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Abstract— In this paper we present a family of multi-objective
hypergraph partitioning algorithms based on the multilevel
paradigm, which are capable of producing solutions in which
both the cut and the maximum subdomain degree are simul-
taneously minimized. This type of partitionings are critical for
existing and emerging applications in VLSI CAD as they allow
to both minimize and evenly distribute the interconnects across
the physical devices. Our experimental evaluation on the ISPD98
benchmark show that our algorithms produce solutions that when
compared against those produced by hMETIS have a maximum
subdomain degree that is reduced by up to 36% while achieving
comparable quality in terms of cut.

Index Terms— Multi-chip partitioning, placement, interconnect
congestion.

I. INTRODUCTION

Hypergraph partitioning is an important problem with ex-
tensive applications to many areas, including VLSI design [5],
efficient storage of large databases on disks [32], information
retrieval [37], and data mining [12], [20]. The problem is to
partition the vertices of a hypergraph into k equal-size sub-
domains, such that the number of the hyperedges connecting
vertices in different subdomains (called the cut) is minimized.
The importance of the problem has attracted a considerable
amount of research interest and over the last thirty years a
variety of heuristic algorithms have been developed that offer
different cost-quality trade-offs. The survey by Alpert and
Kahng [5] provides a detailed description and comparison of
various such schemes. Recently a new class of hypergraph
partitioning algorithms has been developed [2], [4], [11], [14],
[19], that are based upon the multilevel paradigm. In these
algorithms, a sequence of successively smaller hypergraphs
is constructed. A partitioning of the smallest hypergraph is
computed. This partitioning is then successively projected to
the next level finer hypergraph, and at each level an iterative
refinement algorithm (e.g., KL [26] or FM [13]) is used to
further improve its quality. Experiments presented in [2]–[4],
[9], [19], [25], [35] have shown that multilevel hypergraph par-
titioning algorithms can produce substantially better solutions
than those produced by non-multilevel schemes.

However, despite the success of multilevel algorithms in
producing partitionings in which the cut is minimized, this cut
is not uniformly distributed across the different subdomains.
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TABLE I

THE RATIOS OF THE MAXIMUM SUBDOMAIN DEGREE OVER THE AVERAGE

SUBDOMAIN DEGREE OF VARIOUS SOLUTIONS FOR THE ISPD98

BENCHMARK.

4-way 8-way 16-way 32-way 64-way
ibm01 1.27 1.55 1.60 1.70 1.76
ibm02 1.35 1.35 1.43 1.51 1.55
ibm03 1.18 1.43 1.68 1.70 1.84
ibm04 1.28 1.35 1.41 1.72 2.39
ibm05 1.16 1.17 1.24 1.33 1.41
ibm06 1.22 1.46 1.46 1.50 1.63
ibm07 1.29 1.46 1.79 1.94 2.04
ibm08 1.06 1.22 1.45 1.73 2.12
ibm09 1.09 1.23 1.65 1.91 2.31
ibm10 1.23 1.43 1.69 1.78 1.85
ibm11 1.21 1.55 1.54 1.66 2.02
ibm12 1.26 1.47 1.72 2.10 2.15
ibm13 1.31 1.81 1.66 1.91 1.85
ibm14 1.20 1.47 1.46 1.63 1.96
ibm15 1.28 1.51 1.71 1.87 2.09
ibm16 1.22 1.39 1.45 1.70 1.84
ibm17 1.18 1.42 1.52 1.80 2.13
ibm18 1.16 1.61 2.33 2.65 2.78

That is, the number of hyperedges that are being cut by a
particular subdomain (referred to as the subdomain degree)
is significantly higher than that cut by other subdomains.
This is illustrated in Table I that shows the ratios of the
maximum subdomain degree over the average subdomain
degree of various k-way partitionings obtained for the ISPD98
benchmark [3] using the state-of-the-art hMETIS [22] multilevel
hypergraph partitioning algorithm. In many cases, the result-
ing partitionings contain subdomains whose degree is up to
two times higher than the average degree of the remaining
subdomains.

For many existing and emerging applications in VLSI CAD,
producing partitioning solutions that both minimize the cut
and also minimize the maximum subdomain degree is of great
importance. For example, within the context of partitioning-
driven placement, since the maximum subdomain degree of
a partition (also known as the bin degree) can be considered
a lower bound on the number of routing resources that is re-
quired, being able to compute partitions that both minimize the
number of interconnects (which is achieved by minimizing the
cut) and also evenly distribute these interconnects across the
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Fig. 1. An example of multi-chip systems with grid interconnect topology

physical device to eliminate high density interconnect regions
(which is achieved by minimizing the maximum subdomain
degree) can significantly reduce the peak demand of routing
resources and thus, help in reducing the peak congestion [17],
[38]. Similarly, in the context of multi-chip configurations, a
partitioned design cannot be mapped on to a set of chips, if
there is a partition that exceeds the number of available I/O
pins. For example, in the multi-chip configuration shown in
Figure 1, if the degree of a subdomain exceeds 20, it cannot be
mapped to any of the available chips. To address this problem,
techniques based on pin-multiplexing have been developed [6]
that allow multiple signals to go through the same I/O pins
by using time division multiplexing. However, this approach
reduces the speed at which the system can operate (due to
time division) and increases the overall system design (due
to the extra logic required for the multiplexing). However,
the costs associated with pin-multiplexing can be significantly
reduced and even eliminated by computing a decomposition
that significantly reduces the maximum number of I/O pins
required by any given partition.

In this paper we present a family of hypergraph partitioning
algorithms based on the multilevel paradigm that are capable
of producing solutions in which both the cut and the max-
imum subdomain degree are simultaneously minimized. Our
algorithms treat the minimization of the maximum subdomain
degree as a multi-objective optimization problem that is solved
once a high-quality, cut based, k-way partitioning has been
obtained. Toward this goal, we present highly effective multi-
objective refinement algorithms that are capable to produce
solutions that explicitly minimize the maximum subdomain
degree and ensure that the cut does not significantly increase.
This approach has a number of inherent advantages. First, by
building upon a cut-based k-way partitioning, it leverages the
huge body of existing research on this topic, and it can benefit
from future improvements. Second, because the initial k-way
solution is of extremely high-quality, it allows the algorithm
to focus on minimizing the maximum subdomain degree
without being overly concerned about the cut of the final
solution. Finally, it provides a user-adjustable and predictable
framework in which the user can specify how much (if any)
deterioration on the cut he or she is willing to tolerate in
order to reduce the maximum subdomain degree. We ex-

perimentally evaluated the performance of these algorithms
on the ISPD98 [3] benchmark and compared them against
the solutions produced by hMETIS [22]. Our experimental
results show that our algorithms are capable of producing
solutions whose maximum subdomain degree is lower by 5%
to 36% while producing comparable solutions in terms of cut.
Moreover, the computational complexity of these algorithms
is relatively low, requiring on the average no more than twice
the amount of time required by hMETIS in most cases.

The rest of the paper is organized as follows. Section II
provides some definitions, describes the notation that is used
throughout the paper, and provides a brief description of the
multilevel graph partitioning paradigm. Section III discusses
the various issues arising with minimizing the maximum
subdomain degree and formally defines the two multi-objective
formulations used in this paper. Sections IV and V describe
the direct and aggressive multi-phase refinement algorithms
that we developed to simultaneously minimize the maximum
subdomain degree and the cut of the resulting partitioning.
Section VI experimentally evaluates these algorithms and
compares them against hMETIS. Finally, Section VII provides
some concluding remarks and outlines directions of future
research.

II. DEFINITIONS AND NOTATION

A hypergraph G = (V, E) is a set of vertices V and a set of
hyperedges E. Each hyperedge is a subset of the set of vertices
V . The size of a hyperedge is the cardinality of this subset.
A vertex v is said to be incident on a hyperedge e, if v ∈ e.
Each vertex v and hyperedge e has a weight associated with
them and they are denoted by w(v) and w(e), respectively.

A decomposition of V into k disjoint subsets V1, V2, . . . , Vk,
such that

⋃
i Vi = V is called a k-way partitioning of V . We

will use the terms subdomain or partition to refer to each
one of these k sets. A k-way partitioning of V is denoted
by a vector P such that P [i] indicates the partition number
that vertex i belongs to. We say that a k-way partitioning of
V satisfies a balancing constraint specified by [l, u], where
l < u, if for each subdomain Vi, l ≤ ∑

v∈Vi
w(v) ≤ u. The

cut of a k-way partitioning of V is equal to the sum of the
weights of the hyperedges that contain vertices from different
subdomains. The subdomain degree of V i is equal to the sum
of the weights of the hyperedges that contain at least one
vertex in Vi and one vertex in V −Vi. The maximum subdomain
degree of a k-way partitioning is the highest subdomain degree
over all k partitions. The sum-of-external-degrees (abbreviated
as SOED) of a k-way partitioning is equal to the sum of
the subdomain degrees of all the partitions. A net is said
to be exposed w.r.t. a subdomain when it contributes to the
subdomain’s degree.

Given a k-way partitioning of V and a vertex v ∈ V that
belongs to partition Vi, v’s internal degree denoted by IDi(v)
is equal to the sum of the weights of its incident hyperedges
that contain only vertices from Vi, and v’s external degree with
respect to partition Vj denoted by EDj(v) is equal to the sum
of the weights of its incident hyperedges whose all remaining
vertices belong to partition Vj .
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The k-way hypergraph partitioning problem is defined as
follows. Given a hypergraph G = (V, E) and a balancing
constraint specified by [l, u], compute a k-way partitioning of
V such that it satisfies the balancing constraint and minimizes
the cut. The requirement that the size of each partition satisfies
the balancing constraint is referred to as the partitioning
constraint, and the requirement that a certain function is
optimized is referred to as the partitioning objective.

A. The Multilevel Paradigm for Hypergraph Partitioning

The key idea behind the multilevel approach for hypergraph
partitioning is fairly simple and straightforward. Multilevel
partitioning algorithms, instead of trying to compute the
partitioning directly in the original hypergraph, first obtain a
sequence of successive approximations of the original hyper-
graph. Each one of these approximations represents a problem
whose size is smaller than the size of the original hypergraph.
This process continues until a level of approximation is
reached in which the hypergraph contains only a few tens of
vertices. At this point, these algorithms compute a partitioning
of that hypergraph. Since the size of this hypergraph is quite
small, even simple algorithms such as Kernighan-Lin (KL)
[26] or Fiduccia-Mattheyses (FM) [13] lead to reasonably
good solutions. The final step of these algorithms is to take the
partitioning computed at the smallest hypergraph and use it to
derive a partitioning of the original hypergraph. This is usually
done by propagating the solution through the successive better
approximations of the hypergraph and using simple approaches
to further refine the solution.

In the multilevel partitioning terminology, the above process
is described in terms of three phases. The coarsening phase, in
which the sequence of successively approximate hypergraphs
(coarser) is obtained, the initial partitioning phase, in which
the smallest hypergraph is partitioned, and the uncoarsening
and refinement phase, in which the solution of the smallest
hypergraph is projected to the next level finer graph, and at
each level an iterative refinement algorithm such as KL or
FM is used to further improve the quality of the partitioning.
The various phases of multilevel approach in the context of
hypergraph bisection are illustrated in Figure 2.

This paradigm was independently studied by Bui and
Jones [8] in the context of computing fill-reducing matrix
reordering, by Hendrickson and Leland [15] in the con-
text of finite element mesh-partitioning, and by Hauck and
Borriello [14] (called Optimized KLFM), and by Cong and
Smith [11] for hypergraph partitioning. Karypis and Kumar
extensively studied this paradigm in [21], [23], [24] for the
partitioning of graphs. They presented novel graph coarsening
schemes and they showed both experimentally and analytically
that even a good bisection of the coarsest graph alone is
already a very good bisection of the original graph. These
coarsening schemes made the overall multilevel paradigm very
robust and made it possible to use simplified variants of KL
or FM refinement schemes during the uncoarsening phase,
which significantly speeded up the refinement process without
compromising overall quality. METIS [23], a multilevel graph
partitioning algorithm based upon this work, routinely finds
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Fig. 2. The various phases of the multilevel hypergraph bisection. During
the coarsening phase, the size of the hypergraph is successively decreased;
during the initial partitioning phase, a bisection of the smaller hypergraph is
computed; and during the uncoarsening and refinement phase, the bisection
is successively refined as it is projected to the larger hypergraphs. During
the uncoarsening and refinement phase, the dashed lines indicate projected
partitionings and dark solid lines indicate partitionings that were produced
after refinement.

substantially better partitionings than other popular techniques
such as spectral-based partitioning algorithms [7], [28], in
a fraction of the time required by them. Karypis et al [19]
extended their multilevel graph partitioning work to hyper-
graph partitioning. The hMETIS [22] package contains many
of these algorithms and have been shown to produce high-
quality partitionings for a wide-range of circuits.

III. MINIMIZING THE MAXIMUM SUBDOMAIN DEGREE

There are two different approaches for computing a k-
way partitioning of a hypergraph. One is based on recursive
bisectioning and the other on direct k-way partitioning [18].
In recursive bisectioning, the overall partitioning is obtained
by initially bisecting the hypergraph to obtain a two-way
partitioning. Then, each of these parts is further bisected to
obtain a four-way partitioning, and so on. Assuming that k
is a power of two, then the final k-way partitioning can be
obtained in log(k) such steps (or after performing k − 1
bisections). In this approach, each partitioning step usually
takes into account information from only two partitions, and
as such it does not have sufficient information to explicitly
minimize the maximum subdomain degree of the resulting
k-way partitioning. In principle, additional information can
be propagated down at each bisection level to account for
the degrees of the various subdomains. For example, during
each bisection step, the change in the degrees of the adjacent
subdomains can be taken into account (either explicitly or via
variations of terminal-propagation-based techniques [16]) to
favor solutions that in addition to minimizing the cut also
reduce these subdomain degrees. However, the limitation of
such approaches is that they end-up over-constraining the
problem because not only do they try to reduce the maximum
subdomain degree of the final k-way partitioning, but they also
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try to reduce the maximum degree of the intermediate lower-k
partitioning solutions.

For this reason, approaches based on direct k-way parti-
tioning are better suited for the problem of minimizing the
maximum subdomain degree, as they provide a concurrent
view of the entire k-way partitioning solution. The ability of
direct k-way partitioning to optimize objective functions that
depend on knowing how the hyperedges are partitioned across
all k partitions has been recognized by various researchers,
and a number of different algorithms have been developed
to minimize objective functions such as the sum-of-external-
degrees, scaled cost, absorption etc. [5], [10], [25], [30], [34]).
Moreover, direct k-way partitioning can potentially produce
much better solutions than a method that computes a k-way
partitioning via recursive bisection. In fact, in the context
of a certain classes of graphs it was shown that recursive
bisectioning can be up to an O(log n) factor worse than the
optimal solution [33].

However, despite the inherent advantage of direct k-way
partitioning to naturally model much more complex objectives,
and the theoretical results which suggest that it can lead
to superior partitioning solutions, a number of studies have
shown that existing direct k-way partitioning algorithms for
hypergraphs, produce solutions that are in general inferior to
those produced via recursive bisectioning [10], [25], [30], [34].
The primary reason for that is the fact that computationally
efficient k-way partitioning refinement algorithms are often
trapped into local minima, and usually require much more
sophisticated and expensive optimizers to climb out of them.

To overcome these conflicting requirements and characteris-
tics, our algorithms for minimizing the maximum subdomain
degree combine the best features of the recursive bisectioning
and direct k-way partitioning approaches. We achieve this by
treating the minimization of the maximum subdomain degree
as a post-processing problem to be performed once a high-
quality k-way partitioning has been obtained. Specifically, we
use existing state-of-the-art multilevel-based techniques [19],
[22] to obtain an initial k-way solution via repeated bisec-
tioning, and then refine this solution using various k-way
partitioning refinement algorithms that (i) explicitly minimize
the maximum subdomain degree, (ii) ensure that the cut does
not significantly increase, and (iii) ensure that the balancing
constraints of the resulting k-way partitioning are satisfied.

This approach has a number of inherent advantages. First,
by building upon a cut-based k-way partitioning, it leverages
the huge body of existing research on this topic, and it can
benefit from future improvements. Second, in terms of cut,
its initial k-way solution is of extremely high-quality; thus,
allowing us to primarily focus on minimizing the maximum
subdomain degree without being overly concerned about the
cut of the final solution (as long as the partitioning is not
significantly perturbed). Third, it allows for a user-adjustable
and predictable framework in which the user can specify how
much (if any) deterioration on the cut he or she is willing to
tolerate in order to reduce the maximum subdomain degree.

To actually perform the maximum subdomain-degree fo-
cused k-way refinement we developed two classes of algo-
rithms. Both of them treat the problem as a multi-objective

optimization problem but they differ on the starting point
of that refinement. The first algorithm called “Direct Multi-
Phase Refinement” directly optimizes the multi-objective cost
using k-way V-cycle framework [19], while the second al-
gorithm called “Aggressive Multi-Phase Refinement” utilizes
refinement strategies that enable large scale perturbations
of the solution space. Details on the exact multi-objective
formulation is provided in the rest of this section and the two
refinement algorithms are described in subsequent sections.

A. Multi-Objective Problem Formulation

In general, the objectives of producing a k-way partitioning
that both minimize the cut and the maximum subdomain
degree are reasonably well correlated with each other, as
the partitionings with low cuts will also tend to have low
maximum subdomain degrees. However, this correlation is not
perfect, and these two objectives can actually be at odds with
each other. That is, a reduction in the maximum subdomain
degree may only be achieved if the cut of the partitioning is
increased. This situation arises with vertices that are adjacent
to vertices that belong to more than two subdomains. For
example, consider a vertex v that belongs to the maximum
degree partition Vi and let Vq and Vr be two other partitions
such that v is connected to vertices in Vi, Vq , and Vr. Now,
if EDq(v) − IDi(v) < 0 and EDr(v) − IDi(v) < 0, then the
move of v to either partitions Vq or Vr will increase the cut
but if EDq(v)+EDr(v)− IDi(v) > 0, then moving v to either
Vq or Vr will actually decrease Vi’s subdomain degree. One
such scenario is illustrated in Figure 3, in which vertex v from
partition Vi is connected to vertices x, y, and z of partitions Vi,
Vq and Vr, respectively, and the weights of the respective edges
are 6, 5, and 3. Moving vertex v from partition V i to either
partitions Vq or Vr will reduce the subdomain degree of Vi;
however, either of these moves will increase the overall cut of
the partitioning. For example, if v moves to Vq , the subdomain
degree of Vi will reduce from 8 to 6, whereas the overall cut
will increase from 8 to 9. This discussion suggests that in order
to develop effective algorithms that explicitly minimize the
maximum subdomain degree and the cut, these two objectives
need to be coupled together into a multi-objective framework
that allows the optimization algorithm to intelligently select
the preferred solution.

The problem of multi-objective optimization within the
context of graph and hypergraph partitioning has been exten-
sively studied in the literature [1], [27], [29], [31], [36] and
two general approaches have been developed for combining
multiple objectives. The first approach keeps the different
objectives separate and couples them by assigning to them
different priorities. Essentially in this scheme, a solution that
optimizes the highest priority objective the most is always
preferred and the lower priority objectives are used as tie-
breakers (i.e., used to select among equivalent solutions in
terms of the higher priority objectives). The second approach
creates an explicit multi-objective function that numerically
combines the individual functions. For example, a multi-
objective function can be obtained as the weighted sum of the
individual objective functions. In this scheme, the choice of
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Fig. 3. An example in which the objectives of maximum subdomain degree
and cut are in conflict with each other. Lets say Vi is the subdomain with
the maximum degree. If v is moved to either Vq or Vr it will increase the
cut either by one or three, respectively. However both moves will reduce the
maximum subdomain degree by two (5+3-6).

the weight values is used to determine the relative importance
of the various objectives. One of the advantages of such an
approach is that it tends to produce somewhat more natural
and predictable solutions as it will prefer solutions that to a
certain extent, optimize all different objective functions.

In our algorithms we used both of these methods to combine
the two different objectives. Specifically, our priority-based
scheme produces a multi-objective solution in which the
maximum subdomain degree is the highest priority objective
and the cut is the second highest. This choice of priorities was
motivated by the fact that within our framework, the solution
is already at a local minima in terms of cut; thus, focusing on
the maximum subdomain degree is a natural choice.

Our combining multi-objective function couples the differ-
ent objectives using the formula

Cost = α(MaximumDegree) + Cut, (1)

where MaximumDegree is the maximum subdomain degree,
Cut is the hyperedge cut, and α is a user-specified weight
indicating the importance of maximum subdomain degree
relative to the cut. Selecting the proper value of this parameter
is, in general, problem dependent. As discussed earlier, in
many cases the maximum subdomain degree can be only
reduced by increasing the overall cut of the partitioning.
As a result, in order for Equation 1 to provide meaningful
maximum subdomain degree reduction, α should be greater
than 1.0. Moreover, since the cut worsening moves that lead to
improvements in the maximum subdomain degree are those in
which the moved vertices are connected to vertices of different
partitions (i.e., corner vertices), then the value α should be
an increasing function on the number of partitions k; thus,
allowing for the movement of vertices that are adjacent to
many subdomains (as long as such moves reduce the maximum
subdomain degree). The sensitivity on these parameters is
further studied in the experiments shown in Section VI.

In addition, in both of these schemes, we break ties in favor
of solutions that lead to lower sum-of-external-degrees. This
was motivated by the fact that lower SOED solutions may
lead to subsequent improvements in either one of the main
objective functions. Also, if a gain of the move is tied even
after considering SOED, the ability of the move to improve
area balancing is considered for tie breaking.

IV. DIRECT MULTI-PHASE REFINEMENT

Our first k-way refinement algorithm for the multi-objective
problem formulations described in Section III-A is based on
the multi-phase refinement approach implemented by hMETIS
and was initially described in [19]. The idea behind multi-
phase refinement is quite simple. It consists of two phases,
namely a coarsening and an uncoarsening phase. The un-
coarsening phase is identical to the uncoarsening phase of
the multilevel hypergraph partitioning algorithm [19]. The
coarsening phase, called restricted coarsening [19], however
is somewhat different, as it preserves the initial partitioning
that is input to the algorithm. Given a hypergraph G and
a partitioning P , during the coarsening phase a sequence
of successively coarser hypergraphs and their partitionings is
constructed. Let (Gi, Pi) for i = 1, 2, . . . , m, be the sequence
of hypergraphs and partitionings. Given a hypergraph G i and
its partitioning Pi, restricted coarsening will collapse vertices
together that belong to the same partition. The partitioning
Pi+1 of the next level coarser hypergraph G i+1 is computed
by simply inheriting the partition from G i. By constructing
Gi+1 and Pi+1 in this way we ensure that the number of
hyperedges cut by the partitioning is identical to the number
of hyperedges cut by Pi in Gi.

The set of vertices to be collapsed together in this restricted
coarsening scheme can be selected by using any of the
coarsening schemes that have been previously developed [19].
In our algorithm, we use the first-choice (FC) scheme [25] as
our default, since it leads to the best overall solutions [22]. The
FC scheme is derived by modifying the commonly used edge-
coarsening scheme. In the edge-coarsening scheme, a vertex
is randomly selected and it is merged with a highly connected
and unmatched neighbor. The connectivity to the neighbors is
estimated by representing each hyperedge by a clique of edges
each with the weight of w(e)/(|e| − 1) and by summing the
weights of edges common to each neighbor and the vertex
in consideration. The FC coarsening scheme is derived from
the edge-coarsening scheme by relaxing the requirement that
a vertex is matched only with another unmatched vertex.
Specifically, in the FC coarsening scheme, the vertices are
again visited in a random order. However, for each vertex
v, all vertices (both matched and unmatched) that belong to
hyperedges incident to v are considered, and the one that is
connected via the edge with the largest weight is matched with
v, breaking ties in favor of unmatched vertices. The FC scheme
tends to remove a large amount of the exposed hyperedge-
weight in successive coarse hypergraphs, and thus, makes it
easy to find high-quality initial partitionings that require little
refinement during the uncoarsening phase.

Due to the randomization in the coarsening phase, succes-
sive runs of the multi-phase refinement algorithm can lead to
additional improvements of the partitioning solution. For this
reason, in our algorithm we perform multiple such iterations
and the entire process is stopped when the solution quality
does not improve in successive iterations. Such an approach is
identical to the V -cycle refinement algorithm used by hMETIS
[22].

The actual k-way partitioning refinement at a given level
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during the uncoarsening phase is performed using a greedy
algorithm that is motivated by a similar algorithm used in the
direct k-way partitioning algorithm of hMETIS. More precisely,
the greedy k-way refinement algorithm works as follows.
Consider a hypergraph G = (V, E), and its partitioning vector
P . The vertices are visited in a random order. Let v be such a
vertex, let P [v] = a be the partition that v belongs to. If v is a
node internal to partition a then v is not moved. If v is at the
boundary of the partition, then v can potentially be moved to
one of the partitions N(v) that vertices adjacent to v belong
to (the set N(v) is often referred to as the neighborhood of v).
Let N ′(v) be the subset of N(v) that contains all partitions b
such that movement of vertex v to partition b does not violate
the balancing constraint. Now the partition b ∈ N ′(v) that
leads to the greatest positive reduction in the multi-objective
function is selected and v is moved to that partition.

V. AGGRESSIVE MULTI-PHASE REFINEMENT

One of the potential problems with the multi-objective
refinement algorithm described in Section IV is that it is
limited to the extent in which it can make large-scale per-
turbations on the initial k-way partitioning produced by the
cut-focused recursive-bisectioning algorithm. This is due to the
combination of two factors. First, the greedy, non-hill climbing
nature of its refinement algorithm limits the perturbations that
are explored, and second, since it is based on an FM-derived
framework, it is constrained to make moves that do not violate
the balancing constraints of the resulting solution. As a result
(shown later in our experiments (Section VI)), it tends to
produce solutions that retain the low-cut characteristics of the
initial k-way solution, but it does not significantly reduce the
maximum subdomain degree. Ideally, we will like a multi-
objective refinement algorithm that is capable of effectively
exploring the entire space of possible solutions in order to
select the one that best optimizes the particular multi-objective
function.

Toward this goal, we developed two multi-objective refine-
ment algorithms that allows large-scale perturbations of the
partitioning produced by the recursive bisectioning algorithm.
These algorithms are described in detail in the following
sections.

A. Bottom-Up Aggressive Multi-phase Refinement

The first algorithm, referred to as bottom-up aggressive
multi-phase refinement, consists of five major steps (outlined
in Figure 4) and operates as follows.

In the first step, given the initial k-way partitioning, the
algorithm proceeds to further subdivide each of these parti-
tions into 2l parts (where l is a user specified parameter).
These subdivisions are performed using a min-cut hypergraph
partitioning algorithm, resulting in a high-quality fine-grain
partitioning. During the second step, this 2 lk-way partitioning
is refined using the direct multi-phase refinement algorithm
described in Section IV to optimize the particular multi-
objective function. Each of the resulting 2 lk partitions are
then collapsed into single nodes, that we will refer to them
as macro nodes.

Bottom-up initialization

1

Input Hypergraph

Compute 2L k subdomains by
recursive bisection

Apply direct multi-phase
refinement

Collapse into macro nodes

2

Restore 2L k macro nodes
(2L nodes per subdomain)

Apply, randomized/hill-climb
pair-wise macro node swapping

Output Partition Information

Restore original hypergraph, and
apply direct multi-phase

refinement

4

5

3

YES

NO

Create x pairs using 2x macro
nodes

Swap macro nodes
to improve the pairs

Convert the pairs to larger
macro nodes

are there k nodes?

Fig. 4. The various steps of the bottom-up aggressive multi-phase refinement
algorithm.

During the third step, a k-way partitioning of these macro
nodes is computed such that each partition has exactly 2 l

macro nodes. The goal of this macro-node partitioning is to
obtain an initial partitioning that has low maximum subdomain
degree and is achieved by greedily combining macro nodes
that lead to the smallest maximum subdomain degree as
follows. For each pair of macro-nodes u i and uj (i < j),
let vi,j be the node obtained by merging u i and uj , and let
deg(ui) and deg(vi,j) be the degrees of macro-node u i and
merged node vi,j , respectively. For l = 1, the algorithm orders
all possible macro-node pairs in non-increasing order based on
the maximum degree of its constituent macro-nodes (i.e., for
each pair vi,j it considers max{deg(ui), deg(uj)}) and the
macro-node pairs that have the same maximum degree are
ordered in non-decreasing order of their resulting degree (i.e.,
for each pair vi,j it considers deg(vi,j)). The algorithm then
traverses the list in that order to identify the pairs of unmatched
macro-nodes to form the initial partitioning. As a result of this
traversal order, the algorithm provides the highest flexibility
to the macro-nodes that have high degree and tries to combine
them with the macro-nodes that will lead to pairs that have the
smallest degree. However, for l > 1, since a direct extension
of such an approach is not computationally feasible (the
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number of combinations that needs to be considered increases
exponentially with l), the algorithm obtains the partitioning in
a bottom-up fashion by repeatedly applying the above scheme
l times. In addition, after each round of pairings, the macro-
node-level partitioning is further refined by applying a pair-
wise macro-node swapping algorithm described in Section V-
A.1.

In the fourth step, the quality in terms of the particular
multi-objective function of the resulting macro-node level
partitioning is improved using a pair-wise macro-node swap-
ping algorithm (described in Section V-A.1). This algorithm
operates at the macro-node level and selects two macro-
nodes, each one from a different partition, and swaps the
partitions that they belong so that to improve the overall
quality of the solution. Since by construction, each macro
node is approximately of the same size, such swaps almost
always lead to feasible solutions in terms of the balance
constraint. The use of such a refinement algorithm was the
primary motivation behind the development of the aggressive
multi-phase algorithm as it allows us to move large portions
of the hypergraph between partitions without having to either
violate the balancing constraints or rely on a sequence of small
vertex-moves in order to achieve the same effect. Moreover,
because by construction, each macro-node corresponds to a
good cluster (as opposed to a random collection of nodes) such
swaps can indeed lead to improved quality very efficiently.

Finally, in the fifth step, the macro-node based partitioning
is used to induce a partitioning of the original hypergraph,
which is then further improved using the direct multi-phase
refinement algorithm described in Section IV.

1) Macro-node Partitioning Refinement: We developed two
algorithms for refining a partitioning solution at the macro-
node level. The differences between the two algorithms are
the method used to identify the pairs of macro nodes to be
swapped and the policy used in determining whether or not a
particular swap will be accepted. Details on these two schemes
are provided in the next two sections.

a) Randomized Pair-wise Node Swapping: In this
scheme, two nodes belonging to different partitions are ran-
domly selected and the quality of the partitioning resulting
by their swap is evaluated in terms of the particular multi-
objective function. If that swap leads to a better solution,
the swap is performed, otherwise it is not. Swaps that do
not improve or degrade the particular multi-objective function
are also allowed, as they often introduce desirable perturba-
tions. The primary motivation for this algorithm is its low
computational complexity, and in practice it produces very
good results. Also, when there are two nodes per subdomain,
the randomized pair-wise node swapping can be done quite
efficiently by pre-computing the cut and degree of all possible
pairings and storing them in a 2D table. This loop-up based
swapping takes less than one second to evaluate the cost of
one million swaps on a 1.5 GHz workstation.

b) Coordinated Sequence of Pair-wise Node Swaps: One
of the limitations of the previous scheme is that it lacks the
ability to climb out of local minima as it does not allow any
swaps that decrease the value of the objective function. To
overcome this problem, we developed a heuristic refinement

algorithm that can be considered an extension of the classi-
cal Kernighan-Lin algorithm [26] for k-way refinement that
operates as follows.

The algorithm consists of a number of iterations. During
each iteration it identifies and performs a sequence of macro-
nodes swaps that improve the value of the objective function
and terminates when no such sequence can be identified within
a particular iteration. Each of these iterations is performed as
follows. Let k be the number of partitions, m the number
of macro-nodes, and q = m/k the number of macro-nodes
per partition. Since each macro-node v in partition V i can
be swapped with any macro-node belonging to a different
partition, there are a total of m(m − q) possible pairs of
macro-nodes that can be swapped. For each of these swaps,
the algorithm computes the improvement in the value of the
objective function (i.e., the gain) achieved by performing it,
and inserts all the m(m−q) possible swaps into a max-priority
queue based on this gain value. Then it proceeds to repeatedly
(i) extract from this queue the macro-node pair whose swap
leads to the highest gain, (ii) modify the partitioning by
performing the macro-node swap, (iii) record the current value
of the objective function, and (iv) update the gains of the
macro-node pairs in the priority queue to reflect the new
partitioning. Once the priority queue becomes empty, the
algorithm determines the point within this sequence of swaps
that resulted in the best value of the objective function and
reverts the swaps that it performed after that point. An outline
of the single iteration of this “hill-climb swap” algorithm is
presented in Algorithm 1.

Algorithm 1 Hill-climbing algorithm for identifying a se-
quence of pair-wise macro node swaps to reach a lower cost.

Compute initial gain values for all possible pairs
Insert them in a priority queue

while Pairs exist in priority queue do
Pop the highest gain pair
Make the swap
“Lock” the pair

if Cost is minimum then
Record roll back point
Record new minimum cost

end if

if Maximum subdomain degree changed then
Update the gain values of all pairs remaining in priority queue.

else
Update the gain values of affected pairs remaining in priority
queue.

end if
end while

Roll back to minimum cost point (i.e., undo all swaps after the
minimum cost point in reverse order)

Due to the global nature of the maximum subdomain degree
cost, if a macro-node swap changes the value of the maximum
subdomain degree, the gains of all the pairwise swaps that are
still in the priority queue needs to be recomputed. However, if
a swap does not change the value of the maximum subdomain
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degree, then only the gains of the macro-node pairs that
contain nodes adjacent to those being swapped need to be
recomputed. Since only a small fraction of the swaps will end
up changing the value of the maximum subdomain degree,
the cost of updating the priority queue is relatively small.
Despite this, since the algorithm needs to evaluate all m(m−q)
possible pairs of swaps, its runtime complexity is significantly
higher than that of the randomized swapping algorithm.

It is easy to see that this algorithm is quite similar in spirit
to the Kernighan-Lin algorithm with the key difference being
that the priority queue stores the effect of a pairwise macro-
node swap as opposed to the effect of a single vertex move.
This swapping-based view allows this algorithm to operate for
an arbitrary number of partitions k.

B. Top-Down Aggressive Multi-Phase Refinement

The key parameter of the aggressive refinement scheme
described in Section V-A is the value of l, which controls the
granularity of the macro-nodes that are used. The effectiveness
of the overall refinement approach can be affected both for
small as well as large values of l. Small values may lead to
large macro-nodes whose swaps do not improve the quality,
whereas large values may lead to small macro-nodes that
require a coordinated sequence of swaps to achieve the desired
perturbations. Moreover, large values of l have the additional
drawback of increasing the overall runtime of the algorithm
as it requires more time to obtain the initial clusters and more
refinement time.

In developing the bottom-up aggressive multi-phase refine-
ment algorithm we initially expected that its performance will
continue to improve as we increase the value of l, until the
point at which the size of the macro-nodes will become so
small so that this macro-node based partitioning does not
provide any advantages over the unclustered hypergraph. Our
experimental results (presented later in Section VI) partially
verified this intuition but also showed that the point after which
we obtain no improvements is actually much higher from what
we had expected. In particular, our results will show that as l
increases from zero to two, the bottom-up scheme can achieve
progressively better results, but its performance for l ≥ 3 is
actually worse than that for l = 2. In analyzing this behavior
we realized that there is another parameter that affects the
effectiveness of this scheme and has to do with the bottom-up
nature of the k-way partitioning that is computed in the third
step of the algorithm.

Recall from Section V-A that for l > 1 the k-way
macro-node partitioning is computed by repeatedly merging
successively larger partitions, followed by a swapping-based
refinement. For example, when l = 3, we first merge pairs of
macro-nodes to obtain a 4k-way partitioning, then merge these
partitions to obtain a 2k-way partitioning, and finally obtain
the desired k-way partitioning by merging these 2k partitions.
Moreover, between these merging operations we apply the
swap-based refinement to optimize the overall quality of the
4k-, 2k-, and k-way partitioning. The problem with this
approach arises from the fact that as we move from the
8k macro-nodes to a 4k-, 2k-, and k-way partitioning we

3

Top-down initialization

1

Input Hypergraph

Compute k subdomains by
recursive bisection

2

Restore 2L k macro nodes
(2L nodes per subdomain)

Apply, randomized/hill-climb
pair-wise macro node swapping

Output Partition Information

Restore original hypergraph, and
apply direct multi-phase

refinement

4

5

i = 1

NO

YES

is  i > L ?

If (i >1), Restore k subdomains.

Recursively bisect each of the k sub
domains to obtain 2 i k sub domains.

Collapse the sub domains into macro
nodes

Refine by pairwise macro node swap

i += 1

Apply direct multi-phase
refinement

Fig. 5. The various steps of the top-down aggressive multi-phase refinement
algorithm.

optimize the intermediate solutions so that they minimize
their respective maximum subdomain degree. However, the
maximum subdomain degree at the 4k-way (or 2k-way) parti-
tioning level may not directly affect the maximum subdomain
degree at the desired k-way partitioning level. In fact, due to
the heuristic nature of the refinement strategies, the fact that
these intermediate maximum subdomain degrees have been
optimized may reduce our ability to obtain low maximum
subdomain degrees at the k-way level. Thus, an inherent
problem with the bottom-up scheme is the fact that it ends
up spending a lot of time refining intermediate solutions that
may not directly or indirectly benefit our ultimate objective,
which is to obtain a k-way partitioning that minimizes the
maximum subdomain degree.

Having taken cognizance of this phenomenon, we devised
another aggressive multi-phase refinement algorithm that em-
ploys a top-down framework, which allows it to always
optimize the objective function within the context of the k-way
partitioning solution. The overall structure of the algorithm is
shown in Figure 5 and shares many of the characteristics of
the bottom-up algorithm. In particular, the last two steps of
these algorithms are identical and differ only in the first three
steps, out of which the third step represents the key conceptual
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difference.
The top-down algorithm starts by computing a k-way par-

titioning that minimizes the cut using recursive bisectioning
and it further refines the solution using the direct multi-phase
refinement algorithm of Section IV that takes into consider-
ation the multi-objective nature of the problem. During the
third step it performs l levels of aggressive refinement by
repeatedly creating macro-nodes and swapping them between
the k partitions. Specifically, during the ith refinement level,
it splits each one of the k partitions into 2i sub-partitions
(resulting in a total of 2ik sub-partitions), creates a macro
node for each sub-partition, and optimizes the overall k-way
solution by applying a swap-based macro-node refinement
algorithm (Section V-A.1). Note that the initial macro-node-
level k-way partitioning is obtained by inheriting the current k-
way partitioning of the hypergraph. Since this approach always
focuses on optimizing the solution at the k-way partitioning
level, it does not suffer from the limitations of the bottom-up
scheme. Moreover, as l increases, this scheme considers for
swapping successively smaller macro-nodes, which allows it
to perform large-scale perturbations at multiple scales (as it
was the case with the bottom-up scheme).

VI. EXPERIMENTAL RESULTS

We experimentally evaluated our multi-objective partition-
ing algorithms on the 18 hypergraphs that are part of the
ISPD98 circuit partitioning benchmark suite [3] (with unit
area). The characteristics of these hypergraphs are shown in
Table II. For each of these circuits, we computed a 4-, 8-,
16-, 32-, and 64-way partitioning solution using the recursive
bisection-based partitioning routine of hMETIS 1.5.3 [22] and
the various algorithms that we developed for minimizing
the maximum subdomain degree. The hMETIS solutions were
obtained by using a 49–51 bisection balance constraint and
hMETIS’s default set of parameters. Since these balance con-
straints are specified at each bisection level, the final k-way
partitioning may have a somewhat higher load imbalance. To
ensure that the results produced by our algorithm can be easily
compared against those produced by hMETIS, we used the
resulting minimum and maximum partition sizes obtained by
hMETIS as the balancing constraints for our multi-objective k-
way refinement algorithm.

The quality of the solutions produced by our algorithm and
those produced by hMETIS were evaluated by looking at three
different quality measures, which are the maximum subdomain
degree, the cut, and the average subdomain degree. To ensure
the statistical significance of our experimental results, these
measures were averaged over ten different runs for each
particular set of experiments.

Furthermore, due to space constraints, our comparisons
against hMETIS are presented in a summary form, which shows
the relative maximum subdomain degree (RMax), relative cut
(RCut), and relative average degree (RDeg) achieved by our
algorithms over those achieved by hMETIS recursive bisection
averaged over the entire set of 18 benchmarks. To ensure the
meaningful averaging of these ratios, we first took their log 2-
values, calculated their mean μ, and then used 2µ as their

TABLE II

THE CHARACTERISTICS OF THE HYPERGRAPHS USED TO EVALUATE OUR

ALGORITHM.

Benchmark No. of vertices No. of hyperedges
ibm01 12506 14111
ibm02 19342 19584
ibm03 22853 27401
ibm04 27220 31970
ibm05 28146 28446
ibm06 32332 34826
ibm07 45639 48117
ibm08 51023 50513
ibm09 53110 60902
ibm10 68685 75196
ibm11 70152 81454
ibm12 70439 77240
ibm13 83709 99666
ibm14 147088 152772
ibm15 161187 186608
ibm16 182980 190048
ibm17 184752 189581
ibm18 210341 201920

average. This geometric mean of ratios ensures that ratios
corresponding to comparable degradations or improvements
(i.e., ratios that are less than or greater than one) are given
equal importance.

A. Direct Multi-Phase Refinement

Our first set of experiments was focused on evaluating the
effectiveness of the direct multi-phase refinement algorithm
described in Section IV. Toward this goal we performed a
series of experiments using both formulations of the multi-
objective problem definition described in Section III-A. The
performance achieved in these experiments relative to those
obtained by hMETIS’s recursive bisectioning algorithm is
shown in Table III. Specifically, this table shows four sets
of results. The first set uses the priority-based multi-objective
formulation whereas the remaining three sets use Equation 1
to numerically combine the two different objectives. The
objectives were combined using three different values of α,
namely 1, 2, and k (where k is the number of partitions that
is computed).

The results of Table III show that irrespective of the number
of partitions or the particular multi-objective formulation, the
direct multi-phase refinement algorithm produces solutions
whose average quality along each one of the three different
quality measures is better than the corresponding solutions
produced by hMETIS. As expected, the relative improvements
are higher for the maximum subdomain degree. In particular,
depending on the number of partitions, the direct multi-
phase refinement algorithm reduces the maximum subdomain
degree by 5% to 15%. The relative improvements increase as
the number of partitions increase, because as the results in
Table I showed, these are the partitioning solutions in which
the maximum subdomain degree is significantly higher than
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TABLE III

DIRECT MULTI-PHASE REFINEMENT RESULTS.

Prioritized Combined, α = 1 Combined, α = 2 Combined, α = k
k RMax RCut RDeg RMax RCut RDeg RMax RCut RDeg RMax RCut RDeg
4 0.955 0.981 0.948 0.940 0.967 0.934 0.928 0.964 0.931 0.929 0.967 0.934
8 0.890 0.967 0.913 0.877 0.947 0.892 0.886 0.952 0.897 0.881 0.959 0.906
16 0.884 0.969 0.898 0.876 0.958 0.886 0.886 0.965 0.894 0.886 0.966 0.894
32 0.865 0.967 0.886 0.874 0.959 0.874 0.871 0.963 0.877 0.870 0.964 0.878
64 0.851 0.970 0.880 0.864 0.966 0.872 0.876 0.970 0.875 0.859 0.969 0.875

RMax, RCut, and RDeg are the average maximum subdomain degree, cut, and average subdomain degree, respectively of the multi-objective solution relative
to hMETIS. Numbers less than one indicate that the multi-objective algorithm produces solutions that have lower maximum subdomain degree, cut, or average
subdomain degree than those produced by hMETIS.

the average and thus there is significantly more room for
improvement.

Furthermore, the direct multi-phase refinement algorithm
also leads to partitionings that on the average have lower cut
and average subdomain degree. Specifically, the cut tends to
improve by 1% to 4%, whereas the average subdomain degree
improves by 5% to 13%. Finally, comparing the different
multi-objective formulations we can see that in general, there
are very few differences between them, with both of them
leading to comparable solutions.

B. Aggressive Multi-Phase Refinement

Our experimental evaluation of the aggressive multi-phase
refinement schemes (described in Section V) focused along
two directions. First, we designed a set of experiments to
evaluate the effectiveness of the macro-node-level partitioning
refinement algorithms used by these schemes and second,
we performed a series of experiments that were designed
to evaluate the effectiveness of the bottom-up and top-down
schemes within the context of aggressive refinement.

1) Evaluation of Macro-node Partitioning Refinement Al-
gorithms: To directly evaluate the relative performance of
the two refinement algorithms described in Section V-A.1 we
performed a series of experiments using a simple version of
the aggressive refinement schemes. Specifically, we computed
a 2lk-way partitioning, collapsed each partition into a macro
node, and obtained an initial k-way partitioning of these macro
nodes using a random assignment. This initial partitioning was
then refined using the two macro-node partitioning refinement
algorithms—randomized swap and hill-climbing swap. This
experiment was performed for each one of the circuits in our
benchmark suite and the overall performance achieved by the
two algorithms for k = 8, 16, 32 and l = 1, 2 relative to
those obtained by hMETIS’s recursive bisectioning algorithm
is shown in Table IV. Note that for this set of experiments,
the two objectives of maximum subdomain degree and cut
were combined using a priority scheme, which uses the min-
imization of the maximum subdomain degree as the primary
objective.

From these results we can see that contrary to our initial
expectations, the hill-climbing algorithm does not outperform
the randomized randomized-swapping algorithm for all three
performance metrics. Specifically, in terms of the cut (RCut)
and the average degree (RDeg), the hill-climbing algorithm is

superior to the randomized algorithm. For example, for l = 2
both of these measures are over 10% better than the corre-
sponding measures for the randomized algorithm. However,
in terms of the maximum subdomain degree (measured by
RMax), the hill-climbing algorithm provides little advantage.
In fact, its overall performance is slightly worse than the
randomized scheme—leading to solutions whose maximum
subdomain degree is about 1% to 3% higher for l = 1 and
l = 2, respectively.

The mixed performance of the hill-climbing algorithm and
its inability to produce solutions that have lower maximum
subdomain degree suggest that this type of refinement may not
be well-suited for the step-nature of the maximum subdomain
degree objective. Since there are relatively few macro-node
swaps that affect the maximum subdomain degree, the priority
queue used by the hill-climbing algorithm forces it to order
the moves based on their gains with respect to the cut (as it
is the secondary objective). Because of this, this refinement is
very effective in minimizing RCut and RDeg but it does not
affect RMax. In fact, as the results suggest, this emphasis on
the cut may affect the ability of subsequent swaps to reduce
the maximum subdomain degree. To see if this is indeed the
case we performed another sequence of experiments in which
we modified the randomized algorithm so that to perform the
moves using the same priority-queue-based approach used by
the hill-climbing scheme and terminated each inner-iteration
as soon as the priority queue contained negative gain vertices
(i.e., it did not perform any hill-climbing). Our experiments
(not presented here) showed that this scheme produced results
whose RMax was worse than that of the randomized and
hill-climbing approaches but its RCut and RDeg were be-
tween those obtained by the randomized and the hill-climbing
schemes—verifying our hypothesis that due to the somewhat
conflicting nature of the two objectives, a greedy ordering
scheme does not necessarily lead to better results.

The columns of Table IV labeled “RTime” shows the
amount of time required by the two refinement algorithms.
As expected, the randomized algorithm is faster than the
hill-climbing algorithm and its relative runtime advantage
improves as the number of macro-nodes increases. Due to the
mixed performance of the hill-climbing algorithm and its con-
siderably higher computational requirements for large values
of l, our subsequent experiments used only the randomized
refinement algorithm.
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TABLE IV

ANALYSIS OF RANDOMIZED VS HILL-CLIMB SWAPPING.

Randomized Swap Hill-climb Swap
l = 1 l = 2 l = 1 l = 2

k RMax RCut RDeg RTime RMax RCut RDeg RTime RMax RCut RDeg RTime RMax RCut RDeg RTime
8 0.953 1.001 1.005 1.979 0.999 1.113 1.137 2.201 0.956 0.995 0.993 1.710 0.970 1.032 1.038 2.830
16 0.930 1.018 1.027 1.931 0.917 1.127 1.174 2.321 0.948 1.016 1.021 2.273 0.943 1.031 1.039 15.577
32 0.905 1.017 1.036 1.883 0.845 1.112 1.168 2.323 0.921 1.007 1.014 12.900 0.913 1.022 1.035 549.267

2) Evaluation of Bottom-up and Top-down Schemes: Ta-
ble V shows the performance achieved by the bottom-up
and top-down aggressive multi-phase refinement schemes for
l = 1, . . . , 3, and k = 4, 8, . . . , 64 relative to those obtained
by hMETIS’s recursive bisectioning algorithm. Specifically, for
each value of l and k, this table shows four sets of results.
The first two sets (one for the bottom-up and one for the top-
down scheme) were obtained using the priority-based multi-
objective formulation whereas the remaining two sets used
the combining scheme. Due to space constraints, we only
present results in which the two objectives were combined
using α = k.

From these results, we can observe a number of general
trends about the performance of the aggressive multi-phase
refinement schemes and their sensitivities to the various pa-
rameters. In particular, as l increases from one to two (i.e.,
each partition is further subdivided into two or four parts), the
effectiveness of the multi-objective partitioning algorithm to
produce solutions that have lower maximum subdomain degree
compared to the solutions obtained by hMETIS, improves. In
general, for l = 1, the multi-objective algorithm reduces
the maximum subdomain degree by 7% to 28%, whereas
for l = 2, the corresponding improvements range from 6%
to 35%. However, these improvements lead to solutions in
which the cut and the average subdomain degree obtained for
l = 2 are somewhat higher than those obtained for l = 1. For
example, for l = 1, the multi-objective algorithm is capable
of improving the cut over hMETIS by 0% to 4%, whereas for
l = 2, the multi-objective algorithm leads to solutions whose
cut is up to 5% worse than those obtained by hMETIS. Note
that these observations are to a large extent independent of the
particular multi-objective formulation or the method used to
obtain the initial macro-node-level partitioning.

For the reasons discussed in Section V-B, the trend of
successive improvements in the maximum subdomain degree
does not hold for the bottom-up scheme any more for l = 3.
In particular, the improvements in the maximum subdomain
degree relative to hMETIS are in the range of 0%–35%, which
are somewhat lower than the corresponding improvements
for l = 2. On the other hand, the top-down scheme is
able to further reduce the maximum subdomain degree when
l = 3, leading to results that are 10% to 36% lower than the
corresponding results of hMETIS. Note that this trend continues
for higher values of l as well (due to space constraints these
results are not reported here). These results suggest that the
top-down scheme is better than the bottom-up scheme for large
values of l. However, a closer inspection of the results reveals

that for l = 1 and l = 2 and large values of k, the bottom-up
scheme actually leads to solutions than are somewhat better
than those obtained by the top-down scheme. We believe
that this is due to the fact that for small values of l, the
macro-node pairing scheme used by the bottom-up scheme to
derive the macro-node level k-way partitioning (that takes into
account all possible pairings of macro-nodes), is inherently
more powerful than macro-node-level refinement used by the
top-down scheme. This becomes more evident for large values
of k, for which there is considerably more room for alternate
pairings—resulting in relatively better results.

C. Comparison of Direct and Aggressive Multi-phase Refine-
ment Schemes

Comparing the results obtained by the aggressive multi-
phase refinement with the corresponding results obtained by
the direct multi-phase refinement algorithm (Tables V and III),
we can see that in terms of the maximum subdomain degree,
the aggressive scheme leads to substantially better solutions
than those obtained by the direct scheme, whereas in terms of
the cut and the average subdomain degree, the direct scheme
is superior. These results are in agreement with the design
principles behind these two multi-phase refinement schemes
for the multi-objective optimization problem at hand, and
illustrate that the former is capable of making relatively large
perturbations on the initial partitioning obtained by recursive
bisectioning, as long as these perturbations improve the multi-
objective function. In general, the aggressive multi-phase re-
finement scheme with l = 1, dominates the direct scheme, as it
leads to better improvements in terms of maximum subdomain
degree and still improves over hMETIS in terms of cut and
average degree. However, if the goal is to achieve the highest
reduction in the maximum average degree, then the aggressive
scheme with l = 2 should be the preferred choice, as it does
so with relatively little degradation on the cut.

D. Runtime Complexity

Table VI shows the amount of time required by the various
multi-objective partitioning algorithms using either direct or
aggressive multi-phase refinement. For each value of k and
particular multi-objective algorithm, this table shows the total
amount of time that was required to partition all 18 bench-
marks relative to the amount of time required by hMETIS to
compute the corresponding partitionings. From these results
we can see that the multi-objective algorithm that uses the
direct multi-phase refinement is the least computationally ex-
pensive and requires around 50% more time than hMETIS does.
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TABLE V

AGGRESSIVE MULTI-PHASE REFINEMENT RESULTS.

l = 1
Prioritized Combined, α = k

Bottom-Up Top-Down Bottom-Up Top-Down
k RMax RCut RDeg RMax RCut RDeg RMax RCut RDeg RMax RCut RDeg
4 0.927 0.990 0.958 0.911 0.956 0.929 0.904 0.972 0.941 0.897 0.957 0.927
8 0.838 0.995 0.945 0.849 0.960 0.918 0.834 0.992 0.943 0.830 0.968 0.921
16 0.787 1.005 0.942 0.811 0.980 0.928 0.795 1.000 0.935 0.812 0.991 0.934
32 0.754 0.993 0.923 0.762 0.984 0.913 0.758 0.991 0.917 0.795 0.989 0.921
64 0.724 0.996 0.916 0.738 0.988 0.910 0.721 0.993 0.905 0.749 0.992 0.911

l = 2
Prioritized Combined, α = k

Bottom-Up Top-Down Bottom-Up Top-Down
k RMax RCut RDeg RMax RCut RDeg RMax RCut RDeg RMax RCut RDeg
4 0.938 1.021 0.991 0.901 0.943 0.917 0.905 0.992 0.963 0.883 0.956 0.924
8 0.825 1.046 1.004 0.822 0.964 0.922 0.814 1.041 1.001 0.806 0.974 0.926
16 0.749 1.049 1.008 0.761 0.997 0.943 0.751 1.048 1.003 0.761 1.013 0.952
32 0.693 1.041 0.991 0.704 1.000 0.936 0.689 1.033 0.976 0.728 1.017 0.945
64 0.654 1.040 0.983 0.664 1.007 0.934 0.652 1.041 0.974 0.704 1.018 0.937

l = 3
Prioritized Combined, α = k

Bottom-Up Top-Down Bottom-Up Top-Down
k RMax RCut RDeg RMax RCut RDeg RMax RCut RDeg RMax RCut RDeg
4 1.007 1.121 1.091 0.899 0.953 0.927 0.950 1.058 1.029 0.877 0.950 0.919
8 0.848 1.119 1.088 0.815 0.974 0.931 0.842 1.109 1.073 0.796 0.982 0.934
16 0.759 1.101 1.070 0.748 1.000 0.945 0.754 1.077 1.034 0.759 1.022 0.966
32 0.697 1.095 1.059 0.682 1.006 0.943 0.700 1.064 1.010 0.722 1.023 0.954
64 0.701 1.100 1.052 0.645 1.012 0.941 0.663 1.066 1.006 0.683 1.024 0.945

RMax, RCut, and RDeg are the average maximum subdomain degree, cut, and average subdomain degree, respectively of the multi-objective solution relative
to hMETIS. Numbers less than one indicate that the multi-objective algorithm produces solutions that have lower maximum subdomain degree, cut, or average
subdomain degree than those produced by hMETIS.

TABLE VI

THE AMOUNT OF TIME REQUIRED BY THE MULTI-OBJECTIVE

ALGORITHMS RELATIVE TO THAT REQUIRED BY hMETIS.

Direct
Scheme Aggressive Schemes

Bottom-Up Top-Down
k l = 1 l = 2 l = 3 l = 1 l = 2 l = 3
4 1.431 2.081 2.794 3.809 2.139 3.374 5.785
8 1.399 2.151 2.990 3.924 2.505 3.520 5.561
16 1.397 2.029 3.018 3.584 2.355 3.462 5.418
32 1.450 2.018 2.763 3.599 2.548 4.078 5.627
64 1.535 2.060 3.067 4.522 2.979 4.025 6.103

On the other hand, the time required by the aggressive multi-
phase refinement schemes is somewhat higher and increases
with the value of l. However, even for these schemes, their
overall computational requirements are relatively small. For
instance, in the case of the bottom-up scheme, for l = 1
and l = 2 (the cases in which it led to the best results) it
only requires two and three times more time than hMETIS,
respectively; and in the case of the top-down scheme its
runtime is two to six times higher than that of hMETIS as l
increases from one to three.

VII. CONCLUSIONS

In this paper we described a family of multi-objective hyper-
graph partitioning algorithms for computing k-way partition-
ings that simultaneously minimize the cut and the maximum
subdomain degree of the resulting partitions. Our experimental
evaluation showed that these algorithms are quite effective
in optimizing these two objectives with relatively low com-
putational requirements. The key factor contributing to the
success of these algorithms was the idea of focusing on the
maximum subdomain degree objective once a good solution
with respect to the cut has been identified. We believe that
such a framework can be applied to a number of other multi-
objective problems involving objectives that are reasonably
well-correlated with each other.

The multi-objective algorithms presented here can be im-
proved further in a number of directions. In particular, our
results showed that the aggressive multi-phase refinement
approach, especially when deployed in a top-down fashion,
is very promising in reducing the maximum subdomain de-
gree. Within this framework, our experiments revealed that
due to the step-nature of the maximum subdomain degree
objective, the hill-climbing macro-node refinement algorithm
is not significantly more effective than the randomized swap-
ping algorithm in reducing the maximum subdomain degree.
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Developing computationally scalable refinement algorithms
that can successfully climb out of local minima for this
type of objectives is still an open research problem whose
solution can lead to even better results both for the partitioning
problem addressed in this paper as well as other objective
functions that share similar characteristics. Also, our work
so far was focused on producing multi-objective solutions,
which satisfy the same balancing constraints as those resulting
from the initial recursive bisectioning based solution. However,
additional improvements can be obtained by relaxing the
lower-bound constraint. Our preliminary results with such an
approach appears promising.
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