Clustering in Life Sciences

Ying Zhao and George Karypis

Department of Computer Science, University of Minnesota, Minneapolis, MN 55455
{yzhao, karypis}@cs.umn.edu

1 Introduction

Clustering is the task of organizing a set of objects into meaningful groups. These groups can be digjoint,
overlapping, or organized in some hierarchical fashion. The key element of clustering is the notion that the
discovered groups are meaningful. This definition isintentionally vague, as what constitutes meaningful isto
alarge extent, application dependent. In some applications this may translate to groups in which the pairwise
similarity between their objectsis maximized, and the pairwise similarity between objects of different groups
is minimized. In some other applications this may translate to groups that contain objects that share some
key characteristics, even though their overall similarity is not the highest. Clustering is an exploratory tool
for analyzing large datasets, and has been used extensively in numerous application areas.

Clustering has a wide range of applications in life sciences and over the years has been used in many
areas ranging from the analysis of clinical information, phylogeny, genomics, and proteomics. For example,
clustering algorithms applied to gene expression data can be used to identify co-regulated genes and provide
a genetic fingerprint for various diseases. Clustering algorithms applied on the entire database of known
proteins can be used to automatically organize the different proteins into close- and distant-related families,
and identify subsequencesthat are mostly preserved across proteins [52, 22, 55, 68, 49]. Similarly, clustering
algorithms applied to the tertiary structural datasets can be used to perform asimilar organization and provide
insightsin the rate of change between sequence and structure [20, 65].

The primary goa of this chapter is to provide an overview of the various issues involved in clustering
large datasets, describe the merits and underlying assumptions of some of the commonly used clustering
approaches, and provide insights on how to cluster datasets arising in various areas within life-sciences.
Toward this end, the chapter is organized in broadly three parts. The first part (Sections 2— 4) describes
the various types of clustering algorithms developed over the years, the various methods for computing the
similarity between objects arising in life sciences, and methods for assessing the quality of the clusters.
The second part (Section 5) focuses on the problem of clustering data arising from microarray experiments
and describes some of the commonly used approaches. Finally, the third part (Section 6) provides a brief
introduction to CLUTO, a general purpose toolkit for clustering various datasets, with an emphasis on its
applications to problems and analysis requirements within life sciences.

2 Types of Clustering Algorithms

The topic of clustering has been extensively studied in many scientific disciplines and a variety of different
algorithms have been developed [51, 38, 12, 45, 36, 59, 6, 78, 12, 23, 73, 28, 29, 42]. Two recent surveys
on the topics [37, 32] offer a comprehensive summary of the different applications and algorithms. These

algorithms can be categorized aong different dimensions based either on the underlying methodology of the
algorithm, leading to partitional or agglomerative approaches, based on the structure of the final solution,
leading to hierarchical or non-hierarchical solutions, based on the characteristics of the space in which they
operate, leading to feature or similarity approaches, or based on the type of clustersthat they discover, leading
to globular or transitive clustering methods.

2.1 Agglomerative and Partitional Algorithms

Partitional algorithms, such as K-means [54, 38], K-medoids [38, 45, 59], probabilistic [15, 12], graph-
partitioning-based [77, 38, 31, 70], or spectral based [7], find the clusters by partitioning the entire dataset
into either a predetermined or an automatically derived number of clusters.

Partitional clustering algorithms compute a k-way clustering of a set of objects either directly or via a
sequence of repeated bisections. A direct k-way clustering is commonly computed as follows. Initialy, a
set of k objects is selected from the datasets to act as the seeds of the k clusters. Then, for each object, its
similarity to these k seedsis computed, and it is assigned to the cluster corresponding to its most similar seed.
Thisformstheinitial k-way clustering. This clustering isthen repeatedly refined so that it optimizes adesired
clustering criterion function. A k-way partitioning viarepeated bisectionsis obtained by recursively applying
the above algorithm to compute 2-way clustering (i.e., bisections). Initialy, the objects are partitioned into
two clusters, then one of these clustersis selected and is further bisected, and so on. This process continues
k — 1 times, leading to k clusters. Each of these bisections is performed so that the resulting two-way
clustering solution optimizes a particular criterion function.

Criterion functions used in the partitional clustering reflect the underlying definition of the “goodness’ of
clusters. The partitional clustering can be considered as an optimization procedure that tries to create high
quality clusters according to a particular criterion function. Many criterion functions have been proposed
[38, 17, 80] and some of them are described later in Section 6. Criterion functions measure various aspects
of intra-cluster similarity, inter-cluster dissimilarity, and their combinations. These criterion functions utilize
different views of the underlying collection, by either modeling the objects as vectorsin a high-dimensional
space, or by modeling the collection as a graph.

Hierarchical agglomerative algorithms find the clusters by initially assigning each object to its own cluster
and then repeatedly merging pairs of clusters until a certain stopping criterion is met. Consider an n-object
dataset and the clustering solution that has been computed after performing | merging steps. This solution
will contain exactly n — | clusters, as each merging step reduces the number of clusters by one. Now, given
this (n — |)-way clustering solution, the pair of clusters that is selected to be merged next, is the one that
leads to an (n — | — 1)-way solution that optimizes a particular criterion function. That is, each one of
the (n — 1) x (n — | — 1)/2 pairs of possible merges is evaluated, and the one that leads to a clustering
solution that has the maximum (or minimum) value of the particular criterion function is selected. Thus, the
criterion function is locally optimized within each particular stage of agglomerative algorithms. Depending
on the desired solution, this process continues until either there are only k clusters left, or when the entire
agglomerative tree has been obtained.

Thethreebasic criteriato determinewhich pair of clustersto be merged next are single-link [67], complete-
link [46] and group average (UPGMA) [38]. The single-link criterion function measures the similarity of two
clusters by the maximum similarity between any pair of objects from each cluster, whereas the complete-link
uses the minimum similarity. In general, both the single- and the complete-link approaches do not work very
well because they either base their decisions to alimited amount of information (single-link), or assume that
all the objectsin the cluster are very similar to each other (complete-link). On the other hand, the group aver-
age approach measures the similarity of two clusters by the average of the pairwise similarity of the objects
from each cluster and does not suffer from the problems arising with single- and complete-link. In addition to

these three basic approaches, a number of more sophisticated schemes have been devel oped, like CURE [28],
ROCK [29], CHAMELEON [42], that were shown to produce superior results.

Finally, hierarchical algorithms produce a clustering solution that forms a dendrogram, with a single all
inclusive cluster at the top and single-point clusters at the leaves. On the other hand, in non-hierarchical
algorithms there tends to be no relation between the clustering solutions produced at different levels of gran-
ularity.

2.2 Feature- and Similarity- Based Clustering Algorithms

Another distinction between the different clustering algorithms is whether or not they operate on the object’s
feature space or operate on a derived similarity (or distance) space. K-means based algorithms are the
prototypical examples of methods that operate on the original feature space. In this class of agorithms,
each object is represented as a multi-dimensional feature vector, and the clustering solution is obtained by
iteratively optimizing the similarity (or distance) between each object and its cluster centroid. One the other
hand, similarity-based algorithms compute the clustering solution by first computing the pairwise similarities
between all the objects and then use these similarities to drive the overall clustering solution. Hierarchical
agglomerative schemes, graph-based schemes, aswell as K -medoid, fall into this category. The advantages of
similarity-based methodsisthat they can be used to cluster awide variety of datasets, provided that reasonable
methods exist for computing the pairwise similarity between objects. For this reason, they have been used to
cluster both sequential [52, 22] as well as graph datasets [40, 72], especialy in biological applications. On
the other hand, there has been limited work in developing clustering algorithms that operate directly on the
sequence or graph datasets [41].

However, similarity-based approaches have two key limitations. First, their computational requirements
are high as they need to compute the pairwise similarity between all the objects that need to be clustered.
As a result such algorithms can only be applied to relatively small datasets (a few thousand objects), and
they cannot be effectively used to cluster the datasets arising in many fields within life sciences. The second
limitation of these approachesis that by not using the object’s feature space and relying only on the pairwise
similarities, they tend to produce sub-optimal clustering solutions especially when the similarities are low
relative to the cluster sizes. The key reason for this is that these algorithms can only determine the overall
similarity of a collection of objects (i.e., a cluster) by using measures derived from the pairwise similarities
(e.g., average, median, or minimum pairwise similarities). However, such measures, unless the overall simi-
larity between the members of different clustersis high, are quite unreliable since they cannot capture what
is common between the different objectsin the collection.

Clustering agorithms that operate in the object’s feature space can overcome both of these limitations.
Since they do not require the precomputation of the pairwise similarities, fast partitional agorithms can be
used to find the clusters, and since their clustering decisions are made in the object’s feature space, they
can potentially lead to better clusters by correctly evaluating the similarity between a collection of objects.
For example, in the context of clustering protein sequences, the proteins in each cluster can be analyzed to
determine the conserved blocks, and use only these blocksin computing the similarity between the sequences
(an idea formalized by profile HMM approaches [19, 18]). Recent studies in the context of clustering large
high-dimensional datasets done by various groups [13, 50, 2, 69] show the advantages of such algorithms
over those based on similarity.

2.3 Globular and Transitive Clustering Algorithms

Besides the operational differences between various clustering algorithms, another key distinction between
them is the type of clusters that they discover. There are two general types of clusters that often arise in

different application domains. What differentiates these typesis the rel ationship between the cluster’s objects
and the dimensions of their feature space.

The first type of clusters contains objects that exhibit a strong pattern of conservation along a subset of
their dimensions. That is, thereis a subset of the original dimensions in which alarge fraction of the objects
agree. For example, if the dimensions correspond to different protein motifs, then a collection of proteinswill
form acluster, if there exist a subset of motifs that are present in a large fraction of the proteins. This subset
of dimensionsis often referred to as a subspace, and the above stated property can be viewed as the cluster’s
objectsand its associated dimensions forming adense subspace. Of course, the number of dimensionsin these
dense subspaces,and the density (i.e., how largeisthe fraction of the objects that share the same dimensions)
will be different from cluster to cluster. Exactly this variation in subspace size and density (and the fact that
an object can be part of multiple digoint or overlapping dense subspaces) is what complicates the problem
of discovering this type of clusters. There are a number of application areas in which such clusters give rise
to meaningful groupings of the objects (i.e., domain experts will tend to agree that the clusters are correct).
Such areas includes clustering documents based on the terms they contain, clustering customers based on the
products they purchase, clustering genes based on their expression levels, clustering proteins based on the
motifs they contain, etc.

The second type of clusters contains objects in which again there exists a subspace associated with that
cluster. However, unlike the earlier case, in these clusters there will be sub-clusters that may share a very
small number of the subspace’s dimension, but there will be a strong path within that cluster that will connect
them. By “strong path” we mean that if A and B are two sub-clusters that share only a few dimensions,
then there will be another set of sub-clusters Xi, Xo, ..., Xk, that belong to the cluster, such that each of
the sub-cluster pairs (A, X1), (X1, X2), ..., (Xk, B) will share many of the subspace’s dimensions. What
complicates cluster discovery in this setting isthat the connections (i.e., shared subspace dimensions) between
sub-clusters within a particular cluster will tend to be of different strength. Examples of thistype of clusters
include protein clusters with distant homologies or clusters of points that form spatially contiguous regions.

Our discussion so far focused on the relationship between the objects and their feature space. However,
these two classes of clusters can aso be understood in terms of the the object-to-object similarity graph. The
first type of clusters will tend to contain objects in which the similarity between all pairs of objects will be
high. On the other hand, in the second type of clusters there will be a lot of objects whose direct pairwise
similarity will be quite low, but these objectswill be connected by many paths that stay within the cluster that
traverse high similarity edges. The names of these two cluster types were inspired by this similarity-based
view, and they are referred to as globular and transitive clusters, respectively.

The various clustering algorithms are in general suited for finding either globular or transitive clusters.
In general, clustering criterion driven partitional clustering algorithms such as K-means and its variants
and agglomerative algorithms using the complete-link or the group-average method are suited for finding
globular clusters. On the other hand, the single-link method of the agglomerative algorithm, and graph-
partitioning-based clustering algorithms that operate on a nearest-neighbor similarity graph are suited for
finding transitive clusters. Finally, specialized algorithms, called sub-space clustering methods, have been
developed for explicitly finding either globular or transitive clusters by operating directly in the object’'s
feature space [3, 57, 10].

3 Methods for Measuring The Similarity Between Objects

In general, the method used to compute the similarity between two objects depends on two factors. The first
factor has to do with how the objects are actually being represented. For example, the similarity between two
objectsrepresented by a set of attribute-value pairs will be entirely different than the method used to compute

the similarity between two DNA sequences or two 3D protein structures. The second factor is much more
subjective and has to do with the actual goal of clustering. Different analysis requirements may give rise to
entirely different similarity measures and different clustering solutions. This section focuses on discussing
various methods for computing the similarity between objects that address both of these factors.

The diverse nature of biological sciences and the shear complexity of the underlying physico-chemical
and evolutionary principles that need to be modeled, gives rise to numerous clustering problems involving a
wide range of different objects. The most prominent of them are the following:

Multi-Dimensional Vectors

Each object isrepresented by a set of attribute-value pairs. The meaning of the attributes (also referred
to as variables or features) is application dependent and includes datasets like those arising from var-
ious measurements (e.g., gene expression data), or from various clinical sources (e.g., drug-response,
disease states, €tc.).

Sequences

Each object is represented as a sequence of symbols or events. The meaning of these symbols or events
also depends on the underlying application and includes objects such as DNA and protein sequences,
sequences of secondary structure elements, temporal measurements of various quantities such as gene
expressions, and historical observations of disease states.

Structures

Each object is represented as a two- or three-dimensional structure. The primary examples of such
datasetsinclude the spatial distribution of various quantities of interest within various cells, and the 3D
geometry of chemical molecules such as enzymes and proteins.

The rest of this section describes some of the most popular methods for computing the similarity for all
these types of objects.

3.1 Similarity Between Multi-Dimensional Objects

There are avariety of methods for computing the similarity between two objects that are represented by a set
of attribute-value pairs. These methods, to a large extent, depend on the nature of the attributes themselves
and the characteristics of the objects that we need to model by the similarity function.

From the point of similarity calculations, there are two general types of attributes. The first one consists
of attributes whose range of values are continuous. This includes both integer- and real-valued variables, as
well as, attributes whose allowed set of values are thought to be part of an ordered set. Examples of such
attributes include gene expression measurements, ages, disease severity levels, etc. On the other hand, the
second type consists of attributes that take values from an unordered set. Examples of such attributesinclude
various gender, blood type, tissue type, etc. We will refer to the first type as continuous attributes and to the
second type as categorical attributes. The primary difference between these two types of attributesisthat in
the case of continuous attributes, when there is a mismatch on the value taken by a particular attribute in two
different objects, the difference of the two valuesis a meaningful measure of distance, whereasin categorical
attributes, there is no easy way to assign a distance between such mismatches.

In the rest of this section, we present methods for computing the similarity assuming that all the attributes
in the objects are either continuous or categorical. However, in most real-applications, objects will be repre-
sented by a mixture of such attributes, so the described approaches need to be combined.

Continuous Attributes When al the attributes are continuous, each object can be considered to be
a vector in the attribute space. That is, if n is the total number of attributes, then each object v can be

represented by an n-dimensional vector (vi, vo, ..., vn), Where vj isthe value of theith attribute.

Given any two objects with their corresponding vector-space representations v and u, a widely used
method for computing the similarity between them is to look at their distance as measured by some norm
of their vector difference. That is,

dis; (v, u) = ||v — ul|r, (1)

wherer isthe norm used, and || - || is used to denote vector norms. If the distance is small, then the objects
will be similar, and the similarity of the objects will decrease as their distance increases.

The two most commonly used norms are the one- and the two-norm. In the case of the one-norm, the
distance between two objectsis give by

n
disy(v, u) = [[v —ull1 =Y _ |vi — uil, @)
i

where | - | denotes absolute values. Similarly, in the case of the two-norm, the distance is given by

n
disg(v,u) = [fv —ullz= | > (i —). €)
i=1

Note that the one-norm distance is also called the Manhattan distance, whereas the two-norm distance is
nothing more than the Euclidean distance between the vectors. Those distances may become problematic
when clustering high-dimensional data, because in such datasets, the similarity between two objectsis often
defined along a small subset of dimensions.

An alternate way of measuring the similarity between two objects in the vector-space model isto look at
the angle between their vectors. If two objects have vectors that point to the same direction (i.e., their angleis
small), then these objectswill be considered similar, and if their vectors point to different directions (i.e., their
angle is large), then these vectors will be considered dissimilar. This angle-based approach for computing
the similarity between two objects emphasizes the relative values that each dimension takes within each
vector, and not their overall length. That is, two objects can have an angle of zero (i.e., point to the identical
direction), even if their Euclidean distance is arbitrarily large. For example, in atwo-dimensional space, the
vectorsv = (1, 1), and u = (1000, 1000) will be considered to be identical, as their angleis zero. However,
their Euclidean distance is close to 1000+/2.

Since the computation of the angle between two vectors is somewhat expensive (requiring inverse trigono-
metric functions), we do not measure the angle itself but its cosine function. The cosine of the angle between
two vectors v and u is given by

> il

sim(v, U) = cos(v, U) = .
[lvll2llull2

4
This measure will be plus one, if the angle between v and u is zero, and minus one, if their angle is 180
degrees (i.e., point to opposite directions). Note that a surrogate for the angle between two vectors can also
be computed using the Euclidean distance, but instead of computing the distance between v and u directly, we
need to first scale them to be of unit length. In that case, the Euclidean distance measures the chord between
the two vectorsin the unit hypersphere.

In addition to the above linear algebra inspired methods, another widely used scheme for determining the

similarity between two vectors uses the Pearson correlation coefficient, which is given by

Iy — D) — 0)
I - 925w - 02

where v and 0 are the mean of the values of the v and u vectors, respectively. Note that Pearson’s correlation
coefficient is nothing more than the cosine between the mean-subtracted v and u vectors. Asaresult, it does
not depend on the length of the (v — v) and (u — 0) vectors, but only on their angle.

Our discussion so far on similarity measures for continuous attributes focused on objects in which al the
attributes were homogeneous in nature. A set of attributes are called homogeneous if all of them measure
guantitiesthat are of the sametype. Asaresult changesin the values of these variables can be easily correlated
across them. Quite often, each object will be represented by a set of inhomogeneous attributes. For example,
if we would like to cluster patients, then some of the attributes describing each patient can measure things
like age, weight, height, calorie intake, etc. Now if we use some of the above described methods to compute
the similarity we will essentially making the assumption that equal magnitude changes in all variables are
identical. However this may not be the case. If the age of two patientsis 50 years, that represents something
that is significantly different if their calorie intake difference is 50 calories. To address these problems, the
various attributes need to be first normalized prior to using any of the above similarity measures. Of course,
the specific normalization method is attribute dependent, but its goal should be to make differences across
different attributes comparable.

sim(v, u) = corr(v, u) =

®)

Categorical Attributes If the attributes are categorical, special similarity measures are required, since
distances between their values cannot be defined in an obvious manner. The most straightforward way isto
treat each categorical attribute individually and define the similarity based on whether two objects contain the
exact same value for each categorical attribute. Huang [35] formalized this idea by introducing dissimilarity
measures between objects with categorical attributes that can be used in any clustering algorithms. Let X
and Y be two objects with m categorical attributes, and X; and Y; be the values of the i th attribute of the two
objects, the dissimilarity measure between X and Y is defined to be the number of mismatching attributes of
the two objects. That is,

m
d(X,Y) =) S(Xi, Y,
i=1

where
0 Xj=Y)

S(X"Y‘):{ 1 (X #Y)

A normalized variant of the above dissimilarity is defined as follows

m
nx; + Ny
d(X,Y) = ——LS(X, Yi),
; nXi nYI I |

where nx; (ny;) is the number of times the value X; (Y;) appears in the ith attribute of the entire dataset.
If two categorical values are common across the dataset, they will have low weights, so that the mismatch
between them will not contribute significantly to the final dissimilarity score. If two categorical values are
rare in the dataset, then they are more informative and will receive higher weights according to the formula
Hence, this dissimilarity measure emphasizes the mismatches that happen for rare categorical values than for
those involving common ones.

One of the limitations of the above method is that two values can contribute to the overall similarity

only if they are the same. However, different categorical values may contain useful information in the sense
that even if their values are different, the objects containing those values are related to some extent. By
defining similarities just based on matches and mismatches of values, some useful information may belost. A
number of approaches have been proposed to overcome thislimitation [29, 25, 26, 61] by utilizing additional
information between categories or relationships between categorical values.

3.2 Similarity Between Sequences

One of the most important applications of clustering in life sciences is clustering sequences, e.g, DNA or
protein sequences. Many clustering algorithms have been proposed to enhance sequence database searching,
organize seguence databases, generate phylogenetic trees or guide multiple sequence alignment etc. In this
specific clustering problem, the objects of interest are biological sequences, which consist of a sequence
of symboals, which could be nucleotides, amino acids or secondary structure elements (SSEs). Biological
sequences are different from the objects we have discussed so far, in the sense that they are not defined by a
collection of attributes. Hence, the similarity measures we discussed so far are not applicable to biological
sequences.

Over the years, a number of different approaches have been developed for computing similarity between
two sequences [30]. The most common ones are the alignment-based measures, which first compute an
optimal aignment between two sequences (either globally or locally), and then determine their similarity
by measuring the degree of agreement in the aligned positions of the two sequences. The aligned positions
are usually scored using a symbol-to-symbol scoring matrix, and in the case of protein sequences, the most
commonly used scoring matrices are PAM [14, 63] or BLOSUM [33].

The global sequence aignment (Needleman-Wunsch alignment [58]) aligns the entire sequences using
dynamic programming. The recurrence relations are the following [30]. Given two sequences S of length n
and $ of length m, and a scoring matrix S, let score(i, j) be the score of the optimal alignment of prefixes
S[l...i]and S[1...]].

The base conditions are,

score(0, j) = Y S(. S(k))
1<k<j
and
score(i, 0) = Y S(Su(k).).

1<k<i

Then, the general recurrence s,

score(i — 1, j — 1) + S(S(i), S(i))
score(i, j) = max {4 score(i — 1, j) + S(Si(i),)
score(i, j — 1) + S, S(j))

where ‘' represents a space, and S is the scoring matrix to specify the matching score for each pair of
symbols. And score(n, m) isthe optimal alignment score.

These global similarity scores are meaningful when we compare similar sequences with roughly the same
length, e.g, protein sequences from the same protein family. However, when sequences are of different
lengths and are quite divergent, the alignment of the entire sequences may not make sense, in which case,
the similarity is commonly defined on the conserved subsegquences. This problem is referred to as the local
alignment problem, which seeksto find the pair of substrings of the two sequencesthat has the highest global
alignment score among al possible pairs of substrings. Local alignments can be computed optimally viaa
dynamic programming algorithm, originaly introduced by Smith and Waterman [66]. The base conditions

are score(0, j) = 0 and score(i, 0) = 0, and the general recurrence is given by

0

score(i — 1, j — 1) + S(S1(i), S(1))
score(i — 1, j) + S(Su(),)

score(i, j — 1) + S, S(j))

score(i, j) = max

The local sequence alignment score corresponds to the cell(s) of the dynamic programming table that has the
highest value. Note that the recurrence for local alignmentsis very similar to that for global alignments only
with minor changes, which allow the alignment to begin from any location (i, j) [30].

Alternatively, local alignments can be computed approximately via heuristic approaches, such as FASTA
[53, 60] or BLAST [4]. The heuristic approaches achieve low time complexities by first identifying promising
locations in an efficient way, and then applying a more expensive method on those locations to construct the
final local sequence alignment. The heuristic approaches are widely used for searching protein databases due
to their low time complexity. Description of these algorithms is beyond the scope of this chapter, and the
interested reader should follow the references.

Most existing protein clustering algorithms use the similarity measure based on the local alignment meth-
ods, i.e, Smith-Waterman, BLAST and FASTA (GeneRage [22], ProtoMap [76] etc.). These clustering
algorithms first obtain the pairwise similarity scores of all pairs of sequences, then they either normalize
the scores by the salf-similarity scores of the sequences to obtain a percentage value of identicalness [8],
or transform the scores to binary values based on a particular threshold [22]. Other methods normalize the
row similarity scores by taking into account other sequences in the dataset. For example, ProtoMage [76]
first generates the distribution of the pairwise similarities between sequence A and the other sequences in
the database. Then the similarity between sequence A and segquence B is defined as the expected value of
the similarity score found for A and B, based on the overal distribution. A low expected value indicates a
significant and strong connection (similarity).

3.3 Similarity Between Structures

Methods for computing the similarity between the three-dimensional structures of two proteins (or other
molecules), are intrinsically different from any of the approaches that we have seen so far for comparing
multi-dimensional objects and sequences. Moreover, unlike the previous data types for which there are well-
devel oped and widely-accepted methods for measuring similarities, the methods for comparing 3D structures
are still evolving, and the entire field is an active research area. Providing a comprehensive description of
the various methods for computing the similarity between two structures requires a chapter (or abook) of its
own, and is far beyond the scope of this chapter. For this reason, our discussion in the rest of this section
will primarily focus on presenting some of the issues involved in comparing 3D structures, in the context of
proteins, and outlining some of the approaches that have been proposed for solving them. The reader should
refer to the chapter by Johnson and L ehtonen [39] that provide an excellent introduction on the topic.

The general approach, that almost all methods for computing the similarity between a pair of 3D protein
structures follow, is to try to superimpose the structure of one protein on top of the structure of the other
protein, so that certain key features are mapped very close to each other in space. Once thisis done, then the
similarity between two structures is computed by measuring the fit of the superposition. Thisfit iscommonly
computed as the root mean sguare deviations (RM SD) of the corresponding features. To some extent, thisis
similar in nature to the alignment performed for sequence-based similarity approaches, but it is significantly
more complicated asit involves 3D structureswith substantially more degrees of freedom. There areanumber
of different variationsfor performing this superposition that haveto do with (i) the features of the two proteins

that are sought to be matched, (ii) whether or not the proteins are treated asrigid or flexible bodies, (iii) how
the equivalent set of features from the two proteins are determined, and (iv) the type of superposition that is
computed.

In principle, when comparing two protein structures we can treat every atom of each amino acid side chain
as a feature and try to compute a superposition that matches all of them as well as possible. However, this
usually does not lead to good results because the side chains of different residues will have different number
of atoms with different geometries. Moreover, even the same amino acid types may have side chains with
different conformations, depending on their environment. As aresult, even if two proteins have very similar
backbones, a superposition computed by looking at all the atoms may fail to identify this similarity. For
this reason, most approaches try to superimpose two protein structures by focusing on the C,, atoms of their
backbones, whose locations are less sensitive on the actual residuetype. Besidesthese atom-level approaches,
other methods focus on secondary structure elements (SSE) and superimpose two proteins so that their SSEs
are geometrically aligned with each other.

Most approaches for computing the similarity between two structures treat them as rigid bodies, and try
to find the appropriate geometric transformation (i.e., rotation and transation) that leads to the best super-
position. Rigid-body geometric transformations are well-understood and they are relatively easy to compute
efficiently. However, by treating proteins as rigid bodies we may get poor superpositions when the protein
structures are significantly different, even though they are part of the same fold. In such cases, allowing some
degree of flexibility tendsto produce better results, but also increasesthe complexity. In trying to find the best
way to superimpose one structure on top of the other in addition to the features of interest we must identify
the pairs of features from the two structures that will be mapped against each other. There are two general
approaches for doing that. The first approach relies on an initial set of equivalent features (e.g., C, atomsor
SSES) being provided by domain experts. Thisinitial set isused to compute an initial superposition and then
additional features are identified using various approaches based on dynamic programming or graph theory
[58, 56, 27]. The second approach tries to automatically identify the correspondence between the various fea
tures by various methods including structural comparisons based on matching C,-atoms contact maps [34],
or on the optimal alignment of secondary structure elements (SSEs) [47].

Finally, as it was the case with sequence alignment, the superposition of 3D structures can be done glob-
ally, whose goal is to superimpose the entire protein structure, or locally, which seeks to compute a good
superposition involving a subsequence of the protein.

4 Assessing Cluster Quality

Clustering results are hard to be evaluated, especially for high dimensional data and without a priori knowl-
edge of the objects’ distribution, which is quite common in practical cases. However, assessing the quality of
the resulting clusters is as important as generating the clusters. Given the same dataset, different clustering
algorithms with various parameters or initial conditions will give very different clusters. It is essential to
know whether the resulting clusters are valid and how to compare the quality of the clustering results, so that
the right clustering algorithm can be chosen and the best clustering results can be used for further analysis.
Another related problem is “how many clusters are there in the dataset?’. An ideal clustering algorithm
should be the one that can automatically discover the natural clusters present in the dataset based on the un-
derlying cluster definition. However, there are no such universal cluster definitions and clustering algorithms
suitable for all kinds of datasets. As aresult, most existing agorithms require either the number of clusters
to be provided as a parameter asit is done in the case of K-means, or asimilarity threshold that will be used
to terminated the merging process in the case of agglomerative clustering. However, in general, it is hard to
know the right number of clusters or the right similarity threshold without a priori knowledge of the dataset.

10

One possible way to automatically determine the number of clusters k is to compute various clustering
solutions for a range of values of k, score the resulting clusters based on some particular metric and then
select the solution that achieves the best score. A critical component of this approach is the method used
to measure the quality of the cluster. To solve this problem, numerous approaches have been proposed in
a number of different disciplines including pattern recognition, statistics and data mining. The majority of
them can be classified into two groups: external quality measures and internal quality measures.

The approaches based on external quality measures require a priori knowledge of the natural clusters
that exist in the dataset, and validate a clustering result by measuring the agreement between the discovered
clusters and the known information. For instance, when clustering gene expression data, the known functional
categorization of the genes can be treated as the natural clusters, and the resulting clustering solution will be
considered correct, if it leadsto clustersthat preserve this categorization. A key aspect of the external quality
measures is that they utilize information other than that used by the clustering algorithms. However, such a
reliable priori knowledge is usually not available when analyzing real datasets—after all, clustering is used
asatool to discover such knowledge in the first place.

The basic idea behind internal quality measures is rooted from the definition of clusters. A meaningful
clustering solution should group objectsinto various clusters, so that the objects within each cluster are more
similar to each other than the objects from different clusters. Therefore, most of the internal quality measures
evaluate the clustering solution by looking at how similar the objects are within each cluster and how well
the objects of different clusters are separated. For example, the pseudo F statistic suggested by Calinski and
Harabasz [11] uses the quotient between the intra-cluster average squared distance and inter-cluster average
squared distance. If we have X asthe centroid (i.e., mean vector) of all the objects, X asthe centroid of the
objectsin cluster Cj, k as the total number of clusters, n as the total number of objects, and d(x, y) as the
squared Euclidean distance between two object-vectors x and y, then the pseudo F statistic is defined as

Y d(XivX)_Zij(:l ZXEC] d(x, Xj)
F— k—1
Zlf:l ZXEC]' d(x. Xj)
n—k

One of the limitations of the internal quality measuresis that they often use the same information both in
discovering and in evaluating the clusters. Recall from Section 2, that some clustering algorithms produce
clustering results by optimizing various clustering criterion functions. Now, if the same criterion functions
were used as the internal quality measure, then the overall clustering assessment process does nothing more
than assessing how effective the clustering algorithms was in optimizing the particular criterion function, and
provides no independent confirmation about the degree to which the clusters are meaningful.

An alternative way for validating the clustering results is to see how stable they are when adding noise
to the data, or sub-sampling it [1]. This approach performs a sequence of sub-samplings of the dataset and
uses the same clustering procedure to produce clustering solutions for various sub-samples. These various
clustering results are then compared to see the degree to which they agree. The stable clustering solution
should be the one that gives similar clustering results across the different sub-samples. This approach can
also be easily used to determine the correct number of clusters in hierarchical clusterings solutions. The
stability test of clustering is performed at each level of the hierarchical tree, and the number of clusters k will
be the largest k value that till can produce stable clustering results.

Finally, arecent approach, with applicationsto clustering gene expression datasets, assessesthe clustering
results of gene expression data by looking at the predictive power for one experimental condition from the
clustering results based on the other experimental conditions [75]. The key idea behind this approach is that
if one condition is left out, then the clusters generated from the remaining conditions should exhibit lower
variation in the left-out condition than randomly formed clusters. Yeung et al. [75] defined the figure of merit

11

(FOM) to be the summation of intra-cluster variance for each one of the clustering instancesin which one of
the conditions was not used during cluster (i.e., left-out condition). Among the various clustering solutions,
they prefer the one that exhibits the least variation, and their experiments showed that in the context of
clustering gene expression data, this method works quite well. The limitation of this approach isthat it is not
applicable to dataset in which all the attributes are independent. Moreover, this approach is only applicable
to low dimensional datasets, since computing the intra-cluster variance for each dimension is quite expensive
when the number of dimensionsisvery large.

5 Case Study: Clustering Gene Expression Data

Recently devel oped methods for monitoring genome-wide mRNA expression changes such as oligonucleotide
chips[24], and cDNA microarrays[62], are especially powerful asthey allow usto quickly and inexpensively
monitor the expression levels of alarge number of genes at different time points, for different conditions, tis-
sues, and organisms. Knowing when and under what conditions a gene or a set of genes is expressed often
provides strong clues asto their biological role and function.

Clustering algorithms are used as an essential tool to analyze these data sets and provide valuable insight
on various aspects of the genetic machinery. There are four distinct classes of clustering problems that
can be formulated from the gene expression datasets, each addressing a different biological problem. The
first problem focuses on finding co-regulated genes by grouping together genes that have similar expression
profiles. These co-regulated genes can be used to identify promoter elements by finding conserved areasin
their upstream regions. The second problem focuses on finding distinctive tissue types, by grouping together
tissues whose genes have similar expression profiles. These tissue groups can then be further analyzed to
identify the genes that best distinguish the various tissues. The third clustering problem focuses on finding
common inducers by grouping together conditions for which the expression profiles of the genes are similar.
Finding such groups of common inducers will alow us to substitute different “trigger” mechanisms that still
elicit the same response (e.g., similar drugs, or similar herbicides or pesticides). Finally, the fourth clustering
problem focuses on finding organisms that exhibit similar responses over a specified set of tested conditions,
by grouping together organisms for which the expression profiles of their genes (in an ortholog sense) are
similar. Thiswould allow usto identify organismswith similar responsesto chosen conditions (e.g., microbes
that share a pathway).

In the rest of this section we briefly review the approaches behind cDNA and oligonucleotide microarrays,
and discuss various issues related to clustering such gene expression datasets.

5.1 Overview of Microarray Technologies

DNA microarrays measure gene expression levels by exploiting the preferential binding of complementary,
single-stranded nucleic acid sequences. cDNA microarrays, developed at Stanford University, are glassdides,
to which single-stranded DNA molecules are attached at fixed |ocations (spots) by high-speed robotic print-
ing [9]. Each array may contain tens of thousands of spots, each of which corresponds to a single gene.
mMRNA from the sample and from control cells is extracted and cDNA is prepared by reverse transcription.
Then, cDNA is labeled with two fluorescent dyes and washed over the microarray so that cDNA sequences
from both populations hybridize to their complementary sequences in the spots. The amount of cDNA from
both populations bound to a spot can be measured by the level of fluorescence emitted from each dye. For
example, the sample cDNA islabeled with ared dye and the control cDNA islabeled with agreen dye. Then,
if the mRNA from the sample population isin abundance, the spot will be red; if the mRNA from the control
population is in abundance, it will be green; if sample and control bind equally the spot will be yellow; if
neither binds, it will appear black. Thus, the relative expression levels of the genesin the sample and control

12

populations can be estimated from the fluorescent intensities and colors for each spot. After transforming the
raw images produced by microarrays into relative fluorescent intensity via some image processing software,
the gene expression levels are estimated as |og-ratios of the relative intensities. A gene expression matrix can
be formed by combining multiple microarray experiments of the same set of genes but under different condi-
tions, where each row corresponds to a gene and each column corresponds to a condition (i.e., a microarray
experiment) [9].

The Affymetrix GeneChip oligonuclectide array contains several thousand single stranded DNA oligonu-
cleotide probe pairs. Each probe pair consists of an element containing oligonucl eotides that perfectly match
the target (PM probe) and an element containing oligonucleotides with a single base mismatch (MM probe).
A probe set consists of a set of probe pairs corresponding to a target gene. Similarly, the labeled RNA is
extracted from sample cell and hybridizes to its complementary sequence. The expression level is measured
by determining the difference between the PM and MM probes. Then, for each gene, i.e., probe set, average
difference or log average can be calculated, where average difference is defined as the average difference
between the PM and MM of every probe pair in a probe set and log average is defined as the average log
ratios of the PM/MM intensities for each probe pair in a probe set.

5.2 Data Preparation and Normalization

Many sources of systematic variation may affect the measured gene expression levels in microarray exper-
iments [74]. For the GeneChip experiments, scaling/normalization must be performed for each experiment
before combining them together, so that they can have the same Target Intensity (TGT). The scaling factor
of each experiment is determined by the array intensity of the experiment and the common Target Intensity,
where the array intensity is a composite of the average difference intensities across the entire array.

For cDNA microarray experiments, two fluorescent dyes are involved and cause more systematic variation,
which makes normalization more important. In particular, this variation could be caused by differences in
RNA amounts, differences in labeling efficiency between the two fluorescent dyes, and image acquisition
parameters. Such biases can be removed by a constant adjustment to each experiment to force the distribution
of thelog-ratios have amedian of zero. Since an experiment correspondsto one column in the gene expression
array, this global normalization can be done by subtracting the mean/median of the gene expression levels of
one experiment from the original values, so that the mean value for this experiment (column) is 0.

However, there are other sources of systematic variation that global normalization may not be able to
correct. Yang et al. [74] pointed out that dye biases can depend on spot overall intensity and location on the
array. Given the red and green fluorescenceintensities (R, G) of al the spotsin one slide, they plotted the log
intensity ratio M = log g vs. the mean log-intensity A = log+/RG, which shows clear dependence of the
log ratio M on overall spot intensity A. Hence, an intensity related normalization was proposed, where the
original log-ratio log g is subtracted by C(A). C(A) is ascatter-plot smoother fit to the M vs. A plot using
robust localy linear fits.

5.3 Similarity Measures

In most microarray clustering applications our goal isto find clusters of genes and/or clusters of conditions.
A number of different methods have been proposed for computing these similarities, including Euclidean-
distance based similarities, correlation coefficients, and mutual information.

The use of correlation coefficient-based similarities is primarily motivated by the fact that while cluster-
ing gene expression datasets we are interested on how the expression levels of different genes are related
under various conditions. The correlation coefficient values between genes (Equation 5) can be used directly
or transformed to absolute values if genes of both positive and negative correlations are important in the

13

application.

An alternate way of measuring the similarity is to use the mutual information between a pair of genes.
The mutual information between two information sources A and B represent how much information the two
sources contain for each other. D. Haeseleer et al. [16] used mutual information to define the relationship
between two conditions A and B. This was done by initialy discretizing the gene expression levels into
various bins, and using this discretization to compute the Shannon entropy of conditions A and B as follows

Sa=—) pilogp,
i

where p; is the frequency of each bin. Given these entropy values, then the mutual information between A
and B isdefined as

M(A,B) =Sa+ S8 — SaB.

A feature common to many similarity measures used for microarray data is that they almost never con-
sider the length of the corresponding gene- or condition-vectors, that is the actual value of the differential
expression level, but focus only on various measures of relative change and/or how these relative measures
are correlated between two genes or conditions [75, 71, 21]. The reasons for thisis two-fold. First, thereis
still significant experimental errors in measuring the expression level of a gene, and is not reliable to use it
“asis’. Second, in most cases we are only interested on how the different genes change across the different
conditions (i.e., either up-regulated or down-regulated) and we are not interested for the exact amount of this
change.

5.4 Clustering Approaches for Gene Expression Data

Since the early days of the development of the microarray technologies, a wide range of existing clustering
algorithms have been used, and novel new approaches have been developed for clustering gene expression
datasets. The most effective traditional clustering algorithms are based either on the group-average varia-
tion of the agglomerative clustering methodology, or the K -means approach applied to unit-length gene or
condition expression vectors. Unlike other applications of clustering in life sciences, such as the construc-
tion of phylogenetic trees, or guide trees for multiple sequence alignment, there is no biological reason that
justifies that the structure of the correct clustering solution isin the form of atree. Thus, agglomerative so-
[utions are inherently sub-optimal when compared to partitional approaches, that allow for a wider range of
feasible solutions at various levels of cluster granularity. However, despite this, the agglomerative solutions
tend to produce reasonable and biologically meaningful results, and allow for an easy visualization of the
rel ationships between the various genes and/or conditions in the experiments.

The ease of visualizing the results has aso led to the extensive use of Self-Organizing Maps (SOM) for
gene expression clustering [48, 71]. The SOM method starts with ageometry of “nodes’ of asimple topology
(e.g., grid and ring) and a distance function on the nodes. Initialy, the nodes are mapped randomly into the
gene expression space, in which the ith coordinate represents the expression level in the ith condition. At
each following iteration, a data point P, i.e., a gene expression profile, is randomly selected and the data
point P will attract nodes to itself. The nearest node N to P will be identified and moved the most, and
other nodes will be adjusted depending on their distances to the nearest node N toward the data point P.
The advantages of using SOMs are its structured approach which makes visualization very easy. However,
the method requires the user to specify the number of clusters as well as the grid topology, including the
dimensions of the grid and the number of clustersin each dimension.

From the successes aobtained in using K -means and group-average-based clustering algorithms, aswell as
other similar algorithms|[5, 64], it appearsthat the clustersin the context of gene expression datasets are glob-

14

ular in nature. This should not be surprising as researchers are often interested in obtaining clusters whose
genes have similar expression patterng/profiles. Such a requirement automatically lends itself to globular
clusters, in which the pairwise similarity between most object-pairs is quite high. However, as the dimen-
sionality of these datasets continue to increase (primarily by increasing the number of conditions that are
analyzed), requiring consistency across the entire set of conditionswill be unrealistic. Asaresult approaches
that try to find tight clusters in subspaces of these conditions may gain popularity.

6 CLuTO: A Clustering Toolkit

We now turn our focus on providing a brief overview of CLUTO (release 2.0), a software package for clus-
tering low- and high-dimensional datasets and for analyzing the characteristics of the various clusters, that
has been developed by our group and is available at http://www.cs.umn.edu/"karypis/cluto. CLUTO has been
developed as a general purpose clustering toolkit. CLUTO’s distribution consists of both stand-alone pro-
grams (vcluster and scluster) for clustering and analyzing these clusters, as well as a library via which
an application program can access directly the various clustering and analysis algorithms implemented in
CLuUTO. To date, CLUTO has been successfully used to cluster datasets arising in many diverse application
areasincluding information retrieval, commercia datasets, scientific datasets, and biologica applications.

CLuTo implements three different classes of clustering algorithms that can operate either directly in the
object’s feature space or in the object’s similarity space. The clustering algorithms provided by CLUTO are
based on the partitional, agglomerative, and graph-partitioning paradigms. CLUTO's partitional and agglom-
erative algorithms are ableto find clustersthat are primarily globular, whereasits graph-partitioning and some
of its agglomerative algorithms are capable of finding transitive clusters.

A key feature in most of CLUTO’s clustering algorithms is that they treat the clustering problem as an
optimization process which seeks to maximize or minimize a particular clustering criterion function defined
either globally or locally over the entire clustering solution space. CLUTO provides a total of seven differ-
ent criterion functions that have been shown to produce high-quality clustersin low- and high-dimensional
datasets. The equations of these criterion functions are shown in Table 1, and they were derived and ana-
lyzed in [80, 79]. In addition to these criterion functions, CLUTO provides some of the more traditional local
criteria (e.g., single-link, complete-link, and group-average) that can be used in the context of agglomerative
clustering.

An important aspect of partitional-based criterion-driven clustering algorithms is the method used to opti-
mize this criterion function. CLUTO uses arandomized incremental optimization algorithm that is greedy in
nature, has low computational requirements, and produces high-quality clustering solutions [80]. Moreover,
CLUTO’s graph-partitioning-based clustering algorithms utilize high-quality and efficient multilevel graph
partitioning algorithms derived from the MENS and hMETIS graph and hypergraph partitioning algorithms
[44, 43]. Moreover, CLUTO's algorithms have been optimized for operating on very large datasets both in
terms of the number of objects, as well as, the number of dimensions. This is especialy true for CLUTO’s
algorithms for partitional clustering. These algorithms can quickly cluster datasets with several tens of thou-
sands objects and several thousands of dimensions. Moreover, since most high-dimensional datasets are very
sparse, CLUTO directly takes into account this sparsity and requires memory that is roughly linear on the
input size.

In the rest of this section we present a short description of CLUTO’s stand-alone programs followed by
some illustrative examples of how it can be used for clustering biological datasets.

15

Criterion Function | Optimazition Function

k
e maximize Zni (Z sim(v, u)) (6)

i=1 v,ueS
k
I maximize Z Z Sm(v, u) @
i=1YV v,ues
i i sim(v, u)
&1 minimize Z”i 2 _ves ues . @
=1 \/Zv,ues sm(v, u)
k -
inimi sim(v, u)
91 minimize Zves,%s. ©
= X v.ues SM©, L)
k .
sSsm(v, u
G minimize anzves,ues_ (v,u) 10
D ues SM(v, u)
I
. maximize — (11)
&
vz
% maximize =2 12
&

Table 1: The mathematical definition of CLUTO’s clustering criterion functions. The notation in these equations are as
follows: k is the total number of clusters, Sis the total objects to be clustered, S is the set of objects assigned to the
i th cluster, nj is the number of objects in the ith cluster, v and u represent two objects, and sim(v, u) is the similarity
between two objects.

6.1 Usage Overview

Thevcluster and scluster programs are used to cluster acollection of objectsinto a predetermined number of
clusters k. The vcluster program treats each object as a vector in a high-dimensional space, and it computes
the clustering solution using one of five different approaches. Four of these approaches are partitional in
nature, whereas the fifth approach is agglomerative. On the other hand, the scluster program operates on the
similarity space between the objects but can compute the overall clustering solution using the same set of five
different approaches.

Both the vcluster and scluster programs are invoked by providing two required parameters on the com-
mand line along with a number of optional parameters. Their overall calling sequenceis asfollows:

vcluster [optional parameters] MatrixFile NClusters
scluster [optiona parameters] GraphFile NClusters

MatrixFile is the name of the file that storesthe n objects that need to be clustered. In vcluster, each of these
objects is considered to be a vector in an m-dimensional space. The collection of these objects is treated as
an n x m matrix, whose rows correspond to the objects, and whose columns correspond to the dimensions
of the feature space. Similarly, GraphFile, is the name of the file that stores the adjacency matrix of the
similarity graph between the n objects to be clustered. The second argument for both programs, NClusters,
isthe number of clustersthat is desired.

Figure 1 shows the output of vcluster for clustering a matrix into 10 clusters. From this figure we see
that vcluster initially prints information about the matrix, such as its name, the number of rows (#Rows),
the number of columns (#Columns), and the number of non-zeros in the matrix (#¥NonZeros). Next it prints
information about the values of the various options that it used to compute the clustering, and the number of

16

desired clusters (#Clusters). Once it computes the clustering solution, it displays information regarding the
quality of the overall clustering solution, as well as, the quality of each cluster, using a variety of internal
quality measures. These measures include the average pairwise similarity between each object of the cluster
and its standard deviation (“1Sim” and “1Sdev”)), and the average similarity between the objects of each clus-
ter to the objects in the other clusters and their standard deviation (“ESim” and “ESdev”). Finally, vcluster
reports the time taken by the various phases of the program.

prompt% vcluster sports.mat 10

vcluster (CLUTO 2.0) Copyright 2001-02, Regents of the University of Minnesota

Matrix Information === - === - oo oo oo
Name: sports.mat, #Rows: 8580, #Columns: 126373, #NonZeros: 1107980

Options ------------ oo
CLMethod=RB, CRfun=I2, SimFun=Cosine, #Clusters: 10
RowModel=None, ColModel=IDF, GrModel=SY-DIR, NNbrs=40
Colprune=1.00, EdgePrune=-1.00, VtxPrune=-1.00, MinComponent=5
CSType=Best, AggloFrom=0, AggloCRFun=I2, NTrials=10, NIter=10

SOLULLION === === = = = = e e e e e e

0 364 +0.166 +0.050 +0.020 +0.005 |
1 628 +0.106 +0.041 +0.022 +0.007 |
2 793 +0.102 +0.036 +0.018 +0.006 |
3 754 +0.100 +0.034 +0.021 +0.006 |
4 845 +0.095 +0.035 +0.023 +0.007 |
5 637 +0.079 +0.036 +0.022 +0.008 |
6 1724 +0.059 +0.026 +0.022 +0.007 |
7 703 +0.049 +0.018 +0.016 +0.006 |
8 1025 +0.054 +0.016 +0.021 +0.006 |
9 1107 +0.029 +0.010 +0.017 +0.006 |

Timing INfOrmation =--=--=- === oo o- oo

1/0: 0.920 sec
Clustering: 12.440 sec
Reporting: 0.220 sec

\\\::j ** <‘////

Figure 1: Output of vcluster for matrix sports.mat and a 10-way clustering.

6.2 Summary of Biological Relevant Features

The behavior of vcluster and scluster can be controlled by specifying over 30 different optional parameters.
These parameters can be broadly categorized into three groups. The first group controls various aspects of
the clustering algorithm, the second group controls the type of analysis and reporting that is performed on
the computed clusters, and the third set controls the visualization of the clusters. Some of the most important
parameters are shown in Table 2, and are described in the context of clustering biological datasetsin the rest
of this section.

6.3 Clustering Algorithms

The -clmethod parameter controls the type of algorithms to be used for clustering. The first two methods,
(i.e, “rb” and “direct”) follow the partitional paradigm described in Section 2.1. The difference between
them is the method they use to compute the k-way clustering solution. In the case of “rb”, the k-way clus-
tering solution is computed via a sequence of repeated bisections, whereas in the case of “direct”, the entire
k-way clustering solution is computed at one step. CLUTO'’s traditional agglomerative algorithm isimple-
mented by the “agglo” option, whereas the “ graph” option implements a graph-partitioning based clustering

17

Parameter Values Function

-clmethod rb, direct, agglo, graph Clustering Method

-sim cos, corr, dist Similarity measures

-crfun 11,2, &1, G1, g/l, Hq, Ho, dink, wslink, clink, wclink, upgma | Criterion Function

-agglofrom (int) Where to start agglomeration
-fulltree Builds atree within each cluster
-showfeatures Display cluster’s feature signature
-showtree Build atree on top of clusters
-labeltree Provide key features for each tree node
-plottree (filename) Plots the agglomerative tree
-plotmatrix (filename) Plots the input matrices
-plotclusters (filename) Plots cluster-cluster matrix
-clustercolumn Simultaneously cluster the features

Table 2: Key parameters of CLUTO's clustering algorithms.

algorithm, that is well-suited for finding transitive clusters. The method used to define the similarity be-
tween the objects is specified by the -sim parameter, and supports the cosine (“cos’), correlation coefficient
(“corr"), and a Euclidean distance derived similarity (“dist”). The clustering criterion function that is used by
the partitional and agglomerative algorithms is controlled by the -crfun parameter. The first seven criterion
functions (described in Table 1) are used by both partitional and agglomerative, whereas the last five (single-
link, weighted-single-link, complete-link, weighted-complete-link, and group-average) are only applicableto
agglomerative clustering.

A key feature of CLUTO's is that allows you to combine partitional and agglomerative clustering ap-
proaches. This is done by the -agglofrom parameter in the following way. The desired k-way clustering
solution is computed by first clustering the dataset into m clusters (m > k), and then uses an agglomerative
algorithm to group some of these clustersto form the final k-way clustering solution. The number of clusters
m is the value supplied to -agglofrom. This approach was motivated by the two-phase clustering approach
of the CHAMELEON algorithm [42], and was designed to allow the user to compute a clustering solution that
uses a different clustering criterion function for the partitioning phase from that used for the agglomeration
phase. An application of such an approach isto allow the clustering algorithm to find non-globular clusters.
In this case, the partitional clustering solution can be computed using a criterion function that favors globu-
lar clusters (e.g., ‘i2'), and then combine these clusters using a single-link approach (e.g., ‘wslink’) to find
non-globular but well-connected clusters.

6.4 Building Tree for Large Datasets

Hierarchical agglomerative trees are used extensively in life sciences as they provide an intuitive way to orga-
nize and visualize the clustering results. However, there are two limitations with such trees. First, hierarchica
agglomerative clustering may not be the optimal way to cluster data in which there is no biological reason to
suggest that the objects are related with each other in atree-fashion. Second, hierarchical agglomerative clus-
tering algorithms have high computational and memory requirements, making them impractical for datasets
with more than afew thousand objects.

To address these problems CLUTO provides the -fulltree option that can be used to produce a complete
tree using a hybrid of partitional and agglomerative approaches. In particular, when -fulltree is specified,
CLuTO builds a complete hierarchical tree that preserves the clustering solution that was computed. In
this hierarchical clustering solution, the objects of each cluster form a subtree, and the different subtrees
are merged to get an al inclusive cluster at the end. Furthermore, the individua trees are combined in a
meaningful way, so that to accurately represent the similarities within each tree.

18

Figure 2 shows the trees produced on a sample gene expression dataset. The first tree was obtained using
the agglomerative clustering algorithm, whereas the second tree was obtained using the repeated-bisecting
method in which the -fulltree was specified.

Figure 2: (a) Shows the clustering solution produced by the agglomerative method. (b) Shows the clustering solution
produced by the repeated-bisecting method and -fulltree

6.5 Analyzing the Clusters

In addition to the core clustering algorithms, CLUTO providestool sto analyze each of the clustersand identify
what are the features that best describe and discriminate each one of the clusters. To some extent, these
analysis methods try to identify the dense subspaces in which each cluster is formed. Thisis accomplished
by the -showfeatures and -labeltree parameters.

Figure 3 shows the output produced by vcluster when -showfeatures was specified for adataset consisting
of protein sequences and the 5mers that they contain. Looking at this figure, we can see that the set of
descriptive and discriminating features are displayed right after the table that provides statisticsfor the various
clusters. For each cluster, vcluster displays three lines of information. The first line contains some basic
statistics for each cluster corresponding to the cluster-id (cid), number of objects in each cluster (Size), the
average pairwise similarity between the cluster’s objects (ISim), and the average pairwise similarity to the
rest of the objects (ESim). The second line contains the five most descriptive features, whereas the third line
contains the five most discriminating features. The features in these lists are sorted in decreasing descriptive
or discriminating order.

Right next to each feature, vcluster displays a number that in the case of the descriptive features is the
percentage of the within cluster similarity that this particular feature can explain. For example, for the Oth
cluster, the 5mer “GTSMA” explains 58.5% of the average similarity between the objects of the Oth cluster. A
similar quantity is displayed for each one of the discriminating features, and is the percentage of the dissimi-
larity between the cluster and the rest of the objects which this feature can explain. In general thereisalarge
overlap between descriptive and discriminating features, with the only difference being that the percentages
associated with the discriminating features are typically smaller than the corresponding percentages of the
descriptive features. This is because some of the descriptive features of a cluster may also be present in a
small fraction of the objects that do not belong to this cluster.

19

I O O I O T T T T T

vcluster (CLUTO 2.0) Copyright 2001-02, Regents of the University of Minnesota

Matrix Information --------- oo oo oo oo
Name: peptide5.mat, #Rows: 1539, #Columns: 2965, #NonZeros: 50136

OPELOMNS === = = = = = = =
CLMethod=RB, CRfun=I2, SimFun=Cosine, #Clusters: 10
RowModel=None, ColModel=IDF, GrModel=SY-DIR, NNbrs=40
Colprune=1.00, EdgePrune=-1.00, VtxPrune=-1.00, MinComponent=5
CSType=Best, AggloFrom=0, AggloCRFun=I2, NTrials=10, NIter=10

SOLUEION == == === m e m i mm o m e e e -

10-way clustering: [I2=5.03e+02] [1539 of 1539], Entropy: 0.510, Purity: 0.638

cid Size ISim ISdev ESim ESdev Entpy Purty | 1 2 3 4 5

Cluster 0, Size: 50, ISim: 0.439, ESim: 0.001
Descriptive: GTSMA 58.5%, HGTHV 37.7%, PSTVV 0.4%, LGASG 0.4%, KELKK 0.3%
Discriminating: GTSMA 29.6%, HGTHV 19.1%, GDSGG 2.7%, DSGGP 2.5%, TAAHC 2.0%

Cluster 1, Size: 109, ISim: 0.275, ESim: 0.019
Descriptive: SGGPL 8.6%, RPYMA 7.6%, VLTAA 7.2%, TARHC 6.9%, DSGGP 6.3%
Discriminating: RPYMA 5.5%, PHSRP 4.3%, SRPYM 4.3%, HSRPY 3.9%, KGDSG 3.3%

Cluster 2, Size: 99, ISim: 0.246, ESim: 0.001
Descriptive: HEFGH 13.2%, CGVPD 6.5%, RCGVP 6.3%, PRCGV 6.
Discriminating: HEFGH 6.8%, CGVPD 3.3%, RCGVP 3.2%, PRCGV 3.

%, VARHE 5.3%
%, GDSGG 2.9%

Cluster 3, Size: 227, ISim: 0.217, ESim: 0.010
Descriptive: GDSGG 8.3%, DSGGP 6.7%, CQGDS 5.7%, QGDSG 5.6%, TAAHC 4.4%
Discriminating: CQGDS 3.5%, QGDSG 3.3%, NSPGG 2.6%, GDSGG 2.3%, CGGSL 2.1%

Cluster 4, Size: 121, ISim: 0.197, ESim: 0.001
Descriptive: CGSCW 13.9%, GSCWA 10.2%, SCWAF 8.4%, KNSWG 5.3%, GCNGG 5.0%
Discriminating: CGSCW 7.1%, GSCWA 5.2%, SCWAF 4.3%, GDSGG 2.9%, KNSWG 2.7%

Cluster 5, Size: 127, ISim: 0.113, ESim: 0.001
Descriptive: DTGSS 6.0%, FDTGS 4.0%, TGSSD 3.0%, IGTPP 2.7%, GTPPQ 2.6%
Discriminating: DTGSS 3.1%, GDSGG 2.8%, DSGGP 2.6%, TAAHC 2.0%, SGGPL 2.0%

Cluster 6, Size: 112, ISim: 0.109, ESim: 0.001
Descriptive: KDELR 2.2%, IEASS 1.6%, RWAVL 1.6%, TFLKR 1.4%, EEKIK 1.3%
Discriminating: GDSGG 2.8%, DSGGP 2.6%, TARHC 2.0%, SGGPL 2.0%, LTAAH 1.4%

Cluster 7, Size: 202, ISim: 0.043, ESim: 0.001
Descriptive: NSPGG 46.9%, HELGH 12.1%, ALLEV 7.0%, VLAAA 2.
Discriminating: NSPGG 24.5%, HELGH 5.1%, ALLEV 3.6%, GDSGG 2.

%, GYVDA 1.7%
%, DSGGP 2.6%

Cluster 8, Size: 268, ISim: 0.029, ESim: 0.001
Descriptive: QACRG 13.7%, IQACR 7.5%, DTGAD 2.9%, VDTGA 2.5%, LDTGA 1.2%
Discriminating: QACRG 7.1%, IQACR 3.9%, GDSGG 2.9%, DSGGP 2.6%, TAAHC 2.1%

Cluster 9, Size: 224, ISim: 0.027, ESim: 0.001
Descriptive: LAATIA 4.3%, TDNGA 3.0%, LKTAV 1.4%, TQYGG 1.1%, GFRRL 1.1%
Discriminating: GDSGG 2.9%, DSGGP 2.6%, LAAIA 2.2%, TAAHC 2.1%, SGGPL 2.0%

Timing INFOYrMAtLiON ===== === === m oo oo oo

I/0: 0.040 sec
Clustering: 0.470 sec
Reporting: 0.040 sec

ko ko ko ko ko ko ko ko ko ko ko ko ok ko ok ko ko ke ok ko ke ko ko

Figure 3: Output of vcluster for matrix sports.mat and a 10-way clustering that shows the descriptive and discriminating
features of each cluster.

20

6.6 Visualizing the Clusters

CLUTO’s programs can produce a number of visualizations that can be used to see the relationships between
the clusters, objects, and features. You have aready seen one of them in Figure 2 that was produced by the
-plotmatrix parameter. The same parameter can be used to visualized sparse high-dimensional datasets. This
isillustrated in Figure 4(a) for the protein dataset used earlier. Aswe can see from that plot, vcluster shows
the rows of the input matrix re-ordered in such away so that the rows assigned to each one of the ten clusters
are numbered consecutively. The columns of the displayed matrix are selected to be the union of the most
descriptive and discriminating features of each cluster, and are ordered according to the tree produced by an
agglomerative clustering of the columns. Also, at the top of each column, the label of each featureis shown.
Each non-zero positive element of the matrix is displayed by a different shade of red. Entries that are bright
red correspond to large values and the brightness of the entries decreases as their value decrease. Also note
that in this visualization both the rows and columns have been reordered using a hierarchical tree.

Finally, Figure 4(b) shows the type of visualization that can be produced when -plotcluster is specified for
a sparse matrix. This plot shows the clustering solution shown at Figure 4(a) by replacing the set of rowsin
each cluster by a single row that corresponds to the centroid vector of the cluster. The -plotcluster option is
particularly useful for displaying very large datasets, as the number of rows in the plot is only equal to the
number of clusters.

7 Future Research Directions in Clustering

Despite the huge body of research in cluster analysis, there are a number of open problems and research
opportunities, especially in the context of clustering datasets arising in life sciences. Existing clustering
algorithms for sequence and structure datasets operate on the object’s similarity space. As discussed in
Section 2.2, such algorithms are quite limiting as they cannot scale to very large datasets, cannot be used
to find clusters that have conserved features (e.g., sequence or structural motifs), and cannot be used to
provide a description asto why a set of objects was assigned to the same cluster that is native to the object’s
features. The only way to overcome these shortcomings is to develop algorithms that operate directly on
either the sequences or structures. Thus, opportunities for future research can be broadly categorized into
three groups. (i) Development of computationally efficient and scalable algorithms for large sequence and
structure datasets. (ii) Development of clustering algorithms for sequence and structure datasets that operate
directly on the object’s native representation. (iii) Development of clustering algorithms that can provide
concise explanations on the characteristics of the objects that were assigned to each cluster.

References

[1] A. Elisseeff A. Ben-Hur and |. Guyon. A stability based method for discovering structure in clustered data. In
Pacific Symposium on Biocomputing, 2002.

[2] Charu C. Aggarwal, Stephen C. Gates, and Philip S. Yu. On the merits of building categorization systems by
supervised clustering. In Proc. of the Fifth ACM SSGKDD Int'l Conference on Knowledge Discovery and Data
Mining, pages 352—356, 1999.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data
for data mining applications. In Proc. of 1998 ACM-S GMOD Int. Conf. on Management of Data, 1998.

[4] Stephen Altschul, Warren Gish, Webb Miller, Eugene Myers, and David Lipman. Basic local alignment search tool.
Journal of Molecular Biology, 215:403-410, 1990.

[5] A. Ben-Dor and Yakhini Z. Clustering gene expression patterns. In International Conference on Computational
Molecular Biology, 1999.

21

R TH TR

8 7 6 5 13 15 011 9 4 14 2 3 10 17 12 16 19 18 1
W am eo G0 @@ G G G @9 5 00 Gh G0 0 G0 68 6w 05 0o

(b)

UL

—

(a)

Figure 4: Various visualizations generated by the -plotmatrix (a) and -plotclusters (b) parameter

22

(6]

(8]

(9
[10]
[11]
[12]
[13]
[14]
[19]
[16]
[17]
(18]
[19]
[20]

[21]
[22]

(23]

[24]

[29]

[26]

[27]

(28]

[29]

(30]

M.W. Berry, S.T. Dumais, and G.W. O’'Brien. Using linear algebra for intelligent information retrieval. S AM
Review, 37:573-595, 1995.

Daniel Boley. Principal direction divisive partitioning. Data Mining and Knowledge Discovery, 2(4), 1998.

E. Bolten, A. Schliep, S. Schneckener, D. Schomburg, and R. Schrader. Clustering protein sequences-structure
prediction by transitive homology. Bioinformatics, 17:935-941, 2001.

A.Brazma, A. Robinson, G. Cameron, and M. Ashburner. One-stop shop for microarray data. Nature, 403:699-701,
2000.

D. Burdick, M. Caimlim, and J. Gehrke. Mafia: A maximal frequent itemset algorithm for transactional databases.
In the 17th Bibliography 63 International Conference on Data Engineering, 2001.

T. Calinski and J. Harabasz. A dendrite method for cluster analysis. Communicationsin Statistics, 3:1-27, 1974.

P. Cheeseman and J. Stutz. Baysian classification (autoclass): Theory and results. In U.M. Fayyad, G. Piatetsky-
Shapiro, P. Smith, and R. Uthurusamy, editors, Advancesin Knowledge Discovery and Data Mining, pages 153-180.
AAAI/MIT Press, 1996.

D.R. Cutting, J.O. Pedersen, D.R. Karger, and JW. Tukey. Scatter/gather: A cluster-based approach to browsing
large document collections. In Proceedings of the ACM SIGIR, pages pages 318-329, Copenhagen, 1992.

M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary change in proteins. Atlas of Protein
Sequence and Structure, 5:345-352, 1978.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm.
Journal of the Royal Statistical Society, 39, 1977.

P. D' haeseleer, S. Fuhrman X. Wen, and R. Somogyi. Mining the gene expression matrix: Inferring gene rela-
tionships from large scale gene expression data. In Information Processing in Cells and Tissues, pages 203-212.
Plenum Publishing, 1998.

R.O. Duda, PE. Hart, and D.G. Stork. Pattern Classification. John Wiley & Sons, 2001.

S. R. Eddy. Hidden markov models. Current Opinion in Sructural Biology, 6:361-365, 1996.

Sean R. Eddy. Profile hidden markov models. Bioinformatics, 14:755-763, 1998.

Ingvar Eidhammer, Inge Jonassen, and William R. Taylor. Structure comparison and stucture patterns. Jorunal of
Computational Biology, 2000.

Michael Eisen. Cluster 2.11 and treeview 1.50. http://rana.lbl.gov/EisenSoftware.htm, 2000.

Anton J. Enright and Christos A. Ouzounis. GeneRAGE: a robust algorithm for sequence clustering and domain
detection. Bioinformatics, 16(5):451-457, 2000.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial
databases with noise. In Proc. of the Second Int’| Conference on Knowledge Discovery and Data Mining, Portland,
OR, 1996.

S. P. Fodor, R. P. Rava, X. C. Huang, A. C. Pease, C. P. Holmes, and C. L. Adams. Multiplexed biochemical assays
with biological chips. Nature, 364:555-556, 1993.

V. Ganti, J. Gehrke, and R. Ramakrishnan. Cactus-clustering categorical data using summaries. In the 5th Interna-
tional Conference on Knowledge Discovery and Data Mining, 1999.

D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamical systems.
In the 24th International Conference on Very Large Databases, 1998.

H. M. Grindley, P. J. Artymiuk, D. W. Rice, and P. Willet. |dentification of tertiary structure resemblancein proteins
using amaximal common subgraph isomorphism algorithm. Journal of Molecular Biology, 229:707—721, 1993.

Sudipto Guha, Rgjeev Rastogi, and Kyuseok Shim. CURE: An efficient clustering algorithm for large databases. In
Proc. of 1998 ACM-S GMOD Int. Conf. on Management of Data, 1998.

Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: arobust clustering algorithm for categorical attributes.
In Proc. of the 15th Int’| Conf. on Data Eng., 1999.

Dan Gusfield. Algorithms on Srings, Trees, and Sequences: Computer Science and Computational Biology. Cam-
bridge University Press, New York, NY, 1997.

23

(31]

(32]

(33]

(34]

[39]

[36]
(37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]
[49]

(50]

(51]

(52]

(53]
[54]

[59]

E.H. Han, G. Karypis, V. Kumar, and B. Mobasher. Hypergraph based clustering in high-dimensional data sets: A
summary of results. Bulletin of the Technical Committee on Data Engineering, 21(1), 1998.

J. Han, M. Kamber, and A. K. H. Tung. Spatia clustering methods in data mining: A survey. In H. Miller and
J. Han, editors, Geographic Data Mining and Knowledge Discovery. Taylor and Francis, 2001.

S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. i,
89:10915-10919, 1992.

L. Holm and C. Sander. Protein structure comparison by alignment of distance matrices. Journal of Molecular
Biology, 233:123, 1993.

Z. Huang. A fast clustering algorithm to cluster very large categorica data sets in data mining. In Workshop on
Research Issues on Data Mining and Knowledge Discovery, 1997.

J. E. Jackson. A User’s Guide To Principal Components. John Wiley & Sons, 1991.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3):264-323,
1999.

A.K. Jainand R. C. Dubes. Algorithmsfor Clustering Data. Prentice Hall, 1988.

M. S. Johnson and J. V. Lehtonen. Comparison of protein three dimensional structure. In D. Higginsand W. Taylor,
editors, Bioinformatics. Sequences, Structure and Databanks. Oxford University Press, 2000.

M.S. Johnson, M. J. Sutcliffe, and T. L. Blundell. Molecular anatomy: Phyletic relationships derived from 3-
dimensional structures of proteins. Journal of Molecular Evolution, (30):43-59, 1990.

Istvan Jonyer, Lawrence B. Holder, and Diane J. Cook. Graph-based hierarchical conceptual clustering in structural
databases. International Journal on Artificial Intelligence Tools, 2000.

G. Karypis, E.H. Han, and V. Kumar. Chameleon: A hierarchical clustering algorithm using dynamic modeling.
|EEE Computer, 32(8):68-75, 1999.

G. Karypis and V. Kumar. hMETS 1.5: A hypergraph partitioning package. Technical report, Department of
Computer Science, University of Minnesota, 1998. Available on the WWW at URL http: //mww.cs.umn.edu/"metis.

G. Karypis and V. Kumar. METS 4.0: Unstructured graph partitioning and sparse matrix ordering system. Tech-
nical report, Department of Computer Science, University of Minnesota, 1998. Available on the WWW at URL
http: //Amwww.cs.umn.edu/ metis.

L. Kaufman and P.J. Rousseeuw. Finding Groupsin Data: an Introduction to Cluster Analysis. John Wiley & Sons,
1990.

B. King. Step-wise clustering procedures. Journal of the American Satistical Association, 69:86-101, 1967.

G. J. Kleywegt and T. A. Jones. Detecting folding motifs and similarities in protein structures. In Methods in
Enzymology, 277:525-545, 1997.

T. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin, 1995.
Evgenia Kriventseva, Margaret Biswas, and Rolf Apweiler. Clustering and analysis of protein families. Current
Opinion in Sructural Biology, 11:334-339, 2001.

Bjornar Larsen and Chinatsu Aone. Fast and effective text mining using linear-time document clustering. In Proc.
of the Fifth ACM SIGKDD Int’'| Conference on Knowledge Discovery and Data Mining, pages 1622, 1999.

R.C.T. Lee. Clustering analysisand its applications. In J.T. Toum, editor, Advancesin Information Systems Science.
Plenum Press, New York, 1981.

Michal Linial, Nathan Linial, Jaftali Tishby, and Yona Golan. Global self-organization of al knnown protein
sequences reveals inherent biological structures. Jorunal of Molecular Biology, 268:539-556, 1997.

D. J. Lipman and W. R. Pearson. Rapid and sensitive protein similarity searches. Science, 227:1435-1441, 1985.

J. MacQueen. Some methods for classification and analysis of multivariate observations. In Proc. 5th Symp. Math.
Satist, Prob., pages 281297, 1967.

I. S. Mian and Dubchak |. Representing and reasoning about protein families using generative and discriminative
methods. Journal of Computational Biology, 7(6):849-862, 2000.

24

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]

[69]

[70]

[71]

[72]

[73]

[74]

[79]

[76]

[77]

[78]

E. M. Mitchell, P. J. Artymiuk, D. W. Rice, and P. Willet. Use of techniques derived from graph theory to compare
secondary structure motifsin proteins. Journal of Molecular Biology, 212:151-166, 1989.

H. Nagesh, S. Goil, and A. Choudhary. Mdfiaefficient and scalable subspace clustering for very large data sets.
Technical Report TR #9906-010, Northwestern University, 1999.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities in the amino acid
sequence of two proteins. Journal of Molecular Biology, 48:443-453, 1970.

R. Ng and J. Han. Efficient and effective clustering method for spatial data mining. In Proc. of the 20th VLDB
Conference, pages 144-155, Santiago, Chile, 1994.

William R. Pearson and David J. Lipman. Improved tools for biological sequence comparison. Proceedings of the
National Academy of Sciences, 85:2444-2448, 1988.

T.W. Ryuand C. F. Eick. A unified similarity measure for attributeswith set or bag of valuesfor databa se clustering.
In the 6th International Workshop on Rough Sets, Data Mining and Granular Computing, 1998.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown. Quantitative monitoring of gene expression patterns with a
complementary dna microarray. Science, 270, 1995.

R. M. Schwartz and M. O. Dayhoff. Matrices for detecting distant relationships. Atlas of Protein Sequence and
Structur, 5:353-358, 1978.

R. Shamir and R. Sharan. Click: A clustering algorithm for gene expression analysis. In the 8th International
Conference on Intelligent Systems for Molecular Biology, 2000.

Maxim Shatsky, ZiporaY. Fligelman, Ruth Nussinov, and Haim J. Wolfson. Alignment of flexible protein structures.
In Proceedings of International Conference on Intelligent Systems for Molecular Biology, 2000.

T. F. Smithand M. S. Waterman. |dentification of common molecular subsequences. Journal of Molecular Biology,
147:195-197, 1981.

P. H. Sneath and R. R. Sokal. Numerical Taxonomy. Freeman, London, UK, 1973.

Rainer Spang and Martin Vingron. Limits of homology of detection by pairwise sequence comparison. Bioinfor-
matics, 17(4):338-342, 2001.

M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering techniques. In KDD Workshop on
Text Mining, 2000.

A. Strehl and J. Ghosh. Scalable approach to balanced, high-dimensional clustering of market-baskets. In Proceed-
ings of HiPC, 2000.

P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovskyand E.S. Lander, and T. R. Golub. Inter-
preting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differen-
tiation. Proc. Natl. Acad. Sci., 96:2907-2912, 1999.

W. R. Taylor, T. P. Flores, and C. A. Orengo. Multiple protein structure alignment. Protein Science, (3):1858-1870,
1994.

Xiong Wang, Jason T. L. Wang, Dennis Shasha, Bruce Shapiro, Sitaram Dikshitulu, Isidore Rigoutsos, and
Kaizhong Zhang. Automated discovery of active motifs in three dimensional molecules. In Proceedings of the
3rd International Conference on Knowledge Discovery and Data Mining, pages 89-95, 1997.

Y. H. Yang, S. Dudoit, P. Luu, and T. P. Speed. Normalization for cdna microarray data. In SPIE International
Biomedical Optics Symposium, 2001.

K. Y. Yeung, D. R. Haynor, and W. L. Ruzzo. Validating clustering for gene expression data. Bioinformatics,
17(4):309-318, 2001.

G. Yona, N. Linial, and M. Linial. Protomap: Automatic classification of protein sequences and hierarchy of protein
families. Nucleic Acids Res, 28:49-55, 2000.

K. Zahn. Graph-tehoretical methods for detecting and describing gestalt clusters. | EEE Transactions on Computers,
(C-20):68-86, 1971.

T. Zhang, R. Ramakrishnan, and M. Linvy. Birch: an efficient data clustering method for large databases. In Proc.
of 1996 ACM-S GMOD Int. Conf. on Management of Data, Montreal, Quebec, 1996.

25

[79] Y. Zhao and G. Karypis. Comparison of agglomerative and partitional document clustering algorithms. In
S AM(2002) workshop on Clustering High-dimentional Data and Its Applications, 2002. also available astechinical
report #02-014, university of Minnesota.

[80] Ying Zhao and George Karypis. Criterion functions for document clustering: Experiments and analysis. Technical
Report TR #0140, Department of Computer Science, University of Minnesota, Minneapolis, MN, 2001. Available
on the WWW at http://cs.umn.edu/ karypis/publications.

26

