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Abstract

Recommending new items to existing users has remained a

challenging problem due to absence of user’s past preferences

for these items. The user personalized non-collaborative

methods based on item features can be used to address this

item cold-start problem. These methods rely on similari-

ties between the target item and user’s previous preferred

items. While computing similarities based on item features,

these methods overlook the interactions among the features

of the items and consider them independently. Modeling in-

teractions among features can be helpful as some features,

when considered together, provide a stronger signal on the

relevance of an item when compared to case where features

are considered independently. To address this important is-

sue, in this work we introduce the Feature-based factorized

Bilinear Similarity Model (FBSM), which learns factorized

bilinear similarity model for Top-n recommendation of new

items, given the information about items preferred by users

in past as well as the features of these items. We carry out

extensive empirical evaluations on benchmark datasets, and

we find that the proposed FBSM approach improves upon

traditional non-collaborative methods in terms of recommen-

dation performance. Moreover, the proposed approach also

learns insightful interactions among item features from data,

which lead to deep understanding on how these interactions

contribute to personalized recommendation.

1 Introduction

Top-n recommender systems are used to identify from
a large pool of items those n items that are the most
relevant to a user and have become an essential person-
alization and information filtering technology. They rely
on the historical preferences that were either explicitly
or implicitly provided for the items and typically em-
ploy various machine learning methods to build content-
agnostic predictive models from these preferences. How-

∗This work was supported in part by NSF (IIS-0905220, OCI-

1048018, CNS-1162405, IIS-1247632, IIP-1414153, IIS-1447788),
Army Research Office (W911NF-14-1-0316), Samsung Research
America, and the Digital Technology Center at the University of
Minnesota.

†University of Minnesota.
‡Samsung Research America

ever, when new items are introduced into the system,
these approaches cannot be used to compute personal-
ized recommendations, because there are no prior pref-
erences associated with those items. As a result, the
methods used to recommend new items, referred to as
(item) cold-start recommender systems, in addition to
the historical information, take into account the charac-
teristics of the items being recommended; that is, they
are content aware. The items’ characteristics are typi-
cally captured by a set of domain-specific features. For
example, a movie may have features like genre, actors,
and plot keywords; a book typically has features like
content description and author information. These item
features are intrinsic to the item and as such they do not
depend on historical preferences.

Over the years, a number of approaches have been
developed towards solving the item cold-start problem
[7, 1, 17] that exploit the features of the new items and
the features of the items on which a user has previously
expressed his interest. A recently introduced approach,
which was shown to outperform other approaches is the
User-specific Feature-based Similarity Models (UFSM)
[6]. In this approach, a linear similarity function is es-
timated for each user that depends entirely on features
of the items previously liked by the user, which is then
used to compute a score indicating how relevant a new
item will be for that user. In order to leverage informa-
tion across users (i.e., the transfer learning component
that is a key component of collaborative filtering), each
user specific similarity function is computed as a linear
combination of a small number of global linear similar-
ity functions that are shared across users. Moreover,
due to the way that it computes the preference scores,
it can achieve a high-degree of personalization while us-
ing only a very small number of global linear similarity
functions.

In this work we extend UFSM in order to account
for interactions between the different item features. We
believe that such interactions are important and quite
common. For example, in an e-commerce website, the
items that users tend to buy are often designed to go
well with previously purchased items (e.g., a pair of
shoes that goes well with a dress). The set of features



describing items of different type will be different (e.g.,
shoe material and fabric color) and as such a linear
model can not learn from the data that for example a
user prefers to wear leather shoes with black clothes.
Being able to model such dependencies can lead to
item cold-start recommendation algorithms that achieve
better performance.

Towards this goal, we present a method called
Feature-based factorized Bilinear Similarity Model
(FBSM) that uses bilinear model to capture pair-
wise dependencies between the features. Like UFSM,
FBSM learns a similarity function for estimating the
similarity between items based on their features. How-
ever, unlike UFSM’s linear global similarity function,
FBSM’s similarity function is bilinear. A challenge
associated with such bilinear models is that the num-
ber of parameters that needs to be estimated becomes
quadratic on the dimensionality of the item’s feature
space, which is problematic given the very sparse train-
ing data. FBSM overcomes this challenge by assuming
that the pairwise relations can be modeled as a com-
bination of a linear component and a low rank compo-
nent. The linear component allows it to capture the di-
rect relations between the features whereas the low rank
component allows it to capture the pairwise relations.
The parameters of these models are estimated using
stochastic gradient descent and a ranking loss function
based on Bayesian Personalized Ranking (BPR) that
optimizes the area under the receiver operating charac-
teristic curve.

We performed extensive empirical studies to evalu-
ate the performance of the proposed FBSM on a variety
benchmark datasets and compared it against state-of-
the-art models for cold-start recommendation, includ-
ing latent factor methods and non-collaborative user-
personalized models. In our results FBSM optimized
using BPR loss function outperformed other methods
in terms of recommendation quality.

2 Notations and Definitions

Throughout the paper, all vectors are column vectors
and are represented by bold lowercase letters (e.g., fi).
Matrices are represented by upper case letters (e.g.,
R,P,Q).

The historical preference information is represented
by a preference matrix R. Each row in R corresponds
to a user and each column corresponds to an item.
The entries of R are binary, reflecting user preferences
on items. The preference given by user u for item i
is represented by entry ru,i in R. The symbol r̃u,i
represents the score predicted by the model for the
actual preference ru,i.

Sets are represented with calligraphic letters. The

set of users U has size nU , and the set of items I has a
size nI . R+

u represents the set of items that user u liked
(i.e., ∀ i ∈ R+

u , ru,i = 1). R−
u represents the set of items

that user u did not like or did not provide feedback for
(i.e., ∀ i ∈ R−

u , ru,i = 0).
Each item has a feature vector that represents

intrinsic characteristics of that item. The feature
vectors of all items are represented as the matrix
F whose columns fi correspond to the item feature
vectors. The total number of item features is nF .

The objective of the Top-n recommendation prob-
lem is to identify among the items that the user has not
previously seen, the n items that he/she will like.

3 Related Work

The prior work to address the cold-start item recom-
mendation can be divided into non-collaborative user
personalized models and collaborative models. The non-
collaborative models generate recommendations using
only the user’s past interaction history and the collabo-
rative models combine information from the preferences
of different users.

Billsus and Pazzani [3] developed one of the first
user-modeling approaches to identify relevant new
items. In this approach they used the users’ past prefer-
ences to build user-specific models to classify new items
as either “relevant” or “irrelevant”. The user models
were built using item features e.g., lexical word features
for articles. Personalized user models [12] were also used
to classify news feeds by modeling short-term user needs
using text-based features of items that were recently
viewed by user and long-term needs were modeled us-
ing news topics/categories. Banos [2] used topic tax-
onomies and synonyms to build high-accuracy content-
based user models.

Recently collaborative filtering techniques using la-
tent factor models have been used to address cold start
item recommendation problems. These techniques in-
corporate item features in their factorization techniques.
Regression-based latent factor models (RLFM) [1] is a
general technique that can also work in item cold-start
scenarios. RLFM learns a latent factor representation of
the preference matrix in which item features are trans-
formed into a low dimensional space using regression.
This mapping can be used to obtain a low dimensional
representation of the cold-start items. User’s preference
on a new item is estimated by a dot product of corre-
sponding low dimensional representations. The RLFM
model was further improved by applying more flexible
regression models [17]. AFM [7] learns item attributes
to latent feature mapping by learning a factorization of
the preference matrix into user and item latent factors
R = PQT . A mapping function is then learned to trans-



form item attributes to a latent feature representation
i.e., R = PQT = PAFT where F represents items’ at-
tributes and A transforms the items’ attributes to their
latent feature representation.

User-specific Feature-based Similarity Models
(UFSM) [6] learns a personalized user model by
using historical preferences from all users across the
dataset. In this model for each user an item similarity
function is learned, which is a linear combination of
user-independent similarity functions known as global
similarity functions. Along with these global similarity
functions, for each user a personalized linear combina-
tion of these global similarity functions is learned. It is
shown to outperform both RLFM and AFM methods
in cold-start Top-n item recommendations.

Predictive bilinear regression models [5] belong to
the feature-based machine learning approach to handle
the cold-start scenario for both users and items. Bi-
linear models can be derived from Tucker family [15].
They have been applied to separate “style” and “con-
tent” in images[14], to match search queries and docu-
ments [16], to perform semi-infinite stream analysis [13],
and etc. Bilinear regression models try to exploit the
correlation between user and item features by capturing
the effect of pairwise associations between them. Let xi

denotes features for user i and xj denotes features for
item j, and a parametric bilinear indicator of the inter-
action between them is given by sij = xT

i Wxj where
W denotes the matrix that describes a linear projection
from the user feature space onto the item feature space.
The method was developed for recommending cold-start
items in the real time scenario, where the item space is
small but dynamic with temporal characteristics. In an-
other work [9], authors proposed to use a pairwise loss
function in the regression framework to learn the ma-
trix W , which can be applied to scenario where the item
space is static but large, and we need a ranked list of
items.

4 Feature-based Similarity Model

In this section we firstly introduce the feature-based
linear model, analyzing the drawbacks of the model,
and finally elaborate the technical details of our bilinear
similarity model.

4.1 Linear Similarity Models. In UFSM [6] the
preference score for new item i for user u is given by

r̃u,i =
∑

j∈R+
u

simu(i, j),

where simu(i, j) is the user-specific similarity function
given by

simu(i, j) =
l∑

d=1

mu,d gsimd(i, j),

where gsimd(.) is the dth global similarity function, l
is the number of global similarity functions, and mu,d

is a scalar that determines how much the dth global
similarity function contributes to u’s similarity function.

The similarity between two items i and j under the
dth global similarity function gsimd(.) is estimated as

gsimd(i, j) = wd(fi ⊙ fj)
T ,

where ⊙ is the element-wise Hadamard product opera-
tor, fi and fj are the feature vectors of items i and j,
respectively, and wd is a vector of length nF with each
entry wd,c holding the weight of feature c under the
global similarity function gsimd(.). This weight reflects
the contribution of feature c in the item-item similar-
ity estimated under gsimd(.). Note that wd is a linear
model on the feature vector resulting by the Hadamard
product.

In author’s results [6] for datasets with large number
of features only one global similarity function was
sufficient to outperform AFM and RLFM method for
Top-n item cold-start recommendations. In case of only
one global similarity function the user-specific similarity
function is reduced to single global similarity function.
Estimated preference score for new item i for user u is
given by

r̃u,i =
∑

j∈R+
u

simu(i, j) =
∑

j∈R+
u

wd(fi ⊙ fj)
T ,

where wd is the parameter vector, which can be esti-
mated from training data using different loss functions.

4.2 Factorized Bilinear Similarity Models. An
advantage that the linear similarity method(UFSM)
has, over state of art methods such as RLFM and
AFM, is that it uses information from all users across
dataset to estimate the parameter vector wd. As
in the principle of collaborative filtering, there exists
users who have similar/dissimilar tastes and thus being
able to use information from other users can improve
recommendation for a user. However, we notice that a
major drawback of this model is that it fails to discover
pattern affinities between item features. Capturing
these correlations among features sometimes can lead
to significant improvements in estimating preference
scores.

We thus propose FBSM to overcome this draw-
back: It uses bilinear formulation to capture correlation



among item features. Similar to UFSM, it considers
information from all the users in dataset to learn these
bilinear weights. In FBSM, the preference score for a
new item i for user u is given by

(4.1)
r̃u,i =

∑
j∈R+

u

sim(i, j),

where sim(i, j) is the similarity function given by

sim(i, j) = fT
i Wfj

where W is the weight matrix which captures correla-
tion among item features. Diagonal of matrix W deter-
mines how well a feature of item i say kth feature of i i.e.,
fik interacts with corresponding feature of item j i.e.,
fjk while off-diagonal elements of W gives the contri-
bution to similarity by interaction of item feature with
other features of item j i.e., contribution of interaction
between fik and fjl where l ̸= k. Cosine similarity can
be reduced to our formulation where W is a diagonal
matrix with all the elements as ones.

A key challenge in estimating the bilinear model
matrix W is that the number of parameters that needs
to be estimated is quadratic in the number of fea-
tures used to describe the items. For low-dimensional
datasets, this is not a major limitation; however, for
high-dimensional datasets, sometimes sufficient train-
ing data is not present for reliable estimation. This
can become computationally infeasible, and moreover,
lead to poor generalization performance by overfitting
the training data. In order to overcome this drawback,
we need to limit the degree of freedom of the solution
W , and we propose to represent W as sum of diagonal
weights and low-rank approximation of the off-diagonal
weights:

(4.2) W = D + V TV

where D is a diagonal matrix of dimension equal to
number of features whose diagonal is denoted using a
vector d, and V ∈ Rh×nF is a matrix of rank h. The
columns of V represent latent space of features i.e., vp

represent latent factor of feature p. Using the low-
rank approximation, the parameter matrix W of the
similarity function is thus given by:

(4.3)

sim(i, j) = fT
i Wfj = fT

i (D + V TV )fj

= d(fi ⊙ fj)
T +

nF∑
k=1

nF∑
p=1

fikfjpv
T
k vp

The second part of equation 4.3 captures the effect of
off-diagonal elements of W by inner product of latent
factor of features. Since we are now estimating only

diagonal weights and low-rank approximation of off-
diagonal weights, the computation reduces significantly
compared to when we were trying to estimate the
complete matrix W . This also gives us a flexible model
where we can regularize diagonal weights and feature
latent factors separately.

The bilinear model may look similar to the formu-
lation described in [5], and however the two are very
different in nature: in [5] the bilinear model is used to
capture correlation among user and item features, on
contrary the FBSM is trying to find correlation within
features of items itself. The advantage of modeling in-
teractions among item features is especially attractive
when there is no explicit user features available. Note
that it is not hard to encode the user features in the
proposed bilinear model such that the similarity func-
tion is parameterized by user features, and we leave a
detailed study to an extension of this paper.

4.3 Parameter Estimation of FBSM. FBSM
is parameterized by Θ = [D,V ], where D,V are the
parameters of the similarity function. The inputs to
the learning process are: (i) the preference matrix R,
(ii) the item-feature matrix F , and (iii) the dimension
of latent factor of features. There are many loss
functions we can choose to estimate Θ, among which
the Bayesian Personalized Ranking (BPR) loss function
[11] is designed especially for ranking problems. In the
Top-n recommender systems, the predicted preference
scores are used to rank the items in order to select the
highest scoring n items, and thus the BPR loss function
can better model the problem than other loss functions
such as least squares loss and in general lead to better
empirical performance [7, 11]. As such, in this paper, we
propose to use the BPR loss function, and in this section
we show how the loss function can be used to estimate
the parameters Θ. Note that other loss functions such
as least squared loss can be applied similarity.

We denote the problem of solving FBSM using
BPR as FBSMbpr, and the loss function is given by

(4.4) Lbpr(Θ) ≡ −
∑
u∈U

∑
i∈R+

u ,

j∈R−
u

ln σ(r̃u,i(Θ)− r̃u,j(Θ)),

where, r̃u,i is the predicted value of the user u’s prefer-
ence for the item i and σ is the sigmoid function. The
BPR loss function tries to learn item preference scores
such that the items that a user likes have higher prefer-
ence scores than the ones he/she does not like, regard-
less of the actual item preference scores. The prediction
value r̃u,i is given by:

(4.5) r̃u,i =
∑

j∈R+
u \i

simu(i, j),



which is identical to Equation 4.1 except that item i is
excluded from the summation. This is done to ensure
that the variable being estimated (the dependent vari-
able) is not used during the estimation as an indepen-
dent variable as well. We refer to this as the Estimation
Constraint [8].

To this end, the model parameters Θ = [D,V ] are
estimated via an optimization process of the form:

(4.6) min
Θ=[D,V ]

Lbpr(Θ) + λ∥V ∥2F + β∥D∥2F ,

where we penalize the frobenius norm of the model
parameters in order to control the model complexity
and improve its generalizability.

To optimized Eq. (4.6) we proposed to use stochas-
tic gradient descent(SGD) [4], in order to handle large-
scale datasets. The update steps for D,V are based on
triplets (u, i, j) sampled from training data. For each
triplet, we need to compute the corresponding estimated
relative rank r̃u,ij = r̃u,i − r̃u,j . Let

τu,ij = sigmoid(−r̃u,ij) =
e−r̃u,ij

1 + e−r̃u,ij
,

the updates are then given by:

(4.7) D = D + α1

(
τu,ij∇D r̃u,ij − 2βD

)
, and

(4.8) vp = vp + α2

(
τu,ij∇vp r̃u,ij − 2λvp

)
.

4.4 Performance optimizations In our approach,
the direct computation of gradients is time-consuming
and is prohibitive when we have high-dimensional item
features. For example, the relative rank r̃u,ij given by

(4.9)

r̃u,ij =

(
fT
i (D + V TV )

(( ∑
q∈R+

u \i

fq

)
− fi

))
−

(
fT
j (D + V TV )

( ∑
q∈R+

u

fq

))
,

has complexity of O(|R+
u |nFh), where h is the dimen-

sionality of latent factors, nF is the number of features.
To efficiently compute these, let

fu =
∑

q∈R+
u

fq,

which can be precomputed once for all users.

Then, Equation 4.9 becomes

r̃u,ij =
(
fT
i (D + V TV )(fu − fi)

)
−(

fT
j (D + V TV )fu

)
=
(
(fi − fj)

TDfu − fT
i Dfi

)
+(

(fi − fj)
T (V TV )fu − fT

i V TV fi

)
=
(
δTijDfu − fT

i Dfi

)
+(

δTij(V
TV )fu − fT

i V TV fi

)
=
(
δTijDfu − fT

i Dfi

)
+(

(V δij)
T (V fu)− (V fi)

T (V fi)
)
,

where δij = fi − fj .
The complexity of computing the relative rank then

becomes O(nFh), which is lower than complexity of
Equation 4.9.

The gradient of the diagonal component is given by

(4.10)
∂r̃u,ij
∂D

=
(
δij ⊗ fu − fi ⊗ fi

)
.

where ⊗ represents elementwise scalar product. The
complexity of Equation 4.10 is given by O(nF ).

The gradient of the low rank component is given by

(4.11)
∂r̃u,ij
∂vp

= δij,p(V fu) + fup(V δij)− 2fip(V fi),

whose complexity is O(nFh).
Hence, the complexity of gradient computation for

all the parameters is given by O(nFh+ nF ) ≈ O(nFh).
We were able to obtain both the estimated relative rank
and all the gradients in O(nFh), which is linear with
respect to feature dimensionality as well as the size
of latent factors and the number of global similarity
functions. This allows the FBSMbpr to process large-
scale datasets.

We note that the proposed FBSMbpr method is
closely related to the factorization machine (FM) [10],
in that both are exploring the interactions among the
features. However, there is one key difference between
these two: while the FM is heavily dependent on the
quality of the user features, the proposed method does
not depend on such user features.

5 Experimental Evaluation

In this section we perform experiments to demonstrate
the effectiveness of the proposed algorithm.



Algorithm 1 FBSMbpr-Learn

1: procedure FBSM bpr Learn
2: λ← V regularization weight
3: β ← D regularization weight
4: α1, α2 ← D and V learning rates
5: Initialize Θ = [D,V ] randomly
6:

7: while not converged do
8: for each user u do
9: sample a pair (i, j) s.t. i ∈ R+

u , j ∈ R−
u

10: compute r̃u,ij = r̃u,i − r̃u,j
11: compute ∇D r̃u,ij
12: compute ∇vp r̃u,ij
13: update D using (4.7)
14: update vp∀p using (4.8)
15: end for
16: end while
17:

18: return Θ = [D,V ]
19: end procedure

5.1 Datasets We used four datasets (Amazon
Books, MovieLens-IMDB, CiteULike, Book Crossing)
to evaluate the performance of FBSM.

Amazon Books(AMAZON) is a dataset collected
from amazon about best-selling books and and their
ratings. The ratings are binarized by treating all ratings
greater than equal to 3 as 1 and ratings below 3 as 0.
Each is accompanied with a description which was used
as item’s content.

CiteULike(CUL)1 aids researchers by allowing them
to add scientific articles to their libraries. For users of
the CUL, the articles present in their library are consid-
ered as preferred articles i.e. 1 in a preference matrix
while rest are considered as implicit 0 preferences.

MovieLens-IMDB (ML-IMDB) is a dataset ex-
tracted from the IMDB and the MovieLens-1M
datasets2 by mapping the MovieLens and IMDB movie
IDs and collecting the movies that have plots and key-
words. The ratings were binarized similar to AMAZON
by treating all ratings greater than 5 as 1 and below
or equal to 5 as 0. The movies plots and keywords
were used as the item’s content. Book Crossing (BX)
dataset is extracted from Book Crossing data [18] such
that user has given at least four ratings and each book
has received the same amount of ratings. Description
of these books were collected from Amazon using ISBN
and were used as item features.

For the AMAZON, CUL, BX and ML-IMDB

1http://citeulike.org/
2http://www.movielens.org, http://www.imdb.com

datasets, the words that appear in the item descrip-
tions were collected, stop words were removed and the
remaining words were stemmed to generate the terms
that were used as the item features. All words that ap-
pear in less than 20 items and all words that appear in
more than 20% of the items were omitted. The remain-
ing words were represented with TF-IDF scores.

Various statistics about these datasets are shown in
Table 5.1. Most of these datasets contain items that
have high-dimensional feature spaces. Also comparing
the densities of the datasets we can see that the Movie-
Lens dataset have significantly higher density than other
dataset.

5.2 Comparison methods We compared FBSM
against non-collaborative personalized user modeling
methods and collaborative methods.

1. Non-Collaborative Personalized User Mod-
eling Methods Following method is quite similar
to method described in [3]

• Cosine-Similarity (CoSim): This is a per-
sonalized user-modeling method. The prefer-
ence score of user u on target item i is esti-
mated using equation 4.5 by using cosine sim-
ilarity between item features.

2. Collaborative Methods

• User-specific Feature-based Similarity
Models (UFSM): As mentioned before, this
method [6] learns personalized user model by
using all past preferences from users across the
dataset. It outperformed other state of the art
collaborative latent factor based methods e.g.,
RLFM[1], AFM[7] by significant margin.

• RLFMI: We used the Regression-based La-
tent Factor Modeling(RLFM) technique im-
plemented in factorization machine library
LibFM[10] that accounts for inter-feature in-
teractions. We used LibFM with SGD learn-
ing to obtain RLFMI results.

5.3 Evaluation Methodology and Metrics We
evaluated performance of methods using the following
procedure. For each dataset we split the correspond-
ing user-item preference matrix R into three matrices
Rtrain, Rval and Rtest. Rtrain contains a randomly se-
lected 60% of the columns (items) of R, and the remain-
ing columns were divided equally among Rval and Rtest.
Since items in Rtest and Rval are not present in Rtrain,
this allows us to evaluate the methods for item cold-start
problems as users in Rtrain do not have any preferences



Table 1: Statistics for the datasets used for testing

Dataset # users # items # features # preferences # prefs/user # prefs/item density

CUL 3,272 21,508 6,359 180,622 55.2 8.4 0.13%

BX 17,219 36,546 8,946 574,127 33.3 15.7 0.09%

AMAZON 13,097 11,077 5,766 175,612 13.4 15.9 0.12%

ML-IMDB 2,113 8,645 8,744 739,973 350.2 85.6 4.05%

Table 2: Performance of FBSM and Other Techniques on the Different Datasets

Method
CUL BX

Params Rec@10 DCG@10 Params Rec@10 DCG@10

CoSim - 0.1791 0.0684 - 0.0681 0.0119

RLFMI h=75 0.0874 0.0424 h=75 0.0111 0.003

UFSMbpr l=1,
µ1=0.25

0.2017 0.0791 l=1,
µ1=0.1

0.0774 0.0148

FBSMbpr λ=0.25,
β=10, h=5

0.2026 0.0792 λ=1,
β=100,
h=1

0.0776 0.0148

Method
ML-IMDB AMAZON

Params Rec@10 DCG@10 Params Rec@10 DCG@10

CoSim - 0.0525 0.1282 - 0.1205 0.0228

RLFMI h = 15 0.0155 0.0455 h = 30 0.0394 0.0076

UFSMbpr l=1,
µ1=0.005

0.0937 0.216 l=1,
µ1=0.25,

0.1376 0.0282

FBSMbpr λ=0.01,
β=0.1,
h=5

0.0964 0.227 λ=0.1,
β=1, h=1

0.1392 0.0284

The “Params” column shows the main parameters for each method. For UFSM bpr ,
l is the number of similarity functions, and λ, µ1 is the regularization parameter.
For FBSM, λ and β are regularization parameters and h is dimension of feature latent
factors. The “Rec@10” and “DCG@10” columns show the values obtained for these
evaluation metrics. The entries that are underlined represent the best performance
obtained for each dataset.

for items in Rtest or Rval. The models are learned us-
ing Rtrain and the best model is selected based on its
performance on the validation set Rval. The selected
model is then used to estimate the preferences over all
items in Rtest. For each user the items are sorted in
decreasing order and the first n items are returned as
the Top-n recommendations for each user. The evalua-
tion metrics as described later are computed using these
Top-n recommendation for each user.

After creating the train, validation and test split,
there might be some users who do not have any items
in validation or test split. In that case we evaluate

performance on the splits for only those user who have
at least one item in corresponding test split. This split-
train-evaluate procedure is repeated three times for each
dataset and evaluation metric scores are averaged over
three runs before being reported in results.

We used two metrics to assess the performance
of the various methods: Recall at n (Rec@n) and
Discounted Cumulative Gain at n (DCG@n). Given the
list of the Top-n recommended items for user u, Rec@n
measures how many of the items liked by u appeared in
that list, whereas the DCG@n measures how high the
relevant items were placed in the list. The Rec@n is



defined as

REC@n =
|{Items liked by user} ∩ {Top-n items}|

|Top-n items|
The DCG@n is defined as

DCG@n = imp1 +

n∑
p=2

impp
log2(p)

,

where the importance score impp of the item with rank
p in the Top-n list is

impp =

{
1/n, if item at rank p ∈ R+

u,test

0, if item at rank p /∈ R+
u,test.

The main difference between Rec@n and DCG@n is
that DCG@n is sensitive to the rank of the items in
the Top-n list. Both the Rec@n and the DCG@n are
computed for each user and then averaged over all the
users.

5.4 Model Training FBSM’s model parameters are
estimated using training set Rtrain and validation set
Rval. After each major SGD iteration of Algorithm 1
we compute the Rec@n on validation set and save the
current model if current Rec@n is better than those
computed in previous iterations. The learning process
ends when the optimization objective converges or no
further improvement in validation recall is observed for
10 major SGD iterations. At the end of learning process
we return the model that achieved the best Rec@n on
the validation set.

To estimate the model parameters of FBSMbpr, we
draw samples equal to the number of preferences in R
for each major SGD iteration. Each sample consists
of a user, an item preferred by user and an item not
preferred by user. If a dataset does not contain items
not preferred by user then we sample from items for
which his preference is not known.

For estimating RLFMI model parameters, LibFM
was given the training and validation sets and the model
that performed best on the validation set was used for
evaluation on test sets. For RLFMI, the training set
must contain both 0’s and 1’s. Since the CUL dataset
does not contain both 0’s and 1’s, we sampled 0’s equal
to number of 1’s in R from the unknown values.

6 Results and Discussion

6.1 Comparison with previous methods We
compared the performance of FBSM with other meth-
ods described in Section on 5.2. Results are shown in
Table 2 for different datasets. We tried different values
for various parameters e.g., latent factors and regular-
ization parameters associated with methods and report
the best results found across datasets.

These results illustrate that FBSMbpr by modeling
the cross feature interactions among items can improve
upon the UFSM method [6] which has been shown
to outperform the existing state of the art methods
like RLFM[1] and AFM[7]. Similar to the UFSM
method, FBSMbpr method has outperformed latent-
factor based RLFMI method. An example of cross-
feature interactions found by FBSM is interaction
among terms tragic, blockbuster, and famous.

6.2 Performance investigation at user level We
further looked at some of our datasets (ML − IMDB
and AMAZON) and divided the users based on the
performance achieved by FBSM in comparison with
UFSM i.e., users for which FBSM performed better,
similar and worse than UFSM. These finding are
presented in Table 3. For ML-IMDB dataset there
is an increase of 22% in number of users for whom
recommendation is better on using FBSM method,
while for AMAZON dataset the number of users that
benefited from FBSM is not significant. On comparing
the two datasets in Table 3, ML − IMDB has much
more preferences per item or existing items have been
rated by more users compared to AMAZON . Hence
our proposed method FBSM takes the advantage of
availability of more data while UFSM fails to do so.

7 Conclusion

We presented here FBSM for Top-n recommendation in
item cold-start scenario. It tries to learn a similarity
function between items, represented by their features,
by using all the information available across users and
also tries to capture interaction between features by
using a bilinear model. Computation complexity of
bilinear model estimation is significantly reduced by
modeling the similarity as sum of diagonal component
and off-diagonal component. Off-diagonal component
are further estimated as dot product of latent spaces of
features.

In future, we want to investigate the effect of
non-negativity constraint on model parameters and
effectiveness of the method on actual rating prediction
instead of Top-n recommendation.
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