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Abstract
Previous study has shown that mining frequent patterns
with length-decreasing support constraint is very helpful
in removing some uninteresting patterns based on the ob-
servation that short patterns will tend to be interesting if
they have a high support, whereas long patterns can still be
very interesting even if their support is relatively low. How-
ever, a large number of non-closed (i.e., redundant) patterns
can still not be filtered out by simply applying the length-
decreasing support constraint. As a result, a more desirable
pattern discovery task could be mining closed patterns under
the length-decreasing support constraint.

In this paper we study how to push deeply the length-
decreasing support constraint into closed itemset mining,
which is a particularly challenging problem due to the
fact that the downward-closure property cannot be used
to prune the search space. Therefore, we have proposed
several pruning methods and optimization techniques to
enhance the closed itemset mining algorithm, and developed
an efficient algorithm, BAMBOO. Extensive performance
study based on various length-decreasing support constraints
and datasets with different characteristics has shown that
BAMBOO not only generates more concise result set, but
also runs orders of magnitude faster than several efficient
pattern discovery algorithms, including CLOSET+, CFP-
tree and LPMiner. In addition, BAMBOO also shows very
good scalability in terms of the database size.

Keywords: Pattern discovery, frequent closed itemset,
length-decreasing support constraint

1 Introduction

Since the introduction of association rule mining [1],
frequent itemset mining has become a fundamental
problem in data mining research and has been exten-
sively studied [2, 19, 26, 9, 4, 11]. Various efficient
frequent itemset mining algorithms have been devel-
oped, such as Apriori [2], FP-growth [12], H-mine [23],
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OP [16], and Inverted Matrix [8]. The main problem
with these algorithms is that they may generate an
exponentially large number of itemsets when the sup-
port is low. To overcome this problem, two classes of
techniques/problem-formulations have been developed.
The first focuses on mining maximal/closed itemsets
and many recent studies have illustrated that it can
lead to more compact result sets and better efficiency
in finding frequent long itemsets from large datasets
[3, 20, 24, 29, 6, 30, 27]. The second class attempts to re-
duce the number of potentially uninteresting itemsets by
incorporating various anti-monotone, monotone, or con-
vertible constraints within the constant-support-based
frequent pattern mining framework [10, 17, 21, 22, 5].

A limitation of the above approaches is that they
use a constant support value, irrespective of the length
of the discovered patterns. In general, patterns that
contain only a few items will tend to be interesting
if they have a high support, whereas long patterns
can still be interesting even if their support is rela-
tively low. Instead of pushing more constraints into the
constant-support based pattern mining, the LPMiner
algorithm [25] uses the length-decreasing support con-
straint to prune some uninteresting patterns. Although
LPMiner can sift out a lot of short infrequent item-
sets, it still encounters difficulty in mining long item-
sets, this is because a long frequent itemset implies
a lot of short itemsets which may satisfy the length-
decreasing support constraint. Consider the following
length-decreasing support constraint: minimum support
equals 50 for length no greater than 5, and 20 for length
greater than 5. An itemset with a support no less than
20 and a length 10 means all its subsets with a length
greater than 5 will be frequent, while an itemset with a
support 60 and a length 8 means all of its subsets will
be frequent. As a result, mining closed itemsets with
length-decreasing support constraint is a more desirable
task.

In this paper we mainly explore how to push deeply
the length-decreasing support constraint into closed
itemset mining. As stated in [25], developing such
an algorithm is particularly challenging because the
downward-closure property derived from the constant-



support constraint cannot be used and for this reason
LPMiner introduced the smallest valid extension (SVE)
property to prune the search space. However, although
the SVE -based pruning methods are very effective in
enhancing the performance, they fail to take into ac-
count the specific characteristics of the transactions and
items of the pattern-specific projected database. In this
paper, we propose several pruning methods and opti-
mization techniques which are derived directly from the
length-decreasing support constraint and develop an ef-
ficient algorithm called BAMBOO1 that finds all the
closed itemsets satisfying the length-decreasing support
constraint. BAMBOO incorporates two novel pruning
methods called invalid item pruning and unpromising
prefix pruning that are sensitive to the structure of the
projected databases and quickly eliminate unpromising
portions of the search space. Our experimental study
reveals that BAMBOO can find over an order of magni-
tude fewer valid itemsets while it can be orders of mag-
nitude faster than both the recently developed closed
itemset mining algorithms and LPMiner.

The rest of the paper is organized as follows. Sec-
tion 2 briefly describes the problem and some related
work. Section 3 introduces the BAMBOO algorithm
and provides a detailed description of the newly pro-
posed pruning methods and optimization techniques.
Section 4 presents a thorough experimental evaluation
and compares BAMBOO’s performance against that
achieved by other algorithms. Finally, Section 5 pro-
vides some concluding remarks.

2 Problem Statement and Related Work

2.1 The Problem
A transaction database TDB is a set of transactions,

where each transaction, denoted as a tuple 〈tid, X〉,
contains a set of items (i.e., X) and is associated
with a unique transaction identity tid. We use |TDB|
to denote the number of transactions in TDB. Let
I = {i1, i2, . . . , in} be the complete set of distinct items
appearing in TDB. An itemset Y is a non-empty subset
of I and is called an l-itemset if it contains l items
(i.e., |Y | = l). An itemset {x1, . . . , xl} is also denoted
as x1 · · ·xl. A transaction 〈tid, X〉 is said to contain
itemset Y if Y ⊆ X. The number of transactions
in TDB containing itemset Y is called the support of
itemset Y , denoted as sup(Y ).

Definition 2.1. (Closed itemset) An itemset Y is a
closed itemset if there exists no proper superset Y ′ ⊃
Y such that sup(Y ′) = sup(Y ). �

1The name “BAMBOO” was motivated by the fact that the
shape of the bamboo plant schematically matches the nature of
“length-decreasing” and “closed itemsets”.

Definition 2.2. (Length-decreasing support con-
straint) A function f(x) with respect to a transaction
database TDB is called a length-decreasing
support constraint w.r.t. TDB , if it satisfies
|TDB| ≥ f(x) ≥ f(x + 1) ≥ 1 for any positive integer
x. An itemset Y , is frequent w.r.t. length-decreasing
support constraint f(x), if sup(Y ) ≥ f(|Y |).2 �

Definition 2.3. (Frequent closed itemset with Length-
decreasing support constraint) Given a transaction
database TDB and its length-decreasing support con-
straint f(x), if an itemset Y is a closed itemset and also
frequent w.r.t. f(x), Y is called a frequent closed
itemset w.r.t. f(x). �

Example. The first two columns in Table 1 show the
transaction database TDB in our running example. We
sort the list of items in support descending order and
get the sorted item list which is called f list. In this
example f list = 〈f:4, c:4, a:3, b:3, m:3, p:3, i:1〉. The
list of items in each transaction are sorted according to
f list and shown in the third column of Table 1. Itemset
fc is a 2-itemset with support 3, but it is not closed,
because it has a superset fcam whose support is also
3. fcam is a frequent closed 4-itemset. Assume the
length-decreasing support constraint f(x) is: f(x) = 4
(for x ≤ 3), f(x) = 3 (for 4 ≤ x ≤ 5), and f(x) = 2
(for x ≥ 6), it is easy to figure out that {f:4, c:4, fcam:3}
is the complete set of frequent closed itemsets w.r.t f(x).

Tid Set of items ordered item list

001 a, c, f,m, p f, c, a, m, p

002 a, c, f, i, m, p f, c, a, m, p, i

003 a, b, c, f, m f, c, a, b, m

004 b, f f, b

005 b, c, p c, b, p

Table 1: A transaction database TDB.

2.2 Related Work
Mining frequent closed itemsets was first proposed

in [20], which also proposed the A-close algorithm. Since
then, several efficient closed itemset mining algorithms
have been developed, including CLOSET [24], CHARM
[30], CARPENTER [18], CLOSET+ [27], and CFP-tree
[15]. These algorithms adopt similar search space prun-
ing methods, and are different from each other in using
different search strategies (e.g., depth-first search vs.

2From this definition we can see the constant support threshold
is a special case of the length-decreasing support constraint which
is given as a non-increasing function of the itemset length.



breadth-first search, bottom-up traversal vs. top-down
traversal), different dataset representation (e.g., verti-
cal format vs. horizontal format), data compression
techniques (e.g., Diffset vs. FP-tree), database projec-
tion methods (e.g., physical projection vs. pseudo pro-
jection), and different closure checking schemes. Some
winning techniques used in these algorithms will be em-
ployed in designing the BAMBOO algorithm.

An FP-tree based algorithm called TFP was intro-
duced in [13] for finding the top-k frequent closed item-
sets of length no less than a given value. TFP allows
users to input the number of patterns to be discovered
rather than the less intuitive minimum support and it
is effective for finding long frequent itemsets. However,
one drawback with TFP is that any patterns shorter
than the given minimum length are never discovered,
which might not be appropriate for some applications.

LPMiner was the first algorithm for finding all item-
sets that satisfy a length-decreasing support constraint.
In [25], the Smallest Valid Extension (SVE) property
was proposed and used to design several pruning meth-
ods. However, LPMiner has a number of limitations.
First, its result set may contain a large number of redun-
dant (i.e., non-closed) itemsets; second, the SVE -based
pruning methods are not as effective in pruning invalid
items and unpromising prefix itemsets; third, they over-
lap with each other in functionality—further limiting
their effectiveness.

There are several itemset discovery algorithms that
use multiple support constraints. In [14], an algorithm
was presented, in which each item has its own min-
imum item support (or MIS). The minimum support
of an itemset is the lowest MIS among those items in
the itemset. By sorting items in ascending order of
their MIS values, the minimum support of the itemset
never decreases as the length of itemset grows, mak-
ing the support of itemsets downward closed. Thus
an Apriori-based algorithm can be applied. In [28],
an Apriori-based algorithm for finding frequent item-
sets was proposed, which allows a set of more general
support constraints. It is possible to represent a length-
decreasing support constraint by using the formulation
in [28]. However, the “pushed” minimum support of
each itemset is forced to be equal to the support value
corresponding to the longest itemset. Thus, it cannot
prune the search space effectively. An algorithm in [7]
adopts a different approach in that it does not use any
support constraint. Instead, it searches for similar item-
sets using probabilistic algorithms, which do not guar-
antee all frequent itemsets can be found.

3 BAMBOO Algorithm

In this section, we will develop the BAMBOO algo-
rithm step by step. First, we will briefly introduce
the LPCLOSET algorithm, a näıve algorithm which
can mine closed itemsets with length-decreasing support
constraint and forms the basis of the BAMBOO algo-
rithm. It is simply derived from the recently developed
frequent closed itemset mining algorithm, CLOSET+
(For more detail, we refer the readers to [27]). Then we
will mainly focus on the search space pruning methods
and several other optimization techniques newly pro-
posed here, and also present the whole BAMBOO algo-
rithm later.

3.1 LPCLOSET: A Näıve Solution

3.1.1 FP-tree Structure
To design an efficient frequent itemset mining al-

gorithm, one should first choose a good data struc-
ture to represent the original database. Because LP-
CLOSET is a tailored version of the CLOSET+ algo-
rithm, it also adopts the FP-tree structure, which is a
prefix tree representation of the list of frequent items
in the transactions, and shown to be an efficient rep-
resentation of a transaction database by several studies
[12, 24, 16, 27, 15]. Because the infrequent items are
not used to build the FP-tree and a set of transactions
sharing the same subset of items may share common
prefix paths from the root of an FP-tree, FP-tree often
has a high compression ratio in representing the origi-
nal dataset, especially for dense datasets. Here we use
our running example to illustrate the construction of
the FP-tree structure.

Example. The FP tree of our running example is built
as follows: Scan the database once to count the support
for each item and sort them in support-descending order
to get the f list (see our running example in section 2.1).
The items whose support is lower than the minimum
support for the longest itemset according to length-
decreasing support constraint f(x) are infrequent and
not used in building FP-tree. To insert a transaction
into the FP-tree, infrequent items(e.g., item i) are
removed and the remaining items in the transaction are
sorted according to the item ordering in f list. At each
tree node, we record its item ID, count, and sum of
transaction IDs (i.e., tids). For each FP-tree, there is
a header table associated with it and there is an entry
for each item in the header table. Fig. 1 shows the
global FP-tree and its corresponding header table. The
second and third columns in the header table represent
the global count and sum of transaction IDs respectively,
while the forth column is the side-link pointer which



links the nodes with the same item ID.

f:4 ,10 c:1 ,5

c:3 ,6 b:1 ,4 b:1 ,5

a:3 ,6 p:1 ,5

m :2,3

p:2,3

root

m :1,3

f 4 10

c 4 11

a 3 6

b 3 12

m 3 6

p 3 8

Header table  H

b:1,3

Figure 1: The FP-tree of our running example.

3.1.2 Bottom-up Divide-and-Conquer
LPCLOSET adopts the popularly used divide-and-

conquer paradigm in mining frequent itemsets. Specifi-
cally, it uses the bottom-up divide-and-conquer method,
which follows the inverse f list order (infrequent item i
is removed): (1) first mine the patterns containing item
p, (2) mine the patterns containing m but no p, (3) mine
the patterns containing b but no p nor m, ..., and finally
mine the patterns containing only f. Upon mining the
patterns containing item p (i.e., p is the current pre-
fix itemset), we will follow its side-link pointer recorded
in the global header table and locate the conditional
database with prefix p (denoted as TDB|p:3), which
contains two amalgamative transactions: 〈fcam:2 〉 and
〈cb:1 〉. The projected FP-tree for prefix p:3 is built from
TDB|p:3 as Fig. 2(a) shows (infrequent item b has been
removed). The bottom-up divide-and-conquer method is
applied in a recursive way. For example, after building
the conditional FP-tree for prefix p:3, we will first mine
patterns containing pm:2, then mine patterns contain-
ing pa:2, and so on. The conditional FP-tree for prefix
pm:2 is shown in Fig. 2(b).

3.1.3 Search Space Pruning
Since we are only interested in closed itemsets, we

should design some pruning methods to stop mining
patterns with unpromising prefix itemsets as soon as
possible. Previous studies proposed several methods,
here we adopt two techniques for LPCLOSET, which
have been popularly used in several closed/maximal
itemset mining algorithms [3, 24, 6, 30, 27, 15].

The first pruning technique is item merging. For a
prefix itemset P, the complete set of its locally frequent
items that have the same support as P can be merged
with P to form a new prefix, and these items can be

c:3 ,8

f:2 ,3

a:2 ,3

m :2,3

root

(a) P rojected FP -tree w ith
      prefix p:3

c 3 8

f 2 3

a 2 3

m 2 3

c:2 ,3

f:2 ,3

a:2 ,3

root

(b) P rojected FP -tree w ith
      prefix pm :2

c 2 3

f 2 3

a 2 3

Header table  Hp:3

Header table  Hpm:2

Figure 2: Conditional FP-trees for prefix p:3 and pm:2.

safely removed from the list of locally frequent items of
the new prefix. For example, as shown in Fig. 2(a), the
set of locally frequent items w.r.t. prefix p:3 is {c:3, f :2
a:2, m:2}, item c can be merged with the prefix p:3 to
form a new prefix pc:3, and the set of locally frequent
items becomes {f :2, a:2, m:2}.

The second pruning technique is sub-itemset prun-
ing. Let X be the frequent itemset currently under con-
sideration. If X is a proper subset of an already found
frequent closed itemset Y and sup(X) = sup(Y ), then
there is no hope to generate frequent closed itemsets
from X and thus X can be pruned. For example, when
we want to mine patterns with prefix a:3, another fre-
quent closed itemset fcam:3 has been mined under the
bottom-up divide-and-conquer paradigm and is a proper
superset of a with the same support, we can safely stop
mining patterns with prefix a:3.

3.1.4 Closure Checking Scheme
The above search space pruning methods can accel-

erate the mining process by removing some unpromising
prefix itemsets, but they cannot eliminate all the non-
closed itemsets. We need to do subset checking for each
mined frequent itemset in order to assure that it is re-
ally a closed itemset [27]. Like CLOSET+, we maintain
the set of already mined closed itemsets in a compact
result tree structure. Fig. 3 shows an example which
stores totally three closed itemsets: fcamp:2, cp:3, and
fcam:3. Upon getting a new frequent itemset, we will
check against the set of closed itemsets stored in the re-
sult tree to see if there exists such a closed itemset that
has the same support and is a proper superset of the cur-
rent itemset. If that is the case, the current candidate
itemset is not closed and will not be inserted into the
result tree. Instead of using the two-level hash indexing
as in CLOSET+, here we use the sum of the transaction
IDs as the hash key (similar to [30])and the hash value
as the index into the result tree in order to reduce the



search space for pattern closure checking. For example,
at the status of Fig. 3, upon getting a new prefix a:3
whose sum of the transaction IDs is 6, it is easy to find
that closed itemset fcam:3 has the same support as a:3
and can absorb a:3. Thus a:3 is non-closed and we can
safely stop mining patterns with prefix a:3.

root

f:3 ,6
HASH(sum of

transaction IDs) link

... ...
8
7 NULL
6
5 NULL
4 NULL
3
... ...

c:3 ,8

 c:3 ,6

a:3 ,6

 m :3,6

 p:2 ,3

 p:3 ,8

Figure 3: Hash-indexed result tree structure.

3.1.5 Simply Integrating the Constraint
Up to now, LPCLOSET can mine the complete set

of closed itemsets. To get the set of closed itemsets
which satisfy the length-decreasing support constraint,
it is rather straightforward: when we find a closed
itemset P, we simply check whether sup(P ) ≥ f(|P |),
if so, we will output it as a valid itemset and also store
it in the result tree. The problem becomes whether
we should still hold an infrequent closed itemset in the
result tree in order to check a new itemset’s closure?

Lemma 3.1. (Result-tree pruning) If the current candi-
date prefix itemset, P, cannot pass the checking of the
length-decreasing support constraint, there is no need to
keep it in the result tree in order to check the closure of
the later found itemsets.

Proof. The correctness of this lemma is evident: As-
sume a later found prefix itemset P

′
can be subsumed by

itemset P (that is, (P
′ ⊂ P ) and (sup(P

′
) = sup(P ))).

Because sup(P
′
) = sup(P ), sup(P ) < f(|P |), and

f(|P |) ≤ f(|P ′ |) hold, sup(P
′
) < f(|P ′ |) must also

hold. This means if we do not maintain P in the re-
sult tree, we may not be able to correctly check the
closure of a later mined itemset P

′
, but all such kind

of itemsets as P
′

must be invalid, that is they cannot
satisfy the length-decreasing support constraint. �

Because checking whether a prefix itemset can pass
the support constraint is much cheaper than checking
a pattern’s closure, based on Lemma 3.1, when we

get a new prefix itemset, we will first check if it can
satisfy the support constraint, if not, we do not need to
check if it is closed and it will not be inserted into the
result tree. For example, fcamp:2 and cp:3 will not be
inserted into the result tree and should not appear in
Fig. 3. ALGORITHM 1 shows the whole LPCLOSET
algorithm, which calls subroutine lpcloset(pi, cdb)(i.e.,
SUBROUTINE 1). It uses the item-merging method
(line 03) and sub-itemset pruning method (line 06) to
prune the search space. If an itemset satisfies the
support constraint (line 05) and passes the closure
checking (line 08), it will be inserted into the result-tree
and output as a valid pattern(line 09). lpcloset() adopts
the bottom-up divide-and-conquer paradigm to grow the
current prefix pi and recursively calls itself(lines 13-19).

ALGORITHM 1: LPCLOSET(TDB, f(x))

INPUT: (1) TDB : a transaction database, and (2) f(x):
a length-decreasing support constraint function.
OUTPUT: (1) SCI : the complete set of closed itemsets
that satisfy the length-decreasing support constraint.
BEGIN
01. SCI ← ∅; result tree ← NULL;
02. call lpcloset(∅, TDB);
END

SUBROUTINE 1 : lpcloset(pi, cdb)

INPUT: (1) pi : a prefix itemset, and (2) cdb: the
conditional database w.r.t. prefix pi.
BEGIN
03. item merging(pi, cdb);
04. if(pi �= ∅)
05. if(sup(pi) ≥ f(|pi|))
06. if(sub-itemset pruning(pi, result tree))
07. return;
08. else
09. insert(result tree, pi); SCI ← SCI ∪ {pi};
10. end if
11. end if
12. end if
13. I ← set of local items w.r.t. pi
14. fptree ← FP-tree construction(I, cdb);
15. for all i∈I do
16. pi

′ ← pi ∪ {i};
17. cdb

′ ← build cond database(pi
′
, fptree)

18. call lpcloset(pi
′
, cdb

′
);

19. end for
END

3.2 Deeply Pruning



The above LPCLOSET which can be seen as a
tailored variant of the CLOSET+ algorithm can mine
the closed itemsets with length-decreasing support con-
straint, but it does not make full use of the length-
decreasing support constraint to enhance the perfor-
mance. In LPMiner, three efficient pruning methods,
Transaction pruning, Node pruning, and Path pruning,
have been proposed, which are all based on the Smallest
Valid Extension property (or SVE for short) [25].

Property 3.1. (Smallest valid extension) Given an
itemset P such that sup(P ) < f(|P |), then f−1(sup(P ))
=min(l|f(l) ≤ sup(P )) is the minimum length that a
super-itemset of P must have before it can potentially
satisfy the length-decreasing support constraint. �

From the SVE property, the three pruning meth-
ods used in [25] can be easily derived. For example,
the transaction pruning method can be described as:
any transaction t in prefix P’s conditional database can
be pruned if (|P | + |t|) < f−1(sup(P )). Although the
pruning methods adopted by LPMiner are very effec-
tive, they do not fully explore the support constraint
to deeply prune the search space. The deficiency is
two-fold: on one hand, they are all based on the SVE
property, their functionality is overlapped to some ex-
tent; on the other hand, they prune the space in a too
coarse granularity, they cannot keep the invalid items
or unpromising prefix itemsets from mining. There-
for, instead of simply adopting the previously developed
pruning methods, we have designed two new pruning
methods in order to deeply push the length-decreasing
support constraint into the closed itemset mining.

3.2.1 Invalid Item Pruning
Most frequent itemset mining algorithms use con-

stant support constraint to control the inherently ex-
ponential pattern discovery complexity by pruning the
infrequent items based on the well-known downward clo-
sure property. However, with the length-decreasing sup-
port constraint, there is no straightforward way to de-
termine whether an item is frequent or not: an item
which is infrequent w.r.t. a short prefix itemset may
later become frequent w.r.t. a long prefix itemset. Thus
we need to find a way to define and prune some un-
promising items from which no closed itemset satisfying
the length-decreasing support constraint can be gener-
ated.

Definition 3.1. (Invalid item) Let max l be the max-
imal transaction length in conditional database TDB|P
w.r.t. a particular prefix itemset P . For any item x
which appears in TDB|P , we maintain a total number
of max l counts, denoted as COUNT x[1..max l], where

COUNT x[i](1 ≤ i ≤ max l) records the total number
of occurrences of item x in transactions no shorter than
i. Item x is called an invalid item w.r.t. TDB|P if ∀i
(1 ≤ i ≤ max l), COUNT x[i] < f(i + |P |). �
Lemma 3.2. (Invalid item pruning) Given a particular
prefix itemset P, and its conditional database TDB|P .
There is no hope to grow P with any invalid item w.r.t.
TDB|P to get closed itemsets satisfying the length-
decreasing support constraint.

Proof. We will prove it by contradiction. Assume in-
valid item x can be used to grow P to get a closed item-
set P

′
which satisfies the length-decreasing constraint

f(x), that is, P
′ ⊇ ({x} ∪ P ) and sup(P

′
) ≥ f(|P ′ |).

This means COUNT x[|P ′ | − |P |] ≥ f(|P ′ |), which con-
tradicts with the definition of an invalid item. �

The invalid item pruning method can be applied
to both the original database and conditional database
w.r.t. a certain prefix. Here we use our running
example to show its usefulness. From Table 1, we know
COUNT b[i] = 3 (for 1≤i≤2), COUNT b[i] = 2 (for
i=3), COUNT b[i] = 1 (for 4≤i≤5), and COUNT b[i] =
0 (for i=6), which means ∀i, COUNT b[i] < f(i), as a
result, item b is invalid and can be pruned from the
global FP-tree shown in Fig. 1. Similarly, item p is also
invalid and can be pruned from the global FP-tree.

3.2.2 Unpromising Prefix Itemset Pruning
BAMBOO is based on LPCLOSET, which uses the

pattern growth method [12] to mine frequent closed
itemsets. At any time, there is always a prefix itemset,
from which longer frequent closed itemsets can be
grown. However, in many cases no closed itemset
that satisfies the length-decreasing support constraint
can be generated by growing some unpromising prefix
itemsets, we should detect such kind of prefix itemsets
as soon as possible and avoid mining patterns with these
unpromising prefix itemsets.

Definition 3.2. (Unpromising prefix) Let max l be
the maximal transaction length in conditional database
TDB|P w.r.t. a particular prefix itemset P . We
maintain a total number of max l counts for P , denoted
as COUNTP [1..max l], where COUNTP [i](1 ≤ i ≤
max l) records the total number of transactions in
TDB|P with a length no shorter than i. Prefix itemset
P is called an unpromising prefix itemset if ∀i (1 ≤ i ≤
max l), COUNTP [i] < f(i + |P |). �
Lemma 3.3. (Unpromising prefix itemset pruning)
There is no hope to grow an unpromising prefix item-
set P to find closed itemsets that can satisfy the length-
decreasing support constraint, and thus P can be safely
pruned.



Proof. This Lemma can also be proven by contradiction.
Assume prefix P can be used as a start point to get a
closed itemset P

′
which satisfies the length-decreasing

constraint f(x), that is, P
′ ⊃ P and sup(P

′
) ≥ f(|P ′ |).

This means COUNTP [|P ′ | − |P |] ≥ f(|P ′ |), which
contradicts with the definition of an unpromising prefix
itemset. �

Let us look at an example. Assume prefix itemset
X1=p:3, by following the side-link pointer of item p in
Fig. 1 we can easily figure out that TDB|p:3 contains
two amalgamative transactions: 〈fcam:2〉 and 〈cb:1〉.
We can get that, COUNTX1 [i] = 3 (for 1 ≤ i ≤ 2)
and COUNTX1 [i] = 2 (for 3 ≤ i ≤ 4). As a result, ∀i
(1 ≤ i ≤ 4), COUNTX1 [i] < f(i + |X1|). Prefix itemset
X1=p:3 is an unpromising prefix itemset and can be
pruned.

3.3 Further Optimizations
Most pruning methods can prune the search space

effectively while in the meantime they themselves may
also lead to non-negligible overheads. In the following,
we will explore the SVE property and binning technique
to minimize the potential overheads incurred by these
methods.

3.3.1 SVE-based Enhancement
Here we first consider to use the SVE property

to enhance the unpromising prefix itemset pruning
method. Because we record some statistic informa-
tion in the header table for each locally frequent item
w.r.t. a certain prefix, prior to checking whether a
prefix is promising or not, we already know the sup-
port of a new prefix. For example, from the global
header table shown in Fig. 1, we know that the sup-
port of prefix p is 3. According to the SVE property,
we know that some conditional transactions may con-
tribute nothing to the set of closed itemsets which sat-
isfy the length-decreasing support constraint, as a re-
sult, they will not be used to judge whether a prefix is
promising or not. In our running example, let p:3 be
the current prefix itemset under consideration, we can
compute its SVE as: f−1(sup(p))= f−1(3)=4, which
means a conditional transaction with a length shorter
than f−1(sup(p))−|p|=3 can be ignored when we com-
pute COUNT p:3[1..4]. As a result, one of the prefix
p:3’s amalgamative transactions, 〈cb:1〉 can be ignored.
This technique will help a lot when there are many short
conditional transactions w.r.t. a prefix itemset.

3.3.2 Binning-based Enhancement
One of the main overhead related to the invalid item

pruning method is caused by memory manipulation.
Remember that we need to maintain a total number

of max l counts (i.e., COUNT x[1..max l]) for each item
x, where max l is the maximal transaction length in
the corresponding (conditional) database. Allocating,
freeing or resetting a non-trivial memory is costly, thus
we need to reduce the memory usage as possible as we
can. One way to achieve this is to employ the binning
technique to improve the memory usage: instead of
keeping a count for each length in the range [1..max l],
we can keep a subset of these counts, COUNT x[1..m],
corresponding to length l1, l2, ..., and lm, where 1 =
l1 < l2 < ... < lm < max l. Among which, we use
COUNT x[li] to record the number of transactions no
shorter than li in which item x appears. Then we can
use the following lemma to judge whether an item is
invalid or not.

Lemma 3.4. (Relaxed invalid item) Given a particular
prefix itemset P, and its conditional database TDB|P .
Assume x is a local item and max l is the maximal
transaction length in TDB|P . Let COUNT x[li] be the
number of transactions no shorter than li in which item
x appears, where 1 ≤ i ≤ m and 1 = l1 < l2 <
... < lm < max l . If COUNT x[lm] < f(max l) and
COUNT x[li] < f(li+1) (for 1 ≤ i < m), item x is
invalid w.r.t. prefix P.

Proof. COUNT x[lm] < f(max l) means no itemset
P

′
, where |P ′ | ≥ lm and P

′ ⊇ ({x} ∪ P ), can
satisfy the length-decreasing support constraint, while
COUNT x[li] < f(li+1)(for 1 ≤ i < m) means no
itemset, P

′
, where li ≤ |P ′ | ≤ li+1 and P

′ ⊇ ({x} ∪ P )
can satisfy the length-decreasing support constraint.
As a result no itemset with any length can satisfy
the length-decreasing support constraint and in the
meantime contain both item x and prefix P . �

The above technique can be implemented as follows:
If we find item x appears in a transaction with a
length L, where li ≤L< li+1, COUNT x[li] will be
incremented by 1. When we check whether item x is
invalid or not, we start from lm to see if COUNT x[lm] <
f(max l) holds, if so, COUNT x[lm] will be added to
COUNT x[lm−1], otherwise item x will be valid. In
general, if COUNT x[li] < f(li+1) holds, COUNT x[li]
will be added to COUNT x[li−1] and then check whether
COUNT x[li−1] violates the length-decreasing support
constraint. If we finally find COUNT x[l1] < f(l2), we
can safely say item x is invalid and can be pruned from
further consideration. Here we show an example on
how to detect invalid item b from the original database
TDB. Assume we maintain three counts for item b,
and l1 = 1, l2 = 3, l3 = 5. After scanning the TDB
once, we get COUNT b[l1] = 1, COUNT b[l2] = 1,
and COUNT b[l3] = 1. Because COUNT b[l3] < f(6)



(here max l = 6), COUNT b[l3] will be added to
COUNT b[l2]. Similarly, COUNT b[l2] < f(l3) and
COUNT b[l2] will be added to COUNT b[l1]. Now
COUNT b[l1] becomes 3, which is less than f(l2). As a
result, we know that item b is invalid and can be pruned.

ALGORITHM 2: BAMBOO(TDB, f(x))

INPUT: (1) TDB : a transaction database, and (2) f(x):
a length-decreasing support constraint function.
OUTPUT: (1) SCI : the complete set of closed itemsets
that satisfy the length-decreasing support constraint.
BEGIN
01. SCI ← ∅; result tree ← NULL;
02. call bamboo(∅, TDB);
END

SUBROUTINE 2 : bamboo(pi, cdb)

INPUT: (1) pi : a prefix itemset, and (2) cdb: the
conditional database w.r.t. prefix pi.
BEGIN
03. I ← invalid item pruning(cdb,f(x));
04. S ← item merging(I); pi ← pi ∪ S; I ← I - S;
05. if(pi �= ∅)
06. if(unpromising prefix pruning(pi, cdb, f(x)))
07. return;
08. end if
09. if(sup(pi) ≥ f(|pi|))
10. if(sub-itemset pruning(pi, result tree))
11. return;
12. else
13. insert(result tree, pi); SCI ← SCI ∪ {pi};
14. end if
15. end if
16. end if
17. if(I �= ∅)
18. cdb ← transaction pruning(pi,cdb);
19. fptree ← FP-tree construction(I, cdb);
20. for all i∈I do
21. pi

′ ← pi ∪ {i};
22. cdb

′ ← build cond database(pi
′
, fptree)

23. call bamboo(pi
′
, cdb

′
);

24. end for
25. end if
END

3.4 The Algorithm
By incorporating the above pruning methods and

optimization techniques into LPCLOSET, we get the
BAMBOO algorithm as shown in ALGORITHM 2.

Algorithm BAMBOO calls subroutine bamboo(pi,
cdb). As shown in SUBROUTINE 2, given a cer-
tain prefix itemset pi and its corresponding conditional
database cdb, bamboo(pi, cdb) first applies the invalid
item pruning method, and the set of valid items is de-
noted as I (line 03). Next it uses the item merging
technique to identify the set of items that has the same
support as pi, and denoted as S, S will be merged with
pi and removed from I (line 04). Then it uses the
unpromising prefix pruning(line 06), result-tree prun-
ing(line 09) and sub-itemset pruning(line 10) methods
to prune a non-empty prefix (lines 05-16). If an itemset
can satisfy the length-decreasing support constraint(line
09) and pass closure checking(line 12), it must be a
closed itemset that satisfies the support constraint, and
will be inserted into the result tree(line 13). Next the
transaction pruning method is applied(line 18) and the
conditional FP-tree is built(line 19), and bamboo() re-
cursively calls itself to mine the closed itemsets with
length-decreasing support constraint by growing prefix
pi under the bottom-up divide-and-conquer paradigm
(lines 17-25).

4 Empirical Results

In this section we present a comprehensive experimental
evaluation of BAMBOO and compare its performance
against that achieved by other algorithms. Our results
show that (i) by incorporating length-decreasing sup-
port constraint into closed itemset mining, BAMBOO
not only generates more compact result set, but also has
much better performance than both the recently devel-
oped closed itemset mining algorithms and the LPMiner
algorithm; (ii) the newly proposed search space pruning
methods for BAMBOO are very effective in enhancing
the performance; (iii) BAMBOO has very good scala-
bility in terms of the number of transactions.

4.1 Test Environment and Dataset
To our knowledge, CLOSET+ [27] and CFP-tree [15]
are two recently developed frequent closed itemset min-
ing algorithms. We compared BAMBOO with these
two algorithms on a 2.4GHz Intel Pentium PC with
1GB memory and Windows 2000 installed. All these
three algorithms were implemented using Microsoft Vi-
sual C++. When we ran CLOSET+ and CFP-tree, the
support threshold is chosen as the minimum support
for the maximum itemset length under the correspond-
ing length-decreasing support constraint. We also com-
pared BAMBOO with LPMiner [25], which is a frequent
itemset mining algorithm with length-decreasing sup-
port constraint. In our experiments, we used four real
datasets and some synthetic datasets which have been
popularly used in some previous studies [31, 30, 13, 27].



The characteristics of the datasets are shown in Table 2
(the last column shows the average and maximal trans-
action length).

Dataset # Tuples # Items A.(M.) t. l.
connect 67557 150 43(43)
pumsb 49046 2114 74(74)

mushroom 8124 120 23(23)
gazelle 59601 498 2.5(267)

T10I4D100k 100k 1000 10(31)
T10I4Dx 200k-1000k 1000 10(31)

Table 2: Dataset Characteristics.

Real datasets: The four real datasets used in our
experiments are connect, pumsb, mushroom, and gazelle,
respectively. The connect dataset is a very dense
dataset, which contains game state information, the
pumsb dataset contains census data and is also a dense
dataset, the mushroom dataset is a little (but not very)
dense and contains characteristics of various species of
mushrooms, while the gazelle dataset contains click-
stream data from Gazelle.com and is a very sparse
dataset with a few very long transactions.
Synthetic datasets: The synthetic datasets were gen-
erated from IBM dataset generator, and each contains
totally 1000 distinct items with an average transac-
tion length 10 and average frequent itemset length 4.
The dataset T10I4D100K contains 100,000 transac-
tions, while the dataset series T10I4Dx contain 200K
to 1000K transactions, which were used to test the al-
gorithm scalability.
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Length-decreasing support constraints: Fig. 4-
9 show various length-decreasing support constraints
used in our tests for different datasets. Fig. 4 and
Fig. 5 depict two sets of stair-style length-decreasing
support constraints for dataset connect. Fig. 4 shows
four length-decreasing support constraints with mini-
mum support for itemsets longer than 25 set at 20%,
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30%, 40%, and 50%, respectively, while Fig. 5 shows an-
other four constraints with minimum support for item-
sets longer than 25 set at 5%, 10%, 15%, and 20%,
respectively. Fig. 6 shows another four special stair-
style length-decreasing support constraints for pumsb
dataset, with minimum support for itemsets longer
than 20 set at 40%, 50%, 60%, and 70%, respectively.
For dataset mushroom, we used a set of linear length-
decreasing support constraint functions: The support
threshold is set at 10% at length 1, and is linearly de-
creased to 0.01% at length 5, 10, 15, 20, respectively
(Because the y-axis in Fig. 7 is in log-scale, the cor-
responding curves do not look like linear functions, al-
though they are in fact linear. Similar situation hap-
pens in Fig. 8). For dataset gazelle, we chose five dif-
ferent support constraints: starting from support 1%
for length 1, the support threshold will be linearly de-
creased to 0.04%, 0.02%, 0.01%, 0.005%, and 0.003%
at length 100, 120, 140, 160 and 180, respectively. Fig.
9 shows a set of stair-style length-decreasing support
constraints chosen for dataset T10I4D100K, with mini-
mum support for length greater than 20 set at 0.001%,
0.002%, 0.003%, 0.004%, and 0.005%, respectively.

4.2 Performance Testing
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Comparison with LPMiner We first compared
BAMBOO with LPMiner in order to show that min-
ing constrained closed itemsets is a more desirable task
than mining constrained frequent itemsets. We used the
datasets listed above and all showed the similar picture:
BAMBOO can generate more concise result set while
it is more efficient than LPMiner. Due to the limited
space, here we only present the comparison results for
the connect dataset. Fig. 10 compares the number of
frequent itemsets with that of frequent closed itemsets,
both satisfying the set of length-decreasing support con-
straints shown in Fig 4 (A minimum support 20% in Fig.
10 represents the length-decreasing support constraint
whose minimum support is 20% for itemsets longer than
25). Fig. 11 shows the runtime of the two algorithms
under the same set of length-decreasing support con-
straints. We can see BAMBOO generates orders of mag-
nitude fewer patterns, and can be orders of magnitude
faster than LPMiner. BAMBOO’s higher performance
stems from two aspects: on the one hand, it mines much
smaller number of valid itemsets than LPMiner, on the
other hand, it adopts more effective pruning methods,
which can make full use of the length-decreasing support
constraint to prune the search space quickly.
Comparison with CLOSET+ and CFP-tree We
also compared BAMBOO with two recently developed
frequent closed itemset mining algorithms, CFP-tree
[15] and CLOSET+ [27]. In comparing these three algo-
rithms, we recorded the total number of frequent closed
itemsets and the number of closed itemsets which sat-
isfy the corresponding length-decreasing support con-
straints shown in Fig 5-9 (We call it the number of
constrained closed patterns in the corresponding fig-
ures). We first compared the three algorithms using
the dataset connect and the support constraints shown
in Fig. 5. From Fig. 13, we can see at high support
threshold (e.g., 20%), BAMBOO can be several times
faster than both CLOSET+ and CFP-tree, while at low
support (e.g., 5%), BAMBOO can be several orders of

magnitude faster than CLOSET+ and CFP-tree. Fig.
12 shows that the length-decreasing support constraint
is very effective in shrinking the result set, while on the
other hand, it also implicates that as long as we can
find some effective search space pruning methods for
BAMBOO, it will be potentially more efficient than the
traditional closed pattern mining algorithms.

Fig. 14 and Fig. 15 show the comparison results
for dataset pumsb: BAMBOO always generates much
smaller number of patterns and runs much faster than
CLOSET+ and CFP-tree under the length-decreasing
support constraints shown in Fig. 6. For example,
at support 50%, BAMBOO can be about 60 times
faster than CLOSET+ and more than 100 times faster
than CFP-tree, while the number of constrained closed
patterns is about 30 times less than that of all frequent
closed patterns.

Unlike connect and pumsb, the mushroom dataset is
relatively small and not very dense, from which a not too
large number of frequent closed patterns can be found
even with a very low support threshold like 0.01%. Even
for such a small dataset, BAMBOO can still use some
kind of length-decreasing support constraints to reduce
the number of valid closed patterns and improve the
performance. From Fig. 16 and Fig. 17, we know under
the support constraints shown in Fig. 7, BAMBOO can
be several times faster than CLOSET+ and CFP-tree,
while its result set can be several times smaller.

Gazelle is a very sparse dataset and can generate a
few very long frequent closed itemsets with low support
threshold. Most of the current closed itemset mining
algorithms run too slow when the support threshold is
lower than a certain threshold, this is because on the one
hand mining long patterns itself is very challenging, on
the other hand, a large number of short frequent closed
patterns will be generated. Fig. 18 and Fig. 19 show
very interesting and also amazing results: under the
linearly length-decreasing support constraint functions
shown in Fig. 8, BAMBOO can sift out most of the
closed patterns and only a few very long itemsets with
low support and a few short itemsets with high support
are left. For example, if the support threshold is linearly
decreased from 1% at length 1 to 0.003% at length 180,
BAMBOO only finds 79 valid itemsets and the longest
itemset has a length 184. Fig. 18 and Fig. 19 show
that BAMBOO generates orders of magnitude fewer
patterns and runs several orders of magnitude faster
than CLOSET+ and CFP-tree.

T10I4D100K is also a sparse dataset, from which
a lot of short frequent closed itemsets can be mined
for low support thresholds. Fig. 20 and Fig. 21
demonstrate the results for this dataset under the set
of stair-style support constraints shown in Fig. 9.



BAMBOO can be several times faster than CLOSET+,
while can be several orders of magnitude faster than
CFP-tree algorithm. In the meantime, the number of
closed itemsets satisfying the length-decreasing support
constraints is several times smaller than that of all
frequent closed itemsets.

 100000

 1e+06

 1e+07

 6  8  10  12  14  16  18  20

N
u

m
b

e
r 

o
f 

p
a
tt

e
rn

s

Minimum support (in %)

# Frequent closed patterns
# Constrained frequent closed patterns

Fig. 12. constrained vs.
non-constrained(connect).

1

10

100

1000

10000

6 8 10 12 14 16 18 20

R
u

n
ti

m
e
 (

in
 s

e
c
o

n
d

s
)

Minimum support (in %)

CFP-tree
CLOSET+
BAMBOO

Fig. 13. Runtime
comparison(connect).

 1000

 10000

 100000

 1e+06

 1e+07

 40  45  50  55  60  65  70

N
u

m
b

e
r 

o
f 

p
a
tt

e
rn

s

Minimum support (in %)

# Frequent closed patterns
# Constrained frequent closed patterns

Fig. 14. constrained vs.
non-constrained(pumsb).

1

10

100

1000

10000

40 45 50 55 60 65 70

R
u

n
ti

m
e
 (

in
 s

e
c
o

n
d

s
)

Minimum support (in %)

CFP-tree
CLOSET+
BAMBOO

Fig. 15. Runtime
comparison(pumsb).

 100000

 150000

 200000

 250000

 300000

 6  8  10  12  14  16  18  20

N
u

m
b

e
r 

o
f 

p
a
tt

e
rn

s

Length

# Frequent closed patterns
# Constrained frequent closed patterns

Fig. 16. constrained vs.
non-constrained

(mushroom).

5

10

15

20

25

6 8 10 12 14 16 18 20

R
u
n
ti

m
e
 (

in
 s

e
c
o
n
d
s
)

Length

CFP-tree
CLOSET+
BAMBOO

Fig. 17. Runtime
comparison(mushroom).

Effectiveness of the pruning methods The above
comparison results have validated the effectiveness of
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the length-decreasing support constraints in compress-
ing the result set: BAMBOO can generate orders of
magnitude fewer patterns than the traditional all fre-
quent closed pattern mining algorithms. But this does
not mean any pattern discovery algorithms with length-
decreasing support constraint will have much better per-
formance than a frequent closed pattern mining algo-
rithm. The efficiency of such kind of constrained al-
gorithms mainly depends on whether we can propose
some effective search space pruning methods. The above
performance comparison results have to some extent
already demonstrated the effectiveness of the pruning
methods adopted by BAMBOO. Here we will use the
T10I4D100K dataset to isolate the effectiveness of each
pruning method used in BAMBOO. Fig. 22 shows the
results under the support constraints in Fig. 9. The
Legend “no-pruning” corresponds to the LPCLOSET
algorithm, which does not apply any of the follow-
ing three pruning methods, unpromising prefix itemset
pruning, invalid item pruning3, and transaction prun-

3Here the unpromising prefix itemset pruning is the SVE -
enhanced version, while the invalid item pruning has been op-
timized using the binning technique.



ing. We can see that compared to the LPCLOSET algo-
rithm, each pruning method is very effective in boosting
the performance and when we incorporate all the three
pruning methods into BAMBOO, it achieves the best
performance. In addition, in comparison to one of the
best SVE-based pruning methods, transaction pruning,
the pruning methods proposed in this paper, unpromis-
ing prefix itemset pruning and invalid item pruning, are
more effective in enhancing the algorithm performance.

Scalability test We also tested BAMBOO’s scalability
in terms of the base size by using the synthetic dataset
series T10I4Dx. Here we varied the base size from 200K
tuples to 1000K tuples and ran BAMBOO under the five
different length-decreasing support constraints shown
in Fig. 9. In presenting the results, we use a legend
“S=0.001%” to represent the length-decreasing support
constraint whose minimum support is 0.001% for length
greater than 20. From Fig. 23, we know that BAMBOO
has very good linear scalability against the number of
transactions in the dataset.
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5 Conclusions

Many previous studies have elaborated that mining fre-
quent closed/maximal itemsets in large databases or
mining frequent itemsets with length-decreasing sup-
port constraints can lead to more compact result set
and possibly better performance. However, as our em-
pirical study has showed these two kinds of algorithms
still generate too many patterns when the support is
low or the patterns become long. In this paper we de-
veloped BAMBOO, the first algorithm which can push
deeply the length-decreasing support constraint into the
traditional closed itemset mining in order to generate
more concise and meaningful result set and gain bet-
ter efficiency. Under this more general framework the
downward-closure property no longer holds, we cannot
use it to prune search space. Instead, two search space

pruning methods, unpromising prefix itemset pruning
and invalid item pruning, plus some other optimiza-
tion techniques have been newly proposed to enhance
the performance. Our thorough performance study has
shown that BAMBOO not only can generate orders of
magnitude fewer patterns, but also can be orders of
magnitude faster than both the recently developed fre-
quent closed itemset mining algorithms and LPMiner, a
frequent itemset mining algorithm with length decreas-
ing support constraint. Furthermore, our experimen-
tal study also testifies the effectiveness of the pruning
methods and good scalability of BAMBOO in terms of
number of transactions.
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