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Abstract

Advances in transcriptional analysis offer great opportunities to delineate the structure and hierarchy of regulatory networks in
biochemical systems. We present an approach based on Boolean analysis to reconstruct a set of parsimonious networks from gene
disruption and over expression data. Our algorithms, Causal Predictor (CP) and Relaxed Causal Predictor (RCP) distinguish the
direct and indirect causality relations from the non-causal interactions, thus significantly reducing the number of miss-predicted
edges. The algorithms also yield substantially fewer plausible networks. This greatly reduces the number of experiments required to
deduce a unique network from the plausible network structures. Computational simulations are presented to substantiate these
results. The algorithms are also applied to reconstruct the entire network of galactose utilization pathway in Saccharomyces
cerevisiae. These algorithms will greatly facilitate the elucidation of regulatory networks using large scale gene expression

profile data.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Biological processes are a manifestation of biochem-
ical reaction networks of molecular synthesis and
transformation, as well as regulatory networks control-
ling the expression of both regulatory elements and the
biochemical reaction network. The regulatory network
consists of a large number of regulatory elements of
interacting genes and proteins organized in hierarchical
trees. Cellular events, including physiological, differen-
tiation and developmental, involve the interplay of these
regulatory networks. In many cases, a subset of the
cellular network for a particular event may be relatively
isolated or localized, and can be analyzed separate from
the global network. Examples include, the yeast mating
type pheromone regulation (Gustin et al., 1998) and
Bacillus sporulation regulation (Sonenshein, 2000). The
elucidation of the structure and organization of these
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networks, at both local and global levels, can provide us
with much insight into control of cellular events, and
holds the key to harness the vast biochemical potential
of living systems. With the advent of the post-genomic
era a variety of large-scale gene expression profiling
tools have enabled us to survey the temporal expression
pattern of the regulatory elements. Deciphering this
information for reconstructing the hierarchy of the
regulatory elements is becoming even more urgent.
Various approaches for modeling of regulatory
elements have been proposed. The primary aim of all
these methods is to identify the interacting elements and
construct the regulatory map to different degrees of
detail. This is known as reverse engineering the network.
A number of approaches are based on observing the
temporal expression patterns of the different regulatory
elements (Liang et al., 1998; Akutsu et al., 1999; Chen
et al., 1999; D’Haeseleer et al., 1999; Weaver et al., 1999;
Wahde and Hertz, 2000; Holter et al., 2001; Vance et al.,
2002; Wolkenhauer, 2002; Gardner et al., 2003). Other
kind of models use expression profiles from different
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perturbation experiments (Akutsu et al., 1998; Maki
et al., 2001; Wagner, 2001; Aburatani et al., 2003;
Tegner et al., 2003). Differential equation-based ap-
proaches model the interactions as non-linear terms
(Wahde and Hertz, 2000) or as a linear additive model
from time profile data (Chen et al., 1999; D’Haeseleer
et al., 1999; Weaver et al., 1999; Wolkenhauer, 2002).
Although such an approach provides the most knowl-
edge in terms of mechanistic details, it also inevitably
results in a large number of equations and a large
number of kinetic parameters whose values are difficult
to determine. Furthermore, the number of parameters,
typically far exceeds the number of time points for
which data is available, making the problem of
determining the system parameters an ill-posed one.
The Boolean method offers the advantage of inferring
direct connections among the regulatory elements with-
out resorting to parameter values. A Boolean model
treats every element as having two binary states, inactive
(0) or active (1) and the interaction between the elements
are modeled as Boolean rules. This approach provides a
first approximation for the complexity of the problem.
Boolean networks model both temporal and perturba-
tion data (Akutsu et al., 1998; Liang et al., 1998; Akutsu
et al., 1999; Ideker et al., 2000). Various other
approaches based on the Bayesian method have also
been proposed (Friedman et al., 2000).

The contributions of this paper are two-fold. First, we
develop new algorithms for genetic network reconstruc-
tion using gene disruption and over-expression data.
These algorithms are more robust as they completely
eliminate the prediction of certain kinds of false
interactions that are predicted by earlier algorithms.
Second, we evaluate the usefulness of Boolean models in
reverse engineering biological regulatory networks.

The paper is organized as follows. Section 2 is an
overview of the application of Boolean networks in
representing biological systems. Section 3 provides a
formal definition of the problem and describes the
algorithms that we developed. Section 4 provides an
experimental evaluation of these algorithms on data
generated by In silico experiments, as well as a network
based on the yeast galactose pathway and compares
them against previously developed algorithms. Section 5
discusses the relative merits of the proposed algorithms.
Finally, Section 6 provides some concluding remarks
and directions for future research.

2. Boolean network and inference strategies

Boolean networks represent genetic networks as many
interconnected binary elements, with each of them
connected to a series of others (Kauffman, 1969). A
binary element may represent a gene, a protein or
an environmental factor. The basic premise is that

regulatory interactions, typically sigmoid, can be ap-
proximated as a step function and that the state of each
element can be described as either ON (1) or OFF (0).
For gene regulation a change in the state of an element
or a gene refers to the formation of the gene expression
product that is capable of exerting an effect on other
related elements. In general this entails transcription and
the formation of translation products. The Boolean
model can be extended to other forms of networks. For
example, in a signaling cascade, the phosphorylated/
non-phosphorylated states of proteins are treated as
binary elements.

Each gene may be influenced by one or more
regulatory elements called inputs. The expression of a
gene, called the output, is computed from the input
pattern according to logical or Boolean rules. A
repressor is equivalent to a NOT function, whereas
cooperatively acting activators are represented with the
AND function. The ON/OFF pattern of all the elements
involved at a given time is the state of the entire
network. When the values of the inputs change, the
system updates itself as the genes interact until
the system reaches a final state, called the attractor.
This attractor could be a limit cycle or a steady state.
The Boolean model has been used to describe various
biological pathways including, signaling pathways
(Shymko et al., 1997; Genoud et al., 2001) and bacterial
degradation (Serra and Villani, 1997).

There are several methods to identify possible
Boolean network structures that are consistent with
the observed experimental profile for a given number of
genes. These methods can be classified into two broad
categories. The first is based on time-profile data where
the expression pattern at two consecutive time steps,
defined as an INPUT/OUTPUT pair, is used to
construct the network (Akutsu et al., 1999; Liang et al.,
1998). These methods generally require a large number
of data. Also, it is experimentally difficult to measure
consecutive states, failing which the correct network
may not be identified.

The second set of methods entail introducing a series
of perturbations to the network and observing the
resulting steady-state profiles of the regulatory elements.
The steady-state expression profiles are then used
to identify a set of parsimonious networks. This can
be achieved by minimizing the total number of interac-
tions (Maki et al., 2001; Wagner, 2001; Aburatani et al.,
2003). However, this approach does not allow for
redundant interactions. Redundancy is inherent in
biological networks. Parsimonious networks can also
be constructed by allowing for redundancy in networks,
but minimizing the number of essential inputs for each
gene (Ideker et al., 2000). A drawback of this approach
is that it predicts false predictions. Further experimenta-
tion is required to eliminate these false predictions. As
the network becomes more complex, the frequency of
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false predictions increases significantly, thereby requir-
ing a large number of experiments to reconstruct the
complete network. The work reported here presents a
new algorithm to reduce this frequency of false
prediction.

3. Boolean network prediction algorithm
3.1. Problem definition

The objective of this algorithm is to reverse engineer a
Boolean network from a set of observations obtained
from different perturbations to the network. These
perturbations could be the knockout of a gene, or its
constitutive expression independent of the biological
regulators. Specifically, given a set of N genes, we
consider a (N + 1) x N matrix, called binary expression
matrix (B) that stores the Boolean state of the various
elements (columns) under different conditions (rows).
Specifically, the first row of B stores the initial
unperturbed state (wild-type) of the elements, and each
subsequent row / + 1 stores the steady-state expression
of the elements obtained after an experiment in which
gene / has been perturbed. The network is reverse
engineered from this expression matrix, by identifying
the input elements for each gene, g,, n=1,2, ..., N, one
by one.

3.1.1. Assumptions

We assume that there is no polar effect due to any
perturbation. Therefore the observed expression profile
is the result of the introduced perturbation. This also
implies that the network is self-contained, meaning that
a change in expression level of any element is caused by
one of the other elements in the network, either directly
or indirectly. We also assume that the observed
expression profiles represent the steady-state levels of
the elements under each perturbation. In this context
“steady state” applies to the steady state of the Boolean
network. We are interested in the steady state of the
system on the time-scale of observation.

3.1.2. Working example

The topology of our example regulatory network and
the corresponding Boolean representation are shown in
Fig. la and b. This regulatory structure, called the
multi-input motif, is characterized by a set of regulators
that bind together to a set of genes and is present in
various transcriptional regulatory networks in Sacchar-
omyces cerevisiae (Lee et al., 2002) and Escherichia coli
(Shen-Orr et al., 2002). The corresponding binary
expression matrix, B, is shown in Fig. Ic. The first row
of the matrix represents the steady-state value of all the
components of the pathway in the wild type. In each of
the subsequent rows, the expression of one of the
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Fig. 1. Illustration of the working example. (a) Topology of the
example regulatory network. (b) Boolean representation of
the network. (c) Binary expression matrix, B, corresponding to the
example network.

elements is perturbed by being turned ON (denoted as
+) or turned OFF (denoted as —) from its initial state in
row 1.

3.2. Overall methodology for reverse engineering Boolean
networks

There are two characteristics of a Boolean network:
topology and the rules of interaction. The topology of a
network can be constructed by identifying the inputs of
each element or alternatively, the outputs of each
element. The rules of interaction are determined by the
logic rule or the Boolean function governing each
element of the network.

Reconstructing the topology is the most critical part
of reverse engineering networks. Our reverse engineering
algorithm reconstructs the topology by identifying the
inputs of each element in a three-step process. The first
step is to identify all those elements that are correlated.
However, correlation does not imply causality and
therefore the correlated elements need to be filtered for
the most probable set of inputs. This filtering constitutes
the second step. Finally, the network is constructed from
the set of probable inputs by identifying the minimum
number of inputs required to explain the set of
observations. A detailed description of the overall
methodology follows.
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3.2.1. Identify correlated genes

To identify the potential inputs for g,,, we compare the
expression level of g, in every pair of rows i and j, where
j>i, excluding row n+ 1 in which g, itself has been
perturbed. For each pair of rows i and j, where the
expression of g, differs, we identify the other genes
gm(m#n) whose expression level also changes between
the two rows. This set of genes, denoted by S;;(gn),
consists of elements that are correlated with g, and are
probable inputs. For each gene there are thus multiple
sets of probable inputs. Because the network is self-
contained, each set S;;(g,) must contain at least one
element whose change has altered the expression of gj,.
In other words, at least one element in each set .S;;(g,)
must be a regulatory factor for g,. For example,
consider the gene expression matrix in Fig. lc. To
determine the set of inputs for g3 we compare all rows
pair wise between which g; has changed state, except
row 4. One such pair of rows is / and 2, and the
corresponding set of correlated elements is S;2(g3) =
{91, 94,9596} S13(93), S2,5(g3) and others are similarly
constructed. The complete list of all S;;(g,) is shown in
Fig. 2a. Such an approach of identifying correlated
elements has been proposed in other publications as well
(Ideker et al., 2000).

3.2.2. Identify potential inputs from correlated genes
using first-principle based filtering

Not all correlated genes are inputs. Two elements,
g; and g, can be correlated because of a direct causality
relation where changes in ¢; causes changes in g,
directly. By comparison, if g; activates g, via another
regulatory factor, the correlation is an indirect causality
relation. In addition, two genes ¢g; and ¢, can also be
correlated because of identical regulatory inputs or
gn can cause g¢;, directly or indirectly by a relation
known as causality reversed. Finally, the correlation
between two eclements may be coincidental where
no causal connection exists. For the network shown
in Fig. la, g, has a direct causality relation with g3
and an indirect causality relation with gg; g4 and gs
are correlated through an identical input, whereas
there is no correlation between ¢g; and g,. To reverse
engineer the network, we need to identify only those
elements that are correlated to g, in a direct or indirect
causality relation. Failure to eliminate the rest of the
correlations will give rise to falsely predicted network
structure.

Two different algorithms are presented to eliminate
the non-causal elements from the set of probable inputs.
The first algorithm called the Causal Predictor (CP)
ensures that all interactions that are predicted are only
direct or indirect causality relations. However, in certain
cases, this requires neglecting certain probable inputs. In
contrast, the Relaxed Causal Predictor (RCP) algorithm
relaxes the conditions used in CP such that some

additional potential inputs are included. Both these
approaches are explained below.

Consider an element g,€S;;(g,). The correlation
between ¢, and g, could be causal, or it could be
due to identical regulatory inputs, causality reversed
or coincidental. To distinguish between the two possi-
bilities, we consider the set S)x+1(gx) that is obtained
by comparing the first row, corresponding to the
wild type state, and the row k+ 1, where element
k was perturbed. If g, has changed state upon
perturbation of gy, it is definitely directly or indirectly
affected by gi. Thus, g,€Si4+1(g9x) is a sufficient
condition for g; to be a regulatory input for g,.
However, this may not be a necessary condition.
If g, does not change state upon the perturbation
of an element g;€S;;(gn), it does not imply that g,
is not an input for g,. The effect of g; may be
complemented by another element. However, g is
more probable to be an input for g, than ¢g;. By
removing ¢g; from all the sets of probable inputs, we
can increase the probability of predicting the right
network architecture. We therefore impose a ‘‘feasibil-
ity”” constraint on all sets, S;;(g,) such that any element
gk €Sij(gn) is removed from S;;(g,) if gné Six+1(gk)-
The resulting sets are called S,-I,,(gz1). As shown in
Fig. 2a, gs appears as a probable input of g4 How-
ever, when ¢s is turned OFF, no change in g4 is
observed compared to its initial state, or g4¢Si6(gs).
Hence, we do not consider gs as a probable input in
the sets S}J(g4). The modified sets of probable inputs
are shown in Fig. 2b. This approach where the
probable regulatory inputs are represented by the sets
S}J(g,,) is referred to as the CP algorithm. Here, all
the elements satisfy the feasibility constraint. There-
fore, the predicted network contains only direct and
indirect causality relations. Further experiments
are required to differentiate between these. However,
the essential structure of the underlying network is
captured.

If no element greS;j(g,) satisfies the feasibility
constraint, the corresponding set Sl.l‘/(gn) will be empty.
Algorithm CP eliminates this set from the sets of
probable inputs for g,. However, at least one element
of Sij(gs) is an input for g, because of the self-
contained assumption. An alternative approach would
be to relax the feasibility constraint such that any
element gi€S;;(g,) is eliminated from S;;(g,) only if
gn ¢ S1x+1(g9x) and the resulting set is non-empty. We
implement this approach and the corresponding algo-
rithm is referred to as the RCP algorithm. The sets
derived from S;;(g,) using the modified feasibility
constraint are referred to as Sﬁ/(gn). Although, algo-
rithm RCP cannot ensure that all predicted interactions
are direct or indirect causality relations, it guarantees
that some potentially important probable inputs are not
missed out.
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Fig. 2. Reconstructing the topology of the network. (a) First step of topology reconstruction, Sets S;;(g,) of correlated elements for each element g,,.
(b) Most probable set of inputs S}’/.(g,,) obtained by filtering the corresponding set of correlated elements. (c) Set of input elements under the
parsimonious condition. (d) Topology of the predicted network using CP and RCP algorithms.

3.2.3. Construction of networks from set of probable
inputs: parsimonious condition

All the elements in the sets S} (g,) or S7;(g.) are
probable inputs for g,. If we construct a regulatory
network by including all the elements in
US};(gn)(or U S7(ga)) as inputs for g,, the resulting
network will be very complex with a large number of
edges. A better approach is to capture the essential
structure of the network by identifying the minimum
number of inputs that can explain the observations. This

is achieved by determining the smallest set Spin(gn),
from the sets S} ;(gn) such that at least one element of
Smin(gn) 18 present in each set S}, (gn)- This smallest set
represents the minimum inputs for gene g, that are
required to explain the expression matrix. A similar
approach is followed to find the minimum sets
corresponding to the sets S,-zJ(gn). The task of identifying
Smin(gn) 1s analogous to a minimum set covering
problem in graph-theory applications that can be solved
using the greedy algorithm (Cormen, 2001). The greedy
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approach progresses iteratively, by selecting at each step
the element(s) that is present in the maximum number of
sets S} J(gn). The element is subsequently removed from
all the sets and the next highest occurring element is
identified. The algorithm terminates when all the sets are
empty and hence have been explained. For example,
Smin(g3) = {91, g2} is the smallest set identified using the
Greedy approach that can explain all the sets S! J(g3).
Fig. 2c shows the calculated Sy, sets for all the genes.
More than one alternative Sy, sets may be found for
each gene g,. The predicted network is assembled by
putting together the minimum sets for each gene. In the
event of multiple sets, each of the alternative sets can
form a different network. The total number of different
networks is given by the product of the number of
minimum sets for each gene. We call these predicted
networks as inferred networks. For the example shown
in Fig. la, the sets S,.zj(gn) are identical to the sets
S}I/(gn), and therefore the CP and RCP algorithms yield
the same result (Fig. 2d). In this case only one network is
predicted, and remarkably the entire network can be
reverse engineered.

The importance of filtering the correlated elements for
the most probable causal relations can be best demon-
strated here. If the unfiltered sets, S;;(g,) are used to

Regulated element| Minimum inputs from sets S, ;(g,)

g S,in(g,) = {empty}

& Spin(g,) = {empty}

g3 Syin(83) = 184 854> 184, 86} (85,86}
84 Smin(g4) = {g\;, gst> {gi g6

g5 Suin(85) = 185,845 {84, 86}

S =
@ g i) = 183}

,A@‘@ @@ ®

(®) @

Fig. 3. Reconstructing the topology of networks without filtering for
non-causal elements. (a) Set of input elements under the parsimonious
condition from the sets Sj;(g,). (b) Topology of predicted networks.
Only 3 out the 12 predicted networks are shown.

construct the parsimonious networks, three alternative
minimum sets are predicted for g3, and two each for g4
and gs (Fig. 3a). This results in a total of 3 x2 x2=12
different networks, none of which is the correct one
(Fig. 3b). Wrong connections are predicted between g3,
g4 and gs, which are correlated due to common inputs.
By eliminating such non-causality relations, the pro-
posed algorithms are able to predict the true inputs for
these genes.

3.2.4. Construction of boolean function

To determine the Boolean function governing each
interaction in the inferred network, a list of outputs for
all possible input combinations, or the truth table, is
constructed. For an element with » inputs, the corre-
sponding truth table has 2" distinct input combinations.
The output corresponding to each input combination is
obtained from the binary expression matrix. This is
explained with an example below. However, not all
instances of input state combinations maybe present in
the expression matrix resulting in alternative Boolean
functions. Some of these Boolean functions may not be
biologically relevant (Raeymaekers, 2002) and hence can
be eliminated. Additional experiments can be designed
to distinguish between the rest.

Fig. 4 shows the truth table for determining the
logical relation between the predicted inputs for each
gene in the network shown in Fig. 2d. The output state
of g3 when both of the predicted inputs g; and g, are
ON, is determined from the state of g3 corresponding to
the row in the Boolean expression matrix (Fig. 1¢) where
g1 and g, are 1. Similarly, the output state of g3 is

g & &i
1 &3 | &
1 0 0 11 o
0 1 0 ol 1
0 0 0/1 ﬂ
g — &, AND &,
or

g, — g, AND g,OR (NOT g, AND NOT g,)
wherei=3,4 5.

Fig. 4. Truth table for each element of the predicted network. The
output state is determined from the binary expression matrix.
Incomplete truth table is indicated by a 0/1 value in the output state.
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determined when either g; or g, is 1. However, there is
no row in the expression matrix where g; and g, are 0.
The corresponding state of g3 may thus be either 0 or 1,
and therefore g; maybe regulated by ¢g; and g, in an
AND relation (g3 = g1 AND g¢;) or the logic function
describing their relation may be more complex (Fig. 4).

3.3. Practical considerations

Experimentally, gene expression profiles are likely to
be obtained by DNA microarray or quantitative PCR.
Consider an expression matrix, where the gene expres-
sion levels of all genes are determined with respect to a
common reference condition. To construct a Binary
expression matrix, the expression ratios of each gene
under different perturbation experiments are normalized
with respect to its own mutant experiment. Next, the
gene is assigned a state of 0 when it is knocked out, and
a state of 1 when it is over-expressed. The state of the
gene under all the other conditions is determined
depending on a user-defined threshold value (e.g., a
two-fold change with low p-values). Alternatively, the
cut-off value can be based on the mean and standard
deviation of the distribution of the expression ratios
under different perturbations. If the expression ratio is
greater than the significant cut-off a state greater than
its state in the mutant experiment is assigned and vice
versa.

In certain cases, the structure of the final expression
matrix can validate the discretization procedure. For
example, a gene should have the lowest defined state
under the perturbation experiment when the gene itself

another, irrespective of the magnitude of the change. In
the case the data is discretized into three levels: 0, 1 and
2, change of states can be between (0, 1), (1, 2) or (0, 2).
However the change between 1 and 0 is not distin-
guished from a change between 2 and 0.

4. Experimental evaluation

To evaluate the performance of the algorithms we
need a set of networks whose structure is completely
known. However, there are not many such biological
networks. Hence, we validate our approach on a set of
synthetically generated networks. In addition, we also
evaluate the algorithms on a network structure based on
the Saccharomyces cerevisiae galactose-utilization reg-
ulatory network. In the application of the algorithm,
the original network would be unknown and is to be
reverse engineered from the expression matrix obtained
experimentally.

4.1. Evaluation metrics

The effectiveness of the algorithms in reverse en-
gineering the original network, referred as target
network, is evaluated in terms of their sensitivity,
specificity and F-factor. Sensitivity is a measure of
how much of the target network can be predicted,
whereas specificity represents the accuracy of the
algorithm. F-factor balances both the sensitivity and
specificity and is defined as the harmonic mean of the
two quantities.

Number of common edges between inferred and target network

)

)

Sensitivity = :
Y Total number of edges in target network
o Number of common edges between inferred and target network
Specificity = —
Total number of edges in inferred network
2 x Sensitivity * Specificit
F-factor = y*op Y

Sensitivity + Specificity

has been deleted. Similarly, if a gene has been assigned
the same state in the wild type experiment and the
perturbation experiment when it was itself perturbed,
then all the other elements in the network should also
have the same state in the two experiments. Else, the
‘self-contained’ assumption is violated.

However, such discretization of the data into only two
levels may not always be feasible or appropriate. The
algorithm described above can be extended to analyze
gene expression data with multiple states. In this case
the change of state could be from any one level to

For each set of network parameters, 200 different
networks were generated. After applying the CP and
RCP algorithms to predict the inferred network(s), the
average sensitivity and specificity values over these 200
networks were calculated. Also, the average number of
inferred networks for each target network was calcu-
lated. Furthermore, the false edges were identified.
Depending on their relationship to the gene for which
input genes are being determined they are classified into
the following four categories: indirect causality, iden-
tical regulatory inputs, causality reversed and others.
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4.2. Synthetic data generator

The synthetic network generator we devised is out-
lined in Fig. 5. A biological network can be represented
as a directed graph, where each node represents a gene
and the edges between them are the interactions. The
number of inputs for any node is called its indegree.
If feedforward or feedback loops are present in the
network, it is termed cyclic otherwise it is called an
acyclic network. We generated a set of acyclic and cyclic
synthetic networks with the number of genes varying
from 10 to 100, a maximum indegree of two, four or
eight and no self-loops. For each node, a conjunctive
Boolean expression is generated randomly. A Boolean
expression is in conjunctive form when it is a conjunc-
tion of clauses, the variables within each clause are
connected by “OR” and the clauses are related
by “AND”. For example, the Boolean function A
XOR B, can be written as ((NOT A) OR (NOT B))
AND (A OR B)) in conjunctive form. We evaluate the
truth table for each randomly generated conjunctive
expression, and check that it is not independent of any
of its immediate inputs.

Each network was simulated to steady state from a
number of randomly selected initial conditions by
updating all the nodes simultaneously. For each of the
networks, perturbation experiments were also carried
out. Specifically, if a node was active (or inactive) in the
wild type, the particular network was simulated by
forcing that node to a constant value of 0 (or 1). Any
network that exhibits limit cycle behavior in any of the
perturbation experiments was rejected. The steady states
from each perturbation experiment, represented in a
binary expression matrix were used to infer the target
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networks by our CP and RCP algorithms. The inferred
networks are compared to the original target network to
compute the sensitivity, specificity and F-factor values.

The number of genes together with the maximum
indegree determines the complexity of the network.
Complexity is defined as the lower bound of the number
of experiments required to completely determine its
topology. For a network of n elements, and maximum
indegree of k, the total number of experiments is of the
order of n* (Akutsu et al., 1998). However, this is
only an approximate measure of complexity. The
distribution of the indegree of each node in the network
is another important factor determining the degree of
complexity.

4.3. Simulation results

The average sensitivity and specificity values for
different network configurations obtained using the CP
and RCP algorithms are listed in Table 1. The results are
listed in increasing order of complexity of the target
network.

We see that the sensitivity of the inferred networks
decreases with increasing complexity. This is expected
since we have considered here only n experiments, which
become a smaller fraction of the total number of
experiments required as the complexity of the networks
increases. The specificity values, generally higher than
sensitivity values, do not show a monotonic variation
with complexity. For very complex networks, a small
fraction of the network is predicted and hence the
percentage of false predictions also decreases. The F-
factor however, decreases with the complexity of
network.
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Fig. 5. Schematic of Synthetic Data Generator. (a) Random network topology for a given number of nodes (N = 5) and maximum indegree (2). (b)
Assignment of a random Boolean function for each element. (c) Simulation of the network to a steady state from some random initial condition to
generate the first row of the gene expression matrix. (d) Simulation of the network perturbed by knocking out or over-expressing each regulatory
element to generate the subsequent rows of the expression matrix. (¢) Corresponding gene expression matrix.
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Table 1

Sensitivity and Specificity values of the predicted networks for CP and RCP algorithms for different target network architectures

Target network characteristics Sensitivity (%)

Specificity (%)

Number of Indegree Number of Causal Relaxed Causal Ideker’s Causal Relaxed causal Ideker’s
genes edges Predictor (CP) Predictor (RCP) approach predictor (CP) predictor (RCP) approach
10 2 12 5940.9 5940.9 57+0.9 96+0.8 94+0.8 89+1.0
20 2 27 53+0.6 53+0.6 50+0.6 9540.6 9340.6 8440.8
50 2 72 54+0.4 54+0.4 48+0.3 94+0.4 9240.5 79+0.6

100 2 150 54+0.3 53+0.3 4740.2 94+0.3 934+0.3 77+0.5
20 4 62 22+4+0.3 22+4+0.3 20+0.3 95+0.6 934+0.6 84+0.8
20 6 90 1440.3 1440.3 1440.3 9540.6 9540.5 86+0.8
20 8 120 10+0.2 10+0.2 10+0.2 96+0.5 9540.5 87+0.8

Note: The data shown are mean +standard error for 200 target networks.

The values obtained using Ideker’s approach are also included for comparison.

Table 2

Distribution (%) of false edges in the predicted networks into indirect causality and no causality categories

Target network characteristics Causal predictor (CP)

Relaxed causal predictor (RCP)

Ideker’s approach

Number of genes Indegree Indirect causality No causality Indirect causality No causality Indirect causality No causality
10 2 100 0 100 0 99 1
20 2 100 0 96 4 81 19
50 2 100 0 34 66 29 71
100 2 100 0 64 36 35 65
20 4 100 0 78 22 75 25
20 8 100 0 100 0 100 0

Note: The data shown are averages over 200 different target networks.

Results for different target network configurations are shown for the CP and RCP algorithms along with those obtained using Ideker’s approach.

For a given network configuration, the CP and RCP
algorithms are comparable in terms of average predic-
tion statistics. However, there are differences in indivi-
dual cases, which is evident when we look at the
distribution of the false edges. As discussed above, the
incorrect correlations can be either due to indirect
causality or are non-causal in nature. The non-causal
interactions are further classified into three types:
identical regulatory inputs, causality reversed and
others. Table 2 shows the distribution of the false edges
into the two major categories: indirect causality and
non-causality correlations. In case of overlap between
these two categories, we have given the indirect edges
precedence over the non-causal interaction. We can see
that the CP algorithm can completely eliminate the non-
causality kind of edges. Thus, although all the predicted
regulatory connections may not be actual physical
connections (reflected in less than 100% specificity
values), they represent effective functional relations. In
contrast, the RCP algorithm eliminates a fraction of the
non-causality relations. This was as expected and has
been discussed during the development of the algorithm.
Note that for the network with 20 genes and an indegree
of 8, there are negligible non-causal relations. Due to the
highly interconnected nature of networks with a high
indegree, the non-causality relations overlap with

indirect interactions and hence have been classified in
the latter category.

Table 3 presents the average number of networks
inferred by the current algorithms for different network
architectures. The number of predicted networks in-
creases with the number of genes in the system.
However, for a given configuration, the number of
networks predicted for a target network varies over a
wide range, as shown in Table 3. The distribution of the
number of predicted networks for networks with 50
genes and indegree of 2 is shown in the histogram chart
of Fig. 6. In more than 75% of the target networks
the CP algorithm predicts a unique network whereas
the RCP predicts a single network for 20% of the test
cases.

4.4. Application of algorithms to biological networks

We apply our algorithm to a gene expression profile
dataset obtained by systematic perturbation to the yeast
galactose utilization pathway, one of the best-studied
systems in Saccharamyces cerevisiae. It consists of a set
of structural and regulatory genes, that enable cells to
utilize galactose as a carbon source by converting
galactose to glucose-6-phosphate. The structural genes
GAL2, GALI1, GAL7, GAL10 and GALS5 encode the
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Table 3

Average number of networks predicted by the CP and RCP algorithms for different target network architectures

Target network characteristics

Causal predictor (CP)

Relaxed causal predictor (RCP) Ideker’s approach

Number of genes Indegree

10 2 268 (1, 3 x 10% 272 (1, 3 x 10% 273 (1, 3 x 10%
20 2 3e3 (1, 6 x 10%) 4e3 (1, 6 x 10%) 4e4 (1, 8 x 10%)
50 2 2e4 (1, 3 x 10°) 6e8 (1, 6 x 10'%) 5e13 (1, 7 x 10'%)
100 2 2¢7 (1, 2 x 10%) 5e13 (1, 6 x 10'%) 4e23 (9, 6 x 10%)
20 4 134 (1, 3 x 10% 3e2 (1, 4 x 10%) 2e3 (1, 3 x 10%)
20 6 8 (1, 6 x 10%) 2¢2 (1, 2 x 10% 358 (1, 5% 10%
20 8 3(1,2x%10% 26 (1, 3% 10%) 384 (1, 6 x 10%

Note: The data shown are averages over 200 different target networks.

The numbers in the brackets represent the minimum and maximum number of networks predicted by each algorithm. The results obtained using

Ideker’s approach are also shown.
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Fig. 6. Distribution of the number of predicted networks for the CP (), RCP (O), and Ideker (W) algorithms. A sample size of 200 target networks

is used where all networks have 50 genes with a maximum indegree of 2.

galactose permease, galactokinase, UDP-glucose—
hexose-1-phosphate uridylyltransferase, UDP-glucose
4-epimerase and phosphoglucomutase proteins respon-
sible for transporting galactose into the cell and
converting intracellular galactose to glucose-6-phos-
phate via galactose-1-phosphate and glucose-1-phos-
phate. We consider the regulatory network responsible
for inducing the GAL structural genes to a high level in
the presence of galactose as opposed to in the presence
of glycerol. This transcriptional control is primarily
exerted by the regulatory genes GAL4, GAL3 and
GALS80. Gal4 protein is the main transcriptional
activator, which induces the expression level of the
GALI1, GAL2, GAL7 and GALI10 structural genes by
more than 1000-fold and the GALS gene by 100-fold in
the presence of galactose. The Gal80 protein inhibits the
activity of Gal4 protein in the absence of galactose by
binding to the transcription activation domain of Gal4
protein (Lohr et al., 1995). This repression is relieved by
the Gal3 protein. A number of different hypothesis have
been proposed to explain this mechanism. A recent
report showed that Gal3 protein forms a complex with
Gal80 protein in the cytoplasm, and thus prevents Gal80

protein from inhibiting Gal4 protein in the nucleus
(Peng and Hopper, 2002). The role of the GALG6 gene is
not entirely clear. However, the expression level of
GALI, GAL2 and GALT7 structural genes is increased in
a Gal6 mutant (Zheng et al., 1997). The initial entry of
galactose into cells growing on glycerol may occur by
a constitutive, GAL2-independent process or by Gal2
protein mediated entry, enabled by low-level GAL2
expression in glycerol.

We first describe this network using the Boolean
framework. The network topology is shown in Fig. 7a.
There are in total 13 species, nine representing the
mRNA state of the five structural genes, GAL1, GAL2,
GAL7, GAL10, GALS, and the four regulatory genes
GAL3, GAL4, GALS80 and GALSG. For all these species,
the presence of mRNA ensures the corresponding
protein; therefore the same species is used to denote
the mRNA and protein state. However, the Gal4 protein
can exist in two different states, either as unbound
protein that can activate the transcription of other genes
or in a complex with the Gal80 repressor denoted by
Gal4-80. We therefore call the unbound state as Galda
(Gal4 active). Another protein—protein complex is
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Fig. 7. Application of the algorithms to analyze gene expression of Saccharomyces cerevisae galactose pathway. (a) Network Topology. (b) Boolean
representation of the pathway. (c) Expression matrix generated by simulating the Boolean network. (d) The single network predicted by algorithm
CP. (e) One of the 8 different networks predicted by RCP. The network reproduces the original expression matrix on simulation.

formed by the Gal3 and Gal80 proteins in the presence directly regulated by Galda. The presence of the active

of galactose denoted as Gal3-80. Finally, galactose is form of Gal4 protein is contingent upon the presence
also included as a variable in the model. of the corresponding mRNA and the absence of the
The Boolean rule governing each species is shown in Gal4-80 complex. The corresponding Boolean rule for

Fig. 7b. The mRNA state for the structural genes is Gal4a incorporates both these conditions. The Gal3-80
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complex is formed preferentially over the Gal4—80
complex. In Boolean language, this implies that Gal4—
80 complex is formed only when the Gal3-80 complex is
not present, given that the Gal4 and Gal80 species are
available. The Gal3 and Gal80 proteins are present in
the absence of galactose and their expression is modestly
induced in the presence of galactose via Galda. Thus, to
correctly model the expression levels of these two genes,
we would need a three state (0, 1 and 2) model, where
state 1 represents the constitutive expression in the
absence of Gal4a and 2 represents the state attained on
activation by Gal4a. In our Boolean model, we assume
that these two proteins are constitutively active or in
state 1. Similarly, to include the effect of the Gal6
protein we need 3 states for the structural genes, where
in the absence of Gal6 the structural genes attain a state
of 2 and in the presence of Gal6 and Galda a state 1.
However, both states 1 and 2 are active. In the Boolean
representation of the network, the effect of Gal6 cannot
be included. Although, some assumptions need to be
made; the Boolean model does capture the essential
nature of the pathway.

To confirm that the network shown above can indeed
give rise to the induction effect of galactose, it was
simulated using the initial condition where the Gal
structural genes are OFF and galactose is added to the
yeast cells. A steady state was finally achieved with all
structural genes being turned ON. Based on this
network, we also simulate perturbation experiments
where each species is perturbed from its wild type state.
This could be achieved experimentally by knocking out
the corresponding gene, inactivating the protein or
expressing the protein independent of its native control.
The steady state corresponding to each of these
perturbation experiments is represented in the expres-
sion matrix, shown in Fig. 7c. Our algorithms are next
evaluated for their ability to reconstruct the target
network from the expression matrix. The CP algorithm
outputs a single network (Fig. 7d) with a sensitivity and
specificity of 86%, whereas the RCP predicts § different
networks with an average sensitivity of 87% and
average specificity of 93%. One of these networks is
shown in Fig. 7e. The 7 other networks predicted by the
RCP algorithm differ from the one shown in a single
edge. Instead of predicting an interaction from Gal80 to
Gal4-80, an edge is predicted from one of Gall, Gal2,
Gal5, Gal6, Gal7, Gall0 or Gal4a to Gal4-80.

A truth table is constructed for each node of the
predicted networks to determine the logical function
governing the corresponding inputs. If the truth table is
incomplete, and multiple logical rules are possible, we
choose the rule that is biologically the most relevant
(Raeymacekers, 2002). The corresponding network is
then simulated for each perturbation experiment and
compared to the original expression matrix. This can be
used as a consistency check to further prune down the

different predicted networks. Thus, the simulation of
only one (Fig. 7e) out of the 8 different networks
predicted using RCP, could reconstruct the original
expression matrix. We also simulate the experiments
where each element is perturbed in the absence of
galactose. These simulations correspond to perturba-
tions in two elements of the network. An expression
matrix is then constructed with steady-state profiles
from both single and double perturbation experiments.
The entire network can now be reconstructed by the CP
and RCP algorithms. In addition, only a single network
is predicted.

4.5. Comparison with other approaches

We have compared our approach to other similar
approaches based on analyzing gene disruption and
over-expression data under the Boolean framework.
One such approach was proposed by Ideker et al. (2000).
We applied an algorithm based on their approach to our
synthetic data set as well as the gene expression matrix
generated using the yeast galactose pathway structure.
Our algorithms show a consistent increase in the
specificity values over the Ideker algorithm for the
synthetic data set, as shown in Table 1. Our algorithms
also outperform in predicting the yeast galactose path-
way. An approach based on Ideker’s algorithm will infer
120 different networks with an average sensitivity and
specificity of 72.3% as opposed to 8 predicted networks
with an average sensitivity of 87% and specificity of
93% using RCP. Thus, a more accurate network can be
predicted using our approach. In addition the current
algorithms reduce the number of inferred networks
drastically as compared to Ideker’s approach, while still
predicting a better network. As shown in Fig. 6, Ideker’s
algorithm predicts a single network for only 1% of the
synthetic test cases.

The trend of sensitivity and specificity values for our
implementation of Ideker’s algorithm (Table 1) compare
well with those presented in their paper (Ideker et al.,
2000). However, there are differences in the absolute
values. The differences could be due to various reasons.
First, the networks and the governing Boolean functions
are generated randomly from the vast space of possible
network structures. Also, the sensitivity and specificity
values are very sensitive to the initial condition chosen
to simulate the networks and thus the initial state of the
genes. For example, for a given gene that is governed by
an AND function, we can predict all its inputs if it is
active in the wild type state; but only some or none of
the inputs will be predicted if the gene is inactive in the
wild type state. This variability can also be inferred from
the standard errors.

Another similar approach based on predicting a
network with minimum number of interactions
(Wagner, 2001) has been reported. This algorithm does
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not allow for redundant control. In contrast, our
approach predicts both the direct and indirect interac-
tions while still implementing the parsimonious condi-
tion. In addition, the Wagner approach was mainly
developed for acyclic networks. Therefore, we could not
obtain a direct comparison with our synthetic networks
that are both acyclic and cyclic.

5. Discussion

Our algorithms offer a significant advantage in terms
of the scalability with increasing complexity of the
networks. The CP and RCP algorithms attempt to
distinguish the direct and indirect causality relations
from the non-causality interactions. This eliminates the
falsely predicted network structures and is reflected in
the increased specificity values. Moreover, in certain
cases, eliminating the false interactions leads to identi-
fication of additional true interactions, and therefore
an increase in the sensitivity values. The gain in the
sensitivity and specificity values increases as the number
of genes increase from 10 to 100 for an indegree of 2
(Table 4). The algorithm also benefits networks with
large indegree. Comparable gain in sensitivity and
specificity is attained for all networks with indegree
ranging from 2 to 8. The apparent decrease in gain with
increasing indegree of networks is misleading. Single
knockout experiments produce very scarce perturba-
tions in the networks with high indegree, hence only
very few interactions can be predicted (note the very low
values for the average number of edges in predicted
networks). The percentage gain values are normalized
with respect to the percentage of edges in predicted
networks. This eliminates the corresponding bias due to
size of the predicted networks. The percentage of
networks for which the current algorithms show an
improvement also increases with the number of genes.

For the network with 100 genes, all the networks show
an increase in the sensitivity and specificity values.
Performance of the algorithms depends on the
structure of the target network. For example, if the
elements in a network are connected to each other by
direct or indirect causality relations only, all three
algorithms should predict similar network structures. In
contrast, networks with non-causality interactions, such
as the one shown in Fig. la, will be predicted correctly
(sensitivity and specificity values of 100%) only by our
CP and RCP algorithms. Ideker’s approach would
predict incorrect structures such as shown in Fig. 3.
Regulatory networks commonly found in biological
systems are expected to include non-causality relations.
Therefore, we expect the current algorithms to yield a
more significant improvement in realistic biological
systems, than the average statistics shown in Tables 1
and 2. The average sensitivity and specificity values
presented in Table 1 are based on random networks,
which include networks with both causal and non-causal
interactions. Specifically, the dramatic improvement
observed for the network in Fig. la, which represents
a structure found in a wide variety of transcriptional
regulatory networks, demonstrates this point.

6. Conclusions

We present two new algorithms to elucidate the
structure of regulatory networks from expression data
obtained by perturbing each of the genes in a network.
Our results show that these algorithms perform better
than existing approaches and significantly reduce the
number of miss-predicted edges. Importantly, one of the
algorithms can completely eliminate the non-causal
interactions. Moreover, the proposed algorithms dras-
tically reduce the number of equivalent networks that
are being predicted. One of the major challenges in

Table 4
Comparison of the three algorithms in terms of F-factor for different target network configurations
Target network Average number of edges in F-factor (%) Gain (%) Normalized
% gain
Number of Indegree Target Predicted Causal Relaxed Ideker’s
genes network network predictor causal approach
(CP) predictor
(RCP)

10 2 12 8 73 73 69 5 8

20 2 27 16 68 68 63 9 15

50 2 72 44 68 68 60 15 24

100 2 150 91 68 68 58 17 29

20 4 62 15 35 35 33 7 29

20 6 90 15 25 25 24 5 31

20 8 120 14 19 19 18 4 33

Note: The average number of edges in the predicted network are a maximum over all three algorithms.
Gain reflects the percentage improvement in terms of F-factor values achieved by the CP and RCP algorithms over Ideker’s approach. Normalized
gain is obtained by dividing the gain by the percentage of edges in the predicted networks compared to target networks.
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reverse engineering of any particular regulatory network
is to experimentally differentiate between the various
plausible networks predicted. By drastically reducing the
number of such plausible networks, our algorithms
should greatly facilitate the elucidation of the regulatory
structure.
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