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Review
Glossary

Terminology

Class: process runs can be categorized into discrete classes (e.g. high, medium,

and low) based on product titer, product quality, or other measures of process

outcome.

Feature: a representation of the entire temporal profile, either in its entirety or

abbreviated, or a small time window of a process parameter (see Figure 2 for

an example) that has been treated if necessary, and is suitable for data mining.

Generalization error: the error incurred by a model in predicting the outcome

of a new instance (e.g. a future process run).

Model: a set of functions that describe the relationships between the process

features and the process outcome (or any other characteristic of interest).

Overfitting: a phenomenon that results when a model performs well on the

training set, but has poor ability to predict the outcome of new instances.

Training and test set: training set comprises the process data from a set of

runs with known outcomes, which are used to construct a model. The model is

assessed by a test set, which is a set of runs (with known outcomes) that were

not used for model construction.

Data pre-processing methods

Adaptive piecewise constant approximation (APCA) [12] : APCA segments a

profile into unequally spaced intervals. Within each interval, the profile is

abbreviated as a single value. The intervals are chosen to minimize the error

due to data compression.

Discrete Fourier transform (DFT): DFT uses a linear combination of sinusoidal

waves of different frequencies to represent a profile. Depending on the

granularity desired, the series can be truncated after a few waves. A fast

Fourier transform can also be used for efficient computation.

Discrete wavelet transform (DWT) [48] : DWT represents a profile as a combi-

nation of basis functions, called scaling and detail functions. Using the basis

functions, the profile can be convoluted to approximate coefficients and detail

coefficients. Dimensionality reduction is achieved by pruning the detail

coefficients. DWT has been previously employed for representation of temporal

bioprocess data [6].

Piecewise linear approximation (PLA) [49] : PLA compresses a complex profile

into a series of linear functions. The profile is divided into short, equal-length

segments and each segment is characterized by a left and/or right height and

slope of linear function. PLA has been previously applied for compression of

chemical process data [49].

Symbolic aggregate approximation (SAX) [50] : SAX is a symbolic representa-

tion of a profile. The profile is divided into equally spaced intervals and each

interval is approximated by the mean value of the profile in that interval. The
Modern biotechnology production plants are equipped
with sophisticated control, data logging and archiving
systems. These data hold a wealth of information that
might shed light on the cause of process outcome
fluctuations, whether the outcome of concern is pro-
ductivity or product quality. These data might also pro-
vide clues on means to further improve process
outcome. Data-driven knowledge discovery approaches
can potentially unveil hidden information, predict pro-
cess outcome, and provide insights on implementing
robust processes. Here we describe the steps involved in
process data mining with an emphasis on recent
advances in data mining methods pertinent to the
unique characteristics of biological process data.

Introduction
In the past two decades we have witnessed a major trans-
formation of bioprocess manufacturing. Protein-based
therapeutics have overtaken natural product-based drugs
as the major biologics. A majority of the protein thera-
peutics are produced using recombinant mammalian cells.
The value of these biopharmaceuticals, most of them
recombinant antibodies, exceeds US $33 billion per annum
[1]. They are manufactured in modern production plants
equipped with systems for automated control as well as
comprehensive data collection and archiving. These
archives represent an enormous opportunity for data
mining in that they might unearth a wealth of information
for enhancing the robustness and efficiency of manufactur-
ing processes. However, despite the stringent process con-
trol strategies employed, variations in the final process
outcome are commonly observed.With each production run
valued at millions of dollars and every manufacturing
plant costing hundred million dollars and upwards, there
is a great potential for cost saving through mining process
databases to uncover the distinguishing characteristics of
a good process.

In the following we discuss the challenges associated
with investigating bioprocess data and the techniques that
have been previously proposed to mine process data. We
describe a scheme to systematically analyze a complex
bioprocess dataset, and also highlight the recent advances
in data mining, which are applicable for analyzing biopro-
cess data.
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Characteristics of bioprocess data
Any modern bioprocess plant maintains electronic
records of material input (quantity, quality control
records, lot number), process output (cell density, product
concentration and quality, etc.) control actions (base
addition, CO2, O2 flow rate, etc.) as well as physical
parameters (agitation rates, temperature, etc.), from
the frozen cell vial to the production scale bioreactors.
Based on the frequency of measurements, bioprocess
parameters can be categorized into different types.
A vast majority of the process data are acquired on-line.
mean approximations for the intervals are thereafter discretized into a small

number of symbols. The symbols are derived (based on the profile) such that

they are equally probable.
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Figure 1. Example of bioprocess data. (a) Representative online data are shown, which are recorded every few minutes during the entire culture duration. The

left panel shows the profile of typical reactor state parameters, such as percent air saturation of dissolved oxygen (shown in blue) and the oxygen uptake rate (green). The

right panel shows the profile of gas flow rates as common control action parameters. Observed curves are for nitrogen (blue), oxygen (green) and carbon dioxide (red).

(b) Typical off-line data for a process are shown. The left panel illustrates the raw data containing biochemical parameter profiles for the total cell density (blue), viable cell

density (green), glucose (black), and lactic acid (red). The right panel shows the profile for parameters that have been derived from the raw data and that are physiologically

relevant, such as the cumulative consumption or production of nutrients and metabolites. Shown here are the consumption of threonine (red) and phenylalanine (blue) with

respect to the consumption of a key nutrient glutamine. The slope of the linear regression provides the stoichiometric ratio of threonine and phenylalanine with respect to

glutamine.
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However, a few key parameters, such as viable cell
density and concentrations of product and some metab-
olite and nutrients, are measured off-line (Figure 1).
While the off-line parameters are measured periodically,
many on-line parameters are measured continuously
with respect to the time scale of the production cycle.
Additionally, the information about some process
parameters may be available at a single time point only.
For example, product concentration and quality index
might be measured at the final time point, before or after
product recovery. Bioprocess data are thus heterogeneous
with respect to time scale. Process data are also hetero-
geneous in terms of data types. Some parameters are
continuous, such as cell and product concentrations,
pH, whereas others are discrete or even binary, such as
the valve settings for nutrient feeding and gas sparging,
which can only be in the ON or OFF state. Even quality-
related parameters for either raw material or product can
be discrete. For example, the glycosylation profile as a
measure for the quality of a glycoprotein is often evalu-
ated by the discrete distribution of different glycans. Due
to these heterogeneities in time scales and data types,
bioprocess data are significantly different from the data
2

arising in other application areas in which data mining
methods have been used (e.g. retail records). These het-
erogeneities should be taken into consideration when
data mining methods are devised.

Knowledge discovery and bioprocesses
The aim ofmining bioprocess data is to uncover knowledge
hidden within the enormous amounts of data associated
with different process runs that can be used to improve
and enhance the robustness and efficiency of production
processes. This is achieved by analyzing different types of
process runs to identify novel and useful relations and
patterns that associate various aspects of the production
process with different measures of process outcome, such
as product titer and product quality. These process out-
come measures are often used to categorize process runs
into different classes. For example, if product titer is the
outcome of interest, the different runs can be classified as
‘high’ or ‘low’ producing runs. Similarly, process runs can
be grouped as ‘good’ or ‘bad’ using product quality as the
metric of process outcome. The notion of gaining knowl-
edge by scrutinizing large volumes of data has been
applied to a wide array of problems ranging from image



Figure 2. An approach for data-driven knowledge discovery in bioprocess databases. Process data includes off-line and on-line parameters, as well as raw material logs.

Representative raw profiles from four temporal process parameters of a single run are shown. Process data from several runs are preprocessed to extract compact and

smoothened features that depict the underlying process signals. The entire dataset is then split into a training subset, which is used for model construction, and a test

subset, which is used for model assessment. Feature selection or dimensionality reduction is implemented on the training dataset. For example, principal component

analysis (Box 1) can be used to identify two dominant patterns in the dataset shown here and thereby reducing the number of the initial features by half. Data mining

methods are applied on the reduced feature set with the aim to discover model patterns, which are subsequently evaluated on the test dataset. The training and evaluation

procedure can be repeated multiple times for further refinement of the model. Thereafter, the model patterns can be interpreted and verified by process experts, and the

gained knowledge can be used for process enhancement.
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classification in astronomy to identifying fraudulent
activities in financial transactions [2].

A typical knowledge discovery process entails several
iterative steps (Figure 2). These steps include: data pre-
processing, feature selection and/or dimensionality
reduction, data mining, and expert analysis for interpret-
ation of the results. The data acquired in a bioprocess
typically include some parameters that are not readily
amenable for analysis. The data preprocessing step trans-
forms these data into a form (called feature) that is suitable
for the subsequent steps. This usually involves various
steps including data cleaning, normalization, transform-
ation, denoising, and missing value imputation. In the
subsequent step of feature selection or dimensionality
reduction, the obtained features are analyzed to obtain
the set of features that is best suited for data mining. This
often involves the selection of those features that correlate
most with process outcome, and the combination of highly
correlated features. The data mining step applies various
computational methods, such as pattern recognition and
machine learning to discover any significant trends within
the data. These trends are useful for describing any cor-
relations between process parameters and for developing
models to predict the process outcome. Finally, during the
expert evaluation step, the validity of the produced results
is assessed by those knowledgeable of the process (domain
experts) to discern the effect of the discovered correlations
on cellular physiology and process outcome.

Data preprocessing
Modern production plants are electronically supervised
and create process records that are well-characterized
and less prone to human errors, which significantly reduce
some of the preprocessing requirements that are often
associated with data cleaning and missing values imputa-
tion. However, the temporal nature of the data obtained
from fermentation, cell culture, and downstream processes
creates some unique challenges that need to be addressed
with data preprocessing methods.

In particular, on-line parameters are often recorded
every few minutes for the entire culture period that can
last from a couple of days to two weeks. The culture period
may even extend to a few months for some continuous or
perfusion-based processes. The resulting long time series
need to be preprocessed to extract the features that com-
pactly and smoothly represent the underlying process
3



Box 1. Feature selection and dimensionality reduction

Feature selection [51]

Filter methods

Filter methods select relevant features independently of the data

mining step. For example, features that discriminate process runs

from two or more outcome-derived classes can be identified using

hypothesis testing methods, such as a t-test (e.g. selection of genes

for expression-based tumor classification [52]).

Wrapper methods

Wrappers are iterative approaches, where feature selection relies on

the results of the subsequent data mining step. Thus, for example, a

subset of features is selected and its suitability is evaluated from the

error rate of the predictive classifier learned from that subset.

Approaches in which features are progressively added (forward

selection) or removed (backward elimination) can be applied for the

selection of an optimal feature subset. However, these approaches

are computationally expensive and potentially suboptimal for large

datasets. Alternatively, change in an objective function upon

addition or removal of a feature can also be used as a feature

selection strategy.

Dimensionality reduction

Multivariate temporal features of each process run can be repre-

sented as a two-dimensional matrix comprising m parameters

sampled at n time intervals. Principal component analysis (PCA) [53]

determines the linear correlation structure of this process data

matrix as a set of patterns, called principal components (PCs). The

first few PCs, which highlight the most dominant correlation

patterns among the process parameters, are typically used for

dimensionality reduction. The profile of any temporal parameter can

be regenerated as a weighted, linear combination of the PCs. Non-

negative matrix factorization (NMF) [54] is another dimensionality

reduction method used to identify linear correlations between

process parameters.
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signals. In addition, preprocessing is also important to
eliminate the noise that may be present in process
measurements due to instrument limitations and
sampling artifacts. The work of Cheung et al. [3,4] and
Bakshi et al. [5,6] laid the framework for extracting useful
information from temporal process parameters. Cheung
et al. proposed a triangular representation method in
which a parameter profile was segmented into different
time intervals. Within each interval, the first and second
order derivatives of the profile were used to represent an
increasing or decreasing trend. Bakshi et al., by contrast,
proposed the use of wavelet decomposition to deduce
temporal features. Besides these two approaches, several
other approaches can be used, such as discrete Fourier
transform, methods for piecewise approximation (such as
piecewise linear approximation, adaptive piecewise con-
stant approximation), and symbolic aggregate approxi-
mation (SAX). Among these, SAX leads to a string-based
representation of a parameter profile. This representation
is directly amenable to several string manipulations and
data mining methods that have been developed for the
analysis of protein and DNA sequences, including methods
for protein structure predictions [7] and discovery of cis-
regulatory elements [8].

In addition, due to the occurrence of a lag phase or due to
variations in the growth rate, the time series obtained from
different runs may not be temporally aligned. As a result,
identical time points might not represent similar process
states. Ignoring such time scale differences and directly
comparing identical time points across different runs, for
example by mean hypothesis testing methods [9,10], can
lead to incorrect results. This problem can be addressed by
aligning the time series of different runs during the pre-
processing step. A dynamic time warping strategy, origin-
ally developed for speech recognition [11], can be used to
align the time profiles, or their approximate representa-
tions [12,13].

Feature selection – dimensionality reduction
The feature selection step is used to identify features which
are significantly correlated to the process outcome. A large
number of feature selection approaches have been devel-
oped that can be categorized into filter and wrapper
approaches (Box 1). These methods are useful for con-
structing models to predict the process outcome (discussed
in the following section). For example, Huang et al. [9] and
Kamimura et al. [10] used filter approaches that were
based on hypothesis testing to select relevant features.
Other studies have employed wrapper approaches based
on decision trees to identify the key parameters that
differentiate process runs into high and low productivity
classes [5,14–16]. These studies identified specific time
points, or timewindows, duringwhich one ormore features
could discriminate between runs in different outcome
classes.

Due to the temporal nature of process data, feature
selection methods must take into account the sequence
of events. To this end, statistical methods can be used to
assess the significance of a feature, i.e. to assess its ability
to distinguish the process runs from different classes. In
bioinformatics applications, several hypothesis testing
4

methods have been proposed with the aim of identifying
genes that are temporally differentially expressed between
two or more phenotypes [17–19]. Such methods can also be
used to evaluate the relative importance of temporal pro-
cess features in discriminating runs from different groups.

The temporal profiles of some features within individual
runs may be correlated. For example, oxygen uptake rate
and cell density are often correlated, at least in the expo-
nential growth stage of the culture. Hence, such features
provide information that is often redundant. Dimension-
ality reduction techniques are commonly used to obtain a
set of features independent from each other using methods
such as principle component analysis (PCA) or non-nega-
tive matrix factorization (NMF) (Box 1). For example,
Kamimura et al. [20] used a PCA-based approach to
approximate multiple time-dependent process features of
each run as a single temporal pattern, the so-called first
principal component (PC1). This reduced feature was sub-
sequently used to cluster process runs into different
groups, which corroborated with their known classes.

Data mining
Data mining approaches can be broadly categorized as
either descriptive or predictive. Descriptive approaches
aim to discover patterns that characterize the data,
whereas predictive approaches aim to construct models
(e.g. functions) to predict the outcome of a future run by
learning from the observed parameters.
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Descriptive approaches
The descriptive approaches fall into two categories: iden-
tifying interesting patterns in the data and clustering the
data into meaningful groups.

Algorithms for finding patterns in very large datasets
have been one of the key success stories of data mining
research. These methods aim to analyze the features of
various runs to identify a pattern that is observed in a large
number of runs. A pattern can correspond to specific values
of a subset of features or a specific temporal profile of a
particular feature (Box 2). Any pattern must occur fre-
quently across different process runs to be considered
statistically significant and interesting [21,22]. Patterns
discovered from process data can provide insights into the
relationship between different features, and can also be
used to discover association rules. For example, specific (on
a per cell basis) glucose consumption and lactate pro-
duction rates of Chinese hamster ovary cells may vary
under different growth conditions. However, a switch from
lactate production to lactate consumption occurs only
within a small window of low specific glucose consumption
rate (feature 1) and low specific growth rate (feature 2).
Analyzing process data from a large number of runs can
Box 2. Descriptive data mining methods

Pattern discovery

Various algorithms have been developed that can mine process data

to discover patterns (i.e. relations) among the features of the

different runs that satisfy certain constraints (properties). The type

of constraints can correspond to a minimum number of runs in

which a pattern is observable (minimum frequency) and/or the

minimum number of features the pattern should contain (minimum

length) [22]. These constraints are used to steer the data mining

algorithms towards finding interesting patterns. The most efficient

approaches for finding these patterns (e.g. FPgrowth [55], LPminer

[22]) do so by extending them incrementally (as long as they satisfy

the specified constraints) and simultaneously eliminating the

portions of the dataset that do not contain the pattern under

consideration.

Clustering [56]

Clustering methods can be differentiated along multiple dimen-

sions, one of them being the top-down (partitional) or bottom-up

(agglomerative) nature of the algorithm. Partitional methods initiate

with all process runs (or object/record) belonging to one cluster and

they are divided into designated number of clusters. K-means,

partitioning around medoids (PAM), self-organizing maps (SOM),

and graph-based clustering methods are popular examples of

partitional algorithms. By contrast, agglomerative methods start

with each run belonging to a separate cluster and the clusters are

merged, based on the similarities of their feature profiles, until the

runs have been grouped into a pre-specified number of clusters.

Hierarchical agglomerative clustering is the most commonly used

agglomerative method.

The task of identifying the ‘natural’ clusters in a dataset is

nontrivial and hence the choice of a suitable clustering algorithm is

not universal. The clustering algorithm should accommodate the

similarity metric that is appropriate for comparing process data

from different runs. Additionally, parameters such as the optimiza-

tion function for partitional methods or the linkage function for

merging two clusters in agglomerative methods should be carefully

chosen. Most statistical packages, such as S-Plus (commercial)

(http://www.insightful.com/), and R (open source) (http://www.r-

project.org/), provide a range of clustering methods. Alternatively,

dedicated toolkits for clustering are also available (e.g. Cluster [57],

CLUTO [58]).
reveal the values of the specific rates at which this meta-
bolic change is likely to occur.

Clusteringmethods (Box 2) can beused to group different
process runs into subsets (groups) of runs according to the
similarity in the behavior of some features. For example, in
some process runs the time profiles of cell density and
metabolite concentrations are more similar to one another
than in the remaining runs being studied and these can be
clustered into one group. Clustering can thus provide
insights into different types of runs. In addition, by using
various cluster visualization tools (e.g. Spotfire [23]), these
methods can also identify the features that distinguish the
clusters. Clustering tools are extensively used in the
analysis of large-scale gene expression datasets [24]. For
example, useofhierarchical clustering togroupgeneexpres-
sion profiles of several prostate cancer and normal prostate
samples identified clinically relevant tumor subtypes that
could be correlated with increased disease recurrence [25].

A critical element of clustering methods is the approach
used to estimate the similarity between any two runs based
on their set of temporal features. To account for the hetero-
geneity of the temporal features associated with each run,
the similarity between two runs is often assessed in two
steps. First, the similarity between the corresponding
temporal features of a pair of runs is determined and
second, the overall similarity between the runs is estab-
lished by aggregating the individual feature-wise sim-
ilarities (Figure 3). The feature-wise similarity can be
computed using various approaches [26]. The most com-
monly used are Euclidean distance, cosine similarity, and
the Pearson’s correlation coefficient. Other measures that
are based on information theory, such as mutual infor-
mation, can also be used [27]. Mutual information esti-
mates the general dependency between the profiles of two
(or more) features, but can only be used for features that
have discrete values (e.g. a SAX-represented profile). Note
that these methods for assessing similarity can be applied
for comparing the same feature across different runs (for
pattern recognition), as well as comparing different fea-
tures of the same run (for dimensionality reduction).

Predictive approaches
Predictive approaches can be used to analyze a set of
process runs that exhibit different outcomes (e.g. final
product concentration) to identify the relationship between
process features and the outcome. The discovered relation-
ships (called model or classifier) can be used to predict the
process outcome and provide key insights into how the
predicted outcome might affect other features of the run,
thereby allowing for an intelligent outcome-driven refine-
ment of the process parameters. Commonly used predictive
methods (Box 3) include regression, decision trees (DT),
artificial neural networks (ANN), and support vector
machines (SVM). These methods have been designed for
problems that arise when process runs are divided into
discrete classes. Often, the process outcome (such as pro-
duct titer) is a value within a certain range, rather than a
discrete variable (such as high- or low-producing runs). In
such cases, one can divide the outcome into several classes.
Alternatively, regression-based methods can be employed
to predict an outcome variable that is continuous.
5
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Figure 3. An approach to determine the similarity between different process runs. The profiles of different run features, i.e. lactic acid concentration, CO2 sparge rate, and

oxygen uptake rate (OUR), are shown for two runs (in red and blue). The obtained continuous profiles of lactic acid and OUR were compared using a Pearson’s correlation

[26]. The noisy and long raw profiles of CO2 sparge rates were discretized into six levels using symbolic aggregate approximation (SAX) method [50]. The levels 1 through 6

represent increasing intervals of CO2 sparge rates. The discrete profiles of CO2 sparge rates were compared by estimating their mutual information. The overall similarity

between the two runs can then be estimated as an aggregate of these similarities. Before aggregation, the similarity metrics should be normalized to ensure that they have

the same range. When prior knowledge is available, the aggregation of the feature-wise similarities can be done in a weighted fashion to give greater importance to some of

the features.
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Predictive approaches have been extensively used to
analyze bioprocess data. Several studies have employed
ANNs to predict the output of a fermentation process as a
nonlinear function of the process inputs [28–31]. ANN
models can also be used in conjunction with optimization
methods to identify the combination of process inputs that
Box 3. Predictive data mining methods

Three of the commonly used predictive methods are summarized

below. Other methods, such as k-nearest neighbors [59], and

Bayesian networks [60] can also be employed. For simplicity, a binary

scheme in which process runs are classified as ‘high’ or ‘low’ is used

in these descriptions.

Artificial neural networks (ANN) [61]

ANN models attempt to imitate the signal processing events that occur

in the interconnected network of neurons in the brain. An ANN consists

of several nodes that are organized into two or more layers. The first

layer serves as input for process features and the final layer determines

the run outcome. Any intermediate layers are referred to as hidden

layers. Every node of a hidden layer receives all inputs from the

previous layer, performs a weighted average of the inputs and sends its

output to the next layer after a threshold transformation. A sigmoidal

transformation is commonly used instead of a sharp threshold

function. This process is continued until the final output layer is

reached. The weighting factors and threshold parameters are learnt

from the training runs in an attempt to minimize the error in classifying

the runs.

Decision trees (DT) [62]

DT-based classifiers classify runs recursively based on chosen

thresholds for one or more features. The process feature that provides

6

are able to maximize the desired output [15,32]. Decision
trees have also been beneficial for identifying the process
trends that allow one to discriminate between runs with
high and low productivity [5,16]. For example, a low glu-
cose feed rate was identified as themost discerning process
feature for a high productivity run [16]. More recently, a
most information about the classes is used to split the runs into two

or more branches. Splitting thus results in ‘child’ nodes that are most

separated from each other in terms of the class. Thus, selecting a

feature and its threshold for the split is a key exercise for DT

classifiers. This division is repeated until all the runs at a particular

node belong to a single class (terminal node) or one or more stopping

rules are satisfied. A top-down interpretation of a decision tree is

intuitive and it also allows ranking of process features according to

their relevance.

Support vector machines (SVM) [63]

Based on the structural risk minimization principle, SVMs learn a

‘decision boundary’ that maximizes the separation between runs

from the two groups. The training runs that are closest to the

decision boundary and hence most informative are called support

vectors. The decision function is calculated based on these

support vectors only; the runs distant from the boundary are

ignored. Mathematically, SVM is formulated as a convex optimiza-

tion problem. A soft-margin approach, where violations of the

decision boundary are penalized with a cost function, generally

provides a more robust solution. SVMs also present a well-suited

method for kernel-based learning. One-class [64] and multiclass

[65] extensions of SVMs have considerably broadened their

applications.
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regressionmethod based on partial least squares (PLS) has
been used to identify predictive correlations between
output parameters and process parameters to characterize
the process and detect process abnormalities. Further-
more, PLS-based assessment of the similarity of the
temporal parameter profiles for process runs at two differ-
Figure 4. A kernel-based learning approach. (a) A simplified scheme of the approach is

for a set of runs categorized into two classes based on process outcome: high (in blue) o

the data have been transformed using a specifically designed kernel function (f), whic

matrix is obtained by computing the similarity between each pair of run parameters on a

matrix are 1, i.e. a run is identical to itself. (b) Several different kernel transformation

matrices for individual features can then be combined to obtain a fused kernel that can
ent reactor scales (2L and 2000L) suggested process com-
parability at different scales [33].

Recent advances in predictive methods have signifi-
cantly enhanced their applicability for process data
mining. The development of the Vapnik-Chervonenkis
theory has laid the foundations of the structural risk
illustrated. Process data of a single parameter at two different time points is shown

r low (in red). The distinction between the two classes is immediately obvious after

h in this example results in a visible ‘separation’ of the runs. Thereafter, a kernel

scale from dissimilar (0) to identical (1). Note that the diagonal entries in the kernel

s can be performed to compare different temporal features. The resulting kernel

be used for model construction.
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minimization (SRM) principle [34,35], which derives the
upper limit on the generalization error of a classifier. This
upper limit is optimized by classifiers that maximize the
separation (called margin) between instances from two
(or more) classes. Due to its strong mathematical founda-
tions and intuitive appeal, the idea of maximizing the
separation between two groups has gained immense popu-
larity and has been successfully used to improve the
predictive robustness of several well-known classification
methods, such as ANN [36], k-nearest neighbors [37], and
regression.

Another major development was the introduction of
kernel-based learning that decouples the optimization step
in many classification approaches from any data modeling
aspects. Kernel-based methods employ a kernel function,
which measures the similarity between each pair of runs
(Figure 4a). A pair-wise comparison of all the runs results
in a kernel matrix, which is then used to construct the
model. Kernels also provide an elegant solution for addres-
sing the heterogeneity of process data. Multiple kernels
can be used, where each kernel serves to compare one
temporal process feature (e.g. oxygen uptake rate, osmo-
larity) over different runs. Kernel functions that quantify
linear or nonlinear relationships, or even empirically
defined functions based on process knowledge and/or
historical data, can be used to compute the pair-wise
similarities of a particular process feature across different
runs. Individual kernels can then be compiled into a ‘fused’
kernel (Figure 4b). Furthermore, the individual features
(or their kernels) can be differentially weighted in such a
way that the features that are more predictive of the
process outcome have higher contribution to the final fused
kernel. This step of sorting different features according to
their relative importance can be incorporated in the pro-
cess of model construction. The weights of different fea-
tures can be ‘learned’ from the data in such a way that the
predictability of the model is maximal [38,39]. The SRM
principle and kernel-based learning also form the basis of
support vector machines (SVM) (Box 3), a relatively novel
method that has already been widely used to analyze
several data-rich applications, such as gene expression
analysis [40,41], text classification [42], and image retrie-
val [43].

Model validation and interpretation
Discovery of a model pattern or trend must be followed by
subsequent evaluation and expert interpretation. In
descriptive methods, it is important to examine whether
a pattern or a cluster represents a genuine relationship
between the performances of different process runs or is
simply the outcome of a spurious trend. In addition, noise
in process measurements can obscure the interpretation of
a discovered pattern. Furthermore, many clustering algor-
ithms are designed to find a set of clusters that are only
locally optimized. For example, the initial assignment of
the runs to clusters (which is often random) may have an
effect on the final clustering, and different initial assign-
ments may lead to different groupings of the runs. Resam-
pling-based approaches have been proposed to evaluate the
reproducibility of a set of clusters [44,45]. In these pro-
cedures, a subset of runs can be sampled from the original
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dataset and clustering performed. This process is repeated
multiple times and the agreement of the resulting clusters
is compared across all the subsets and is used to assign a
confidence term for the clustering.

Predictive methods run the risk of constructing an over-
fitted model. Datasets where the number of process fea-
tures is much higher than the number of runs used for
model construction are particularly vulnerable to overfit-
ting. To avoid this, it is essential to assess the predictive
ability of a model for new runs. A subset of runs (training
set) is used for model construction and the remaining runs
(test set) are used for model evaluation. Error rates are
calculated based on the number of test runs misclassified
by the model. For datasets with finite or few runs, cross-
validation and resampling schemes (e.g. bootstrap) can be
used, where the dataset is divided into multiple training
and test subsets to obtain an average estimate of the error
[46].

The introduction of a ‘selection bias’ is another relevant
issue for generating models based on a subset of features
(selected from the entire feature set). This bias is intro-
duced if all runs (including test set runs) are involved in the
feature selection process, and the test set is used merely to
validate the model build on the preselected features. Both
feature selection and model construction must be imple-
mented on the training subset only, without any input from
the test set [47]. Although feature selection strategies have
been used in previous reports on process data mining, it is
unclear whether these examples involved test objects in
the feature selection process [9,10,20].

Concluding remarks
Modern production plants are equipped with sophisticated
control systems to ensure high consistency and robustness
of production. Nevertheless, fluctuations in process per-
formance invariably occur. Understanding the cause of
these fluctuations can greatly enhance process outcome
and help to achieve higher performance levels. Given the
vast amount of archived process data in a typical modern
production plant, the opportunities for unveiling any hid-
den patterns within the data and recognizing the key
characteristics for process enhancement are enormous.
The ultimate aim of mining bioprocess data is to gain
insights for process advancement or even process inno-
vation. Interpretation by process experts is essential to
relate the discovered patterns to cellular physiology, which
in turn can generate hypotheses for experimental verifica-
tion. In a bioreactor operation, ultimately it is the physio-
logical state of the cells that determines the process
outcome.

We believe that the benefits to be gained from mining
bioprocess data will be immense. These opportunities are
met with major advances in data mining tools that have
become available in the past decade. The application of
these tools to explore bioprocess datawill be highly reward-
ing in the near future.
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