthe aggregate main memory
more efficiently and thusis able to discover more association rules with much smaller minimum support with asingle
scan of database per pass. This parallel formulation is particularly useful in domains where the size of transaction is
very large (e.g., Similarity tables in molecular biology [HKKM97], generalized association rules [HF95, SA95], or
sequential patterns[MTV 95, SA96]).

References

[A1S93] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large
databases. In Proc. of 1993 ACM-S GMOD Int. Conf. on Management of Data, Washington, D.C., 1993.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. of the 20th VLDB
Conference, pages 487499, Santiago, Chile, 1994.

21

[AS96]

[HF95]

[HKK97]

[HKKM97]

[HS95]

[KGGK94]

[MTV95]

[Pro96]

[PS82]

[SA95]

[SA6]

[SAD*93]

[SON95]

R. Agrawal and J.C. Shafer. Parallel mining of association rules. |EEE Transactions on Knowledge and
Data Eng., 8(6):962—969, December 1996.

J. Hanand Y. Fu. Discovery of multiple-level association rules from large databases. In Proc. of the 21st
VLDB Conference, Zurich, Switzerland, 1995.

E.H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association rules. In Proc. of 1997
ACM-S GMOD Int. Conf. on Management of Data, Tucson, Arizona, 1997.

E.H. Han, G. Karypis, V. Kumar, and B. Mobasher. Clustering based on association rule hypergraphs.
Technical Report TR-97-019, Department of Computer Science, University of Minnesota, Minneapolis,
1997.

M. A. W. Houtsmaand A. N. Swami. Set-oriented mining for association rulesin relational databases. In
Proc. of the 11th Int’| Conf. on Data Eng., pages 25-33, Taipei, Taiwan, 1995.

Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to Parallel Computing:
Algorithm Design and Analysis. Benjamin Cummings/ Addison Wesley, Redwod City, 1994.

H. Mannila, H. Toivonen, and A. . Verkamo. Discovering frequent episodes in sequences. In Proc. of
the First Int’'| Conference on Knowledge Discovery and Data Mining, pages 210-215, Montreal, Quebec,
1995.

IBM Quest Data Mining Project. Quest synthetic data generation code.
http: //Amww.al maden.ibm.com/cs/quest/syndata.html, 1996.

C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithmsand Complexity. Prentice-
Hall, Englewood Cliffs, NJ, 1982.

R. Srikant and R. Agrawal. Mining generalized association rules. InProc. of the 21st VLDB Conference,
pages 407419, Zurich, Switzerland, 1995.

R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performanceimprovements.
In Proc. of the Fifth Int’'| Conference on Extending Database Technol ogy, Avignon, France, 1996.

M. Stonebraker, R. Agrawal, U. Dayal, E. J. Neuhold, and A. Reuter. DBMS research at a crossroads:
The vienna update. In Proc. of the 19th VLDB Conference, pages 688—692, Dublin, Ireland, 1993.

A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rulesin large
databases. In Proc. of the 21st VLDB Conference, pages 432—443, Zurich, Switzerland, 1995.

22

Contents

1 [Introduction 1
2 Basic Concepts 2
3 Paralle Algorithms 5
3.1 CountDigributionAlgorithm. e 5
3.2 DaaDidribution Algorithm 6
3.3 Inteligent DataDistribution Algorithm 8
34 HybridAlgorithm 10
4 PerformanceAnalysis 13
5 Experimental Results 16
6 Conclusion 20
List of Figures
1 Apriori Algorithm o o 3
2 Subset operationontheroot of acandidatehashtree., 4
3 Subset operation on the left most subtree of theroot of acandidatehashtree.. 4
4 Count Digtribution (CD) Algorithm e 5
5 DataDidtribution (DD) Algorithm 7
6 Pseudo Codefor DataMovements i i i 8
7 Intdligent DataDistribution (IDD) Algorithm 9
8 Subset operation on theroot of acandidate hashtreeinIDD. 10
9 Hybrid Distribution (HD) Algorithmin 3 x 4 Processor Mesh(G=3,P=12) 12
10 Comparisonof DD and IDD intermsof the average number of distinct leaf node visited per transaction
with 50K transactions per processor and 0.2% minimumsupport. 16
11 Scaleup result with 100K transactionsand 0.25% minimumsupport. 17
12 Sizeup result with 16 processorsand 0.25% minimumsupport. 18
13 Responsetimeon 16 processorswith 50K transactions as the minimum support varies. At each support
level, the total number of candidate item-setsisshowninparenthesis. 19
14 Responsetimeon 64 processorswith 50K transactions as the minimum support varies. At each support
level, the total number of candidateitem-setsisshowninparenthesis. 20
15 Responsetime on 16 processor IBM SP2 with 100K transactions as the minimum support varies from
0.19%1t00.025%. v e e e e e 21
List of Tables
1 Transactionsfromsupermarket. 2
2 Symbolsusedintheanaysis. e 13

23

Minimum support (%) reachable with different number of processorsin our algorithms. 20
Processor configuration and number of candidates of the HD algorithm with 64 processors and 0.04%
minimum support for each pass. Note that 64 x 1 configuration is the same as the DD algorithm and
1 x 64 is the same as the CD algorithm. The total number of pass was 13 and all passes after 9 had
Ix64configuration. e e e 20

24

