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Abstract 
 

For the purposes of this paper we define a catalog to be a promotional catalog, i.e., a collection of products (items) presented to a 
customer with the hope of encouraging a purchase.  The single mailing problem addresses how to build a collection of catalogs and 
distribute them to customers (one per customer) so as to achieve an optimal outcome, e.g., the most profit.  Each catalog is a subset 
of a given set of items and different catalogs may contain some of the same items, i.e., catalogs may overlap.  A slightly more 
general, but important extension of the single mailing problem seeks the optimal set of catalogs when multiple mailings are allowed, 
i.e., multiple catalogs can be sent to each customer.  Catalog creation has important applications for e-commerce and traditional 
brick-and-mortar retailers, especially when used with personalized recommender systems.  

The catalog creation problem is NP complete and some (relatively expensive) approximation algorithms have recently been 
developed.  In this paper we describe more efficient techniques for building catalogs and show that these algorithms outperform one 
of the previously suggested approaches.  (Indeed, the techniques previously suggested are not feasible for realistic numbers of 
customers and catalogs.)  Some of our techniques directly use the objective function, e.g., maximize profit, to find a locally optimal 
solution in an approach based on gradient ascent.  However, by combining such techniques with the clustering of similar customers, 
better results can sometimes be obtained.   We also analyze the performance of our algorithms with respect to a theoretical bound 
and show that, in some cases, their performance is close to optimal. 

1 Introduction 
Recent years have seen a sharp increase in the amount of customer information being gathered and warehoused by 
commercial enterprises. The large quantities of historical customer data and the emergence of e-commerce have 
motivated a great deal of research into personalization technology. In particular, collaborative filtering based 
recommendation engines have become popular for providing highly “personalized” information by identifying, for 
each customer, a small set of items that will be of interest to that customer. For example, an online bookseller might 
use a recommender system to create, in real time, a list of “related” or “recommended” books for the basket of 
books that a customer purchases. However, recent work [KPR98], has questioned the need for such complete 
personalization on the grounds of efficiency and accuracy. Also, even if accuracy issues are ignored, traditional 
brick and mortar retailers can only personalize to a limited extent, as only a relatively small number of different 
product catalogs can be created. Thus, in this paper we use information about expected customer buying behavior 
(from recommender engines, statistical techniques, or elsewhere) as our starting point, but adopt the view that often 
the most profitable use of this information is the creation of a relatively small number of “group targeted” catalogs, 
i.e., catalogs not personalized to the individual level but to a like-behaving group of customers. To that end, we seek 
to develop efficient catalog creation algorithms, where we define a catalog to be a promotional catalog, i.e., a 
collection of products (items) presented to a customer with the hope of encouraging a purchase. 

The conceptual foundation for our work is the microeconomic framework for data mining that was introduced in 
[KPR98]. In this framework, a retailer attempts to choose the business decision that maximizes the expected profit. 
We say that profit is the objective function to be maximized.  If all the customers contribute independently to the 
profit, then the total profit is just the sum of the profits resulting from each customer as a result of the business 
decision.  If our business decision involves deciding which set of items (catalog) to present/promote to a customer, 
then resulting profit will be the sum of the profits of each item that a customer buys from that catalog. Making a 
single business decision for all customers does not yield the maximum profit and it is advantageous to consider the 
segmented version of this optimization problem.  In other words, we choose a set of k business decisions such that if 
each customer is assigned the most profitable business decision, then the overall profit is maximized.  (Notice that 
finding the best k decisions implicitly divides or segments the customers into k groups.)  In the optimal case, we 
would have a separate decision for each customer, but typically this is impractical, and the customers are segmented 
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into a small number of groups.  In terms of catalogs, this segmentation corresponds to dividing the customers into 
groups, each of which gets a different catalog. 

In [KPR98] it is shown that segmentation problems are NP complete, in general, and various approximation 
algorithms were introduced to solve these problems. The various algorithms proposed in [KPR98] are based on 
sampling followed by an exhaustive enumeration of all possible segmentations. Unfortunately, as our experiments 
show, in order to achieve high quality results, these approaches require large sample sizes, making them expensive 
for any realistic catalog creation problem. 

In this paper we present computationally efficient algorithms for solving two different catalog creation problems, the 
single mailing and the multiple mailings problems. The single mailing problem addresses how to segment the 
customers and send each segment a different catalog, while the multiple mailings problem addresses the situation 
where each customer gets multiple catalogs over time. The single and multiple mailings problems have a number of 
applications for traditional brick-and-mortar retailers and mail-order companies, as well as for new e-commerce 
companies. In particular, the solution to the single-mailing problem will allow retailers to automatically build the 
right set of catalogs targeted to different segments of their customer base. The multiple-mailings problem allows 
retailers to plan their marketing campaign over a period of time. In the case of e-tailers, both the single and the 
multiple-mailing problem can be used to build a small number of targeted “mini-catalogs” that can either be sent 
directly to the customers or used to create “banner-ads” to be displayed by the various banner-ad companies. 

We developed three different algorithms for solving the single-mailing problem. The first algorithm, called indirect 
catalog creation, uses a clustering algorithm to identify the customer segments and then derives the best catalog for 
each segment. The second algorithm, called direct catalog creation, tries to simultaneously identify both a catalog 
and its associated customer segment. Finally, the third algorithm, called hybrid catalog creation, solves the problem 
by combining elements of the earlier two algorithms. Our algorithms for the multiple mailings problem are based on 
iteratively applying the various algorithms for the single-mailing problem by appropriately modifying the input data 
after each iteration. We experimentally evaluated the performance of our algorithms on two different datasets 
corresponding to the historical purchasing transactions of a mail-order company and an e-retailer. Our experiments 
show that the proposed algorithms significantly outperform the algorithms based on exhaustive enumeration, and 
produce results that are close to the optimal. 

The rest of this paper is organized as follows. Section 2 provides a formal definition of the two catalog creation 
problems that are the focus of this paper and offers some application examples in which they apply. Section 3 
describes some of the existing algorithms that can be used to solve certain restricted instances of these problems. 
Section 4 describes the different algorithms that we developed for solving the single mailing and multiple mailings 
problems. Section 5 provides a detailed experimental evaluation of our algorithms on two commercial datasets. 
Finally, Section 6 offers some concluding remarks. 

2 Problem Definition 
The purpose of this paper is to develop efficient algorithms for automatically building product-catalogs in two 
different settings. The input to the proposed algorithms is an n×m customer-item matrix P, where n is the number of 
customers, m is the total number of distinct products, and pi,j represents the profit that will be achieved from the jth 
item belonging to the ith customer. 

Given the above definitions, the first catalog creation problem is stated as follows: 

Select k sets of items {I1, I2, …, Ik}, each containing no more that q items, and assign exactly 

one of these subsets to each one of the customers so that � �
= ∈

n

i iSj
jip

1 )(
, is maximized, where 

S(i) is the set of items assigned to the ith customer. 

Essentially, the problem is that of segmenting the customers into k groups, and selecting a set of items (i.e., a 
product catalog) to send to each one of these segments so that the overall potential profit is maximized. Note that 
this problem formulation assumes that each customer can only buy products that are contained in the catalog that is 
assigned to him/her, as he/she will not be aware of the other products offered by the retailer. We will refer to this 
problem formulation as the single mailing problem. 
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There are two key parameters in the above problem formulation. The first is the number of catalogs (k), and the 
second is the maximum number of products (q) that is included in each catalog. This parameterization was 
motivated for the following reasons. First, in many applications areas (e.g., traditional mail-order companies), the 
cost of developing and printing different catalogs is considerably higher than the cost of printing the same catalog 
more times. Thus, keeping k small can reduce marketing costs. Second, due to physical constraints, mailing costs, 
and limited customer attention span, limiting the number of products in each catalog quite often increases the 
effectiveness of a marketing campaign. For example, in the e-commerce domain even e-mailed “mini-catalogs” tend 
to be relatively small, sometimes for physical reasons, but often because customers only look at a small number of 
items. As another example, the number of items in banner ads are restricted by the amount of space available on a 
Web page. 

The second catalog creation problem generalizes the above formulation to the case in which we can send multiple 
catalogs to each customer. The problem is stated as follows: 

Select l times k sets of items {I1,1, I1,2, …, I1,k}, …, {Il,1, Il,2, …, Il,k}, each containing no more 
that q items, and assign one from each k-subset to each of the customers so that 

� �
= ∈

n

i iSj
jip

1 )(
, is maximized, where S(i) is the set of items assigned to the ith customer. 

Essentially, this formulation computes l distinct instances of the single-mailing problem, but the overall profit is 
determined only with respect to the set of l * q products that are contained in the l catalogs received by each 
customer (and not the total k * l * q products that are contained in all the different catalogs). We will refer to this 
problem as the multiple mailings problem. 

Conceptually, multiple catalogs per customer address the problems of limited customer attention and the limited 
number of items in a catalog. Up to some limit, a new catalog does get a customers attention, and a new catalog can 
contain items that were omitted in previous catalogs. Multiple catalogs per customer also address the issue that 
customers are (hopefully) unwilling to spend more than a reasonable amount of money at any one time. 

The above catalog creation problems are combinatorial optimization problems involving the total number of 
catalogs, k, the number of catalogs sent to each customer, l, the number of items in each catalog, q, and which items 
are in which catalog. A formal foundation for the basic catalog problem is provided by the microeconomic 
framework for data mining that was introduced in [KPR98].  However, the multiple mailings problem was not 
discussed in that paper. 

3 Related Work 
In this section we quickly survey a couple of algorithms for solving special cases of the single mailing problem.  The 
algorithm for solving the single mailing problem will be used in all of the following algorithms. 

3.1 The Single Mailing Problem with One Catalog  
If we want only a single catalog for a group of customers, then we can find the optimal catalog in a very 
straightforward way. In particular, the optimal catalog for a group of customers, C, can be found by sorting the items 
according to expected profit and taking the q most profitable items as the catalog. Note that this procedure is just the 
fractional Knapsack algorithm [CLR90].   

 

Algorithm for the Single Mailing Problem with One Catalog 
 1. For each item, j, calculate the total expected profit by summing over all customers, i.e., 

�
∈Ci

jip , . 

2. Sort the items by total expected profit. 
3. Select the most profitable q items as the catalog. 
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3.2 The Single Mailing Problem with Two Catalogs 
In [KPR98] an algorithm was outlined for solving the catalog creation problem for two catalogs and a bound was 
given on the algorithm’s performance. The initial step of this algorithms is to take a random sample of customers, 
where the sample size is size proportional to log(n).  The algorithm then enumerates all possible splits of this 
customer sample into two disjoint groups, and, for each split, determines the best pair of catalogs by using the one 
catalog algorithm.  Finally, the optimal set of catalogs is determined by selecting the pair of catalogs with the 
highest profit for the set of all customers.  (Notice that the optimal catalogs can also be viewed as an optimal 
partition of the customers.) 

 It was proven that this algorithm would work well provided that the sample size is large enough and all partitions of 
the sample are enumerated.  This algorithm can also be extended to handle more than two catalogs although the 
details of that extension were not given.   

4 Algorithms for the Single and Multiple Mailings Problems 
4.1 Single Mailing Problem 
The close relationship between the problem of building product catalogs and that of clustering the customers into 
related groups lead us to explore clustering-based techniques for solving the single mailing and multiple mailings 
problems. These algorithms are described in the rest of this section.  

4.1.1 Indirect Catalog Creation Algorithm 
As discussed in Section 3.1, the problem of building a single product catalog for a group of customers can be solved 
in an optimal way by selecting the q most profitable products. Motivated by this observation, we developed an 
algorithm that builds the catalogs by using a two-step approach. In the first step we partition the customers into k 
disjoint sets, and in the second step, we use the “one catalog algorithm” to find the optimal q items for each set. 
Since the product catalog is determined as a by-product of the customer partitioning, we will refer to this as the 
indirect catalog creation (ICC) algorithm. 

The overall quality of the resulting set of catalogs is highly dependent on the way the different sets of customers are 
formed. In general, we would like each set to contain similar customers. For this reason, our algorithm uses a 
clustering algorithm [DJ88, KR90] to group together similar customers. For efficiency reasons, we use a clustering 
algorithm based on K-means. In the rest of this section we describe the method that we use to represent the 
customers and the details of the clustering algorithm itself. 

Our representation of customers is based on the vector-space model used widely in the field of information retrieval 
[Rij79, Kow97]. In this model, a vector in the item-space represents each customer, i.e., the jth component of the 
vector represents the profit associated with the jth item. Thus, the ith customer is represented by a vector, ci  = (pi,1, 
pi,2,…,pi,m). The similarity between two customers vectors c1, and c2 is measured using the cosine function defined 
as: 

cosine( c1, c2 ) =  (c1 • c2) / ||c1|| ||c2||; 

where “•” indicates the vector dot product and || ci ||  is the length of vector ci. 

The key feature of the ICC algorithm is the algorithm used to cluster customers. Over the years a variety of 
clustering algorithms have been developed with varying time-quality trade-offs [CKPT92, LA99]. Recently, 
partitional based clustering algorithms (e.g., K-means and its variants) have gained widespread acceptance for 
sparse, high dimensional data sets as they provide reasonably good clusters and have a near-linear time complexity 

Exhaustive Algorithm for the Single Mailing Problem with Two Catalogs 
 1. Take a sample of size, T=c*log(n), customers, where c is some constant. 

2. Determine all possible partitions of the customers into two groups. 
(Note that there are 2T such partitions.) 

3. Determine the best pair of catalogs for each partition. 
4. For each set of catalogs derived from a particular partition, assign each customer (from the 

set of all customers) to the best catalog and calculate the total profit. 
5. The optimal set of catalogs is the set with the highest profit. 
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[CKPT92, LA99]. For this reason, the clustering algorithm used by ICC is derived from this general class of 
partitional algorithms.  

Partitional clustering algorithms compute a K-way clustering of a set of customers either directly or via recursive 
bisection. A direct K-way clustering is computed as follows. Initially, a set of k customers is selected from the 
collection to act as the seeds of the k clusters. Then, for each customer, its similarity to these k seeds is computed, 
and it is assigned to the cluster corresponding to its most similar seed. This forms the initial K-way clustering. This 
clustering is then repeatedly refined using the following procedure. First, the centroid vector for each cluster is 
computed, and then each customer is assigned to the cluster corresponding to its most similar centroid. This 
refinement process terminates either after a predetermined small number of iterations, or after an iteration in which 
no customer moved between clusters. A K-way partitioning via recursive bisection is obtained by recursively 
applying the above algorithm to compute a 2-way clustering, i.e., bisections. Initially, the customers are partitioned 
into two clusters, then one of these clusters is selected and is further bisected, and so on. This process continues k-1 
times, leading to k clusters. A number of different schemes have been developed for selecting the initial set of seed 
customers [CKPT92, LA99]. A commonly used scheme is to select these seeds at random. In such schemes, a small 
number of different sets of random seeds are often selected, a clustering solution is computed using each one of 
these sets, and the best of these solutions is selected as the final clustering. 

Our experiments as well as related experiments in the context of clustering document datasets [SKK00] have shown 
that bisecting K-means produces better results than those obtained by the direct K-means algorithm. For this reason, 
in ICC we compute a K-way clustering using the bisecting approach. For bisecting K-means, a number of different 
ways have been proposed for selecting the cluster to split next in the sequence of the k-1 bisections [KE00, SKK00]. 
For the ICC approach we found that the approach that splits the largest cluster produces the best results and this is 
the scheme that we used. Finally, our clustering algorithm uses the random seed approach, and selects the best 
(lowest squared error) solution obtained out of five random sets of seeds. 

4.1.2 Direct Catalog Creation Algorithm 
One of the potential limitations of the ICC algorithm is that there is a mismatch between the objective function used 
to find the customer clusters and the overall objective of maximizing the profit derived from the catalogs. To 
illustrate this, consider the very simple case in which we want to build two catalogs, each having a single product 
from the profit matrix shown in Figure 1. The K-means clustering algorithm will put the top four customers into one 
cluster and the rest into the second cluster, and will build the catalogs {I2} and {I6} for each cluster, respectively. 
However, the catalogs {I1} and {I5} lead to the highest profit. The reason for the performance difference is that the 
ICC algorithm does not take into account the size, i.e., q of the desired catalogs, but tries to group customers 
together assuming that q = m, the total number of items. In fact, the clusters in the previous example, yield the best q 
= 3 catalogs. 

 I1 I2 I3 I4 I5 I6 I7 I8 

C1 5 4 3 3     
C2 5 4 3 3     
C3  4 3 3 5    
C4  4 3 3 5    
C5 5     4 3 3 
C6 5     4 3 3 
C7     5 4 3 3 
C8     5 4 3 3 

 
 Figure 1: An Example Profit Matrix 
 

For this reason we developed a new algorithm that is similar in spirit to the K-means algorithm described in the 
previous section, but directly optimizes the exact objective function. The key difference between the ICC algorithm 
and the new algorithm is that it directly finds the catalogs and their associated customer segments all in one step. For 
this reason, we refer to this as the direct catalog creation (DCC) algorithm. The general outline of the DCC 
algorithm is as follows: 
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Direct Catalog Creation Algorithm  
1. Find an initial set of k catalogs each containing q items. 
2. Form k groups of customers by assigning each customer to the catalog that gives the best 

profit. 
3. Calculate the optimal catalog of q items for each group. 
4. Repeat steps 2 and 3 until there is no change or for a predetermined number of iteration. 

 
During the initialization phase (step #1), a set of k catalogs are created. These initial catalogs can be created in a 
number of ways. One-way is to randomly partition the customers into k groups, and use the algorithms described in 
Section 2.1 to build the optimal catalog for each group. An alternate way is to randomly select k customers and use 
the q most profitable items from each customer. The former approach is what we are using in our experiments. Note 
that the latter approach is very similar in spirit to the random seed selection scheme used by the K-means algorithm. 

During the second step of the algorithm each of the customers is re-assigned to the catalog that generates the highest 
profit. Once this new segmentation of customers has been computed, the optimal catalog for each cluster is 
computed, and this becomes the current solution for the single mailing problem. The entire process continues for a 
fixed number of iterations or until the algorithm converges.  

The DCC algorithm can build all k catalogs in a single step or via a sequence of k-1 bisections. As was the case with 
the K-means clustering algorithm, the bisecting variant of the DCC algorithm achieved somewhat better 
performance, and was used in the experiments reported in Section 5.  However, the choice of the cluster to bisect is 
driven by profit, i.e., conceptually we do a trial bisection of all current clusters and then actually bisect the cluster 
that leads to the highest profit.  (In practice this can be done efficiently by saving the results of previous bisections 
and, at each step, only bisecting the two new clusters resulting from the previous step.)  Finally, the DCC algorithm 
is executed multiple times (5 in our experiments) using different initial sets of catalogs, and the run that leads to the 
highest profit is selected as the final solution. 

4.1.3 Hybrid Algorithm 
Even though the DCC algorithm, by directly maximizing the overall profit, can achieve better solutions than the ICC 
algorithm, it may be more susceptible to being trapped in local minima than the K-means algorithm used by ICC. 
The reason for this is that during the various iterations of the algorithm, the assignment of each customer to a 
particular catalog is based only on the profit derived from this customer with respect to the q items that make up this 
catalog, and it ignores how well this customer matches the rest of the cluster’s customers in terms of non-catalog 
products. A consequence of this is that quite often the customers assigned to each catalog have very few items in 
common other than the catalog defining items. As a result, the iterative refinement performed by DCC will quickly 
get trapped into local minima. 

To address this problem we developed an algorithm that combines elements of both the indirect and direct catalog 
creation algorithms. Like the DCC algorithm the choice of which cluster to bisect is driven by the profit.  However, 
like ICC, the actual bisection of a cluster is performed using K-means. Also, the HCC algorithm is, as with ICC and 
DCC, executed multiple times (5 in our experiments) using different initial sets of catalogs, and the run that leads to 
the highest profit is selected as the final solution.  Finally, note that the catalog solution produced in this way 
becomes the set of initial catalogs for the DCC algorithm. Essentially, the DCC algorithm acts as a post-processing 
or “refinement” step that improves the catalogs. We will refer to this as the hybrid catalog creation (HCC) 
algorithm since it uses both the true objective function (profit) and the indirect objective (put similar customers 
together). 

This hybrid algorithm holds the promise of addressing the shortcomings of the individual algorithms. By using the 
DCC algorithm to refine the catalogs computed by the initial steps of the HCC algorithm, we always generate a 
better solution, if possible, since the final solution optimizes the real objective function. Furthermore, since the K-
means solution generated by the K-means bisection step of HCC, is a good solution for the catalog creation problem 
in the hypothetical q = m case, the DCC algorithms starts at a reasonably good solution, and thus, it is not as 
susceptible to bad local minima.   
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4.1.4 Summary of Single Mailing Algorithms 
The differences between the three algorithms (ICC, DCC, and HCC) that we developed for solving the single-
mailing problem are summarized in Table 1. There are three different parameters along which the algorithms differ. 
The first parameter is the objective function used during the bisection of a customer segment. In the case of the ICC 
and HCC algorithms, the bisection was done so that it optimizes the K-means objective function whereas in the case 
of the DCC algorithm, the bisection was performed so that it optimizes the aggregate profit achieved by the catalogs 
for the two resulting customer segments. The second parameter is the method used to select which segment to bisect 
next. In the case of ICC, the largest segment was selected, whereas in the case of DCC and HCC, the segment whose 
bisection leads to the highest profit is selected. Finally, the third parameter has to do with whether or not the final 
solution is further refined using a k-way refinement algorithm. In the case of ICC no such refinement is performed 
and in the case of DCC and HCC are refinement iteration is performed that optimizes the overall profit of the 
different catalogs.  

 
 Method Used to Bisect 

a Cluster  
Criterion to Select 

which Cluster to Bisect 
Post-Processing 
Technique 

ICC K-means Size None 
DCC Profit Profit Profit 
HCC K-means Profit Profit 

        Table 1:  Comparision of ICC, DCC and HCC. 

Finally, the computational complexity of ICC is O(nlog(k)), where n is the number of customers. The complexity of 
DCC and HCC is somewhat higher due to the post-refinement iteration and it is O(nk). 

4.2 Multiple Mailings Problem 
The algorithms for solving the single mailing problem increase profit by sending a different catalog to different 
segments of the customer population, thus increasing the number of items “covered.”  The multiple mailings 
approach allows each customer to receive multiple catalogs.  Intuitively this should also increase the number of 
items “covered,” and thus result in greater profit.  Note that this might not mean that there are more distinct items 
overall, just that each customer sees more relevant items. 

Recall that the multiple mailings problem is to generate k * l catalogs such that each customer receives exactly l 
catalogs and each catalog contains q items.  A naïve approach to solving this problem would be to generate k 
catalogs, each with l * q items, and then split each of the resulting k catalogs into l separate catalogs of q items to 
obtain our final set of k * l catalogs.  In other words, we build a smaller number of large catalogs and split them to 
get the desired number of small catalogs per person.  However, this approach creates the additional constraint that 
the same segments of customers will receive the same set of l catalogs, leading to sub-optimal solutions and loss in 
potential profit. 

A better approach for solving the multiple mailings problem is to take an incremental approach.  We first apply an 
algorithm to find the best k catalogs of q items.  (Any algorithm that solves the single mailing problem can be used 
with this algorithm; we will use the best of the single mailing algorithms.)  Then, for each customer, we eliminate 
any items that are in the customer’s assigned catalog.  We repeat this process for l steps, yielding k * l catalogs.  
With this algorithm each customer is not restricted to stay in the same segment with the same customers, but will 
potentially be in l different segments, one for each iteration of the algorithm. Furthermore, by eliminating products 
that a customer could have purchased from an earlier catalog, we find catalogs that include different products, thus, 
maximizing profit. 
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Multiple Mailings Algorithm 
 1. Repeat steps 2 and 3 l times.  

2. Find k catalogs of q items. 
3. For each customer, i, associated with a given catalog, j, set pi,j = 0. 

5 Experimental Results 
5.1 Data Sets 
In this section we compare the performance of the algorithms described in the previous section.  We will use two 
data sets that represent real data from a large commercial retailer. The first data set, TRAD, was derived from three 
years of traditional mail order catalog sales from Fingerhut Corporation, a large catalog retailer. There are 7,815 
customers and 23,554 different items. The second data set, ECOM, was derived from one year of Web-based sales. 
There are 6,668 customers and 17,491 different items. 

5.2 Experimental Results for Catalog Creation Algorithms 
5.2.1 Algorithms for the Single Mailing Problem 
In this section we compare the three algorithms for the single mailing problem that we discussed in Section 4.1:  the 
indirect catalog creation algorithm (ICC), the direct catalog creation algorithm (DCC), and the hybrid catalog 
creation algorithm (HCC). 

 

 
 

 
 
 

 
 
 
 
 

Figure 2a: Ratio of ICC Profit to DCC and 
HCC profit for 16 catalogs for the ECOM 
dataset. 

Figure2b: Ratio of ICC Profit to DCC 
and   HCC profit for 64 catalogs for the 
ECOM data set. 

Figure 2c: Ratio of ICC Profit to DCC and 
HCC profit for 16 catalogs for the TRAD 
data set. 

Figure2d: Ratio of ICC Profit to DCC 
and HCC profit for 64 catalogs for the 
TRAD data set. 
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Figures 2a and 2b show the DCC and HCC catalog profit for the ECOM dataset for 16 and 64 catalogs, respectively, 
as a ratio of the ICC profit, whereas Figures 2c and 2d show the similar set of results for the TRAD dataset. Looking 
at the results in these figures, we can make a number of interesting observations. First, for all sets of experiments the 
profit achieved by either the DCC or the HCC algorithms is higher than the profit archived by the ICC algorithm (all 
the bars are above the 1.0 line). The average improvement achieved by DCC over all 32 experiments was 15.3%, 
while the average improvement for HCC was 15.6%. These results should not be surprising, as both the DCC and 
HCC algorithms optimize the true objective function. Second, the improvements achieved by DCC and HCC appear 
to be higher for catalogs that have fewer items. As discussed in Section 4.1.2, we believe this is due to the fact that 
the ICC algorithm looks at the entire set of items when trying to cluster the customers and not just the few items that 
will make up the catalog. As a result, when the number of items is small, the resulting customer segmentation does 
not lead to high-quality catalogs, but as the number of items gets larger, the clustering solution tends to improve. 
Third, comparing DCC against HCC, we can see that in general, for catalogs with a small number of items, the DCC 
algorithm outperforms the HCC algorithm, but as the number of items increases, the HCC becomes somewhat better 
than DCC. We believe, as discussed in Section 4.1.3, this is due to the fact that the DCC tends to get trapped in local 
minima since it only considers the items in the current catalogs when refining customer segments. On the other 
hand, the K-means algorithm used by HCC to compute the initial segmentations does not suffer from this problem. 
However, for small numbers of items, the substantial benefits obtained by directly focusing on the catalog items far 
outweigh the potential losses due to local minima. For this reason, DCC does better than HCC for small catalogs. 
However, the relative performance differences between DCC and HCC are quite small. 

5.2.2 Sampling and Exhaustive Enumeration 
We briefly mention the results of some tests with the “exhaustive” algorithm proposed by [KPR98] that was 
described in section 3.2. For the ECOM data set we sought 2 catalogs of 16 items each. We tried three techniques: 
exhaustive enumeration of the best catalogs using a sample of 14, partial enumeration of the best catalogs of a larger 
sample of size 100, and HCC. The partial enumeration technique takes a sample of size 100, but only selects 
(randomly) 4096 of the 2100 possible splits. 

The results are shown in Figure 3, which is a relative comparison of the first two algorithms to the hybrid approach. 
From these results we can see that in both experiments the HCC performs substantially better. In particular, HCC 
achieves over five times higher profit than the exhaustive enumeration approach, and about 1.8 times higher profit 
than the partial enumeration approach. 

We also did other experiments whose results are not reported here. The only time that we saw reasonably good 
results was when the number of items was quite low. Thus, while sampling and enumeration can theoretically 
produce good results, for any realistically sized data sets, either all partitions of the sample can be exhaustively 
enumerated, but the sample is too small to be representative, or the sample is large enough to be representative, but 
all possible partitions of the sample cannot be exhaustively enumerated. Thus, techniques based on sampling and 
enumeration is expensive and/or unlikely to produce good solutions. 

 
5.2.3 Multiple Mailings Results 
Table 2 shows several solutions for the multiple mailings problem which were produced by running the multiple 
mailings algorithm of Section 4.2. For all cases there are 32 items per customer.  (This is the total item count per 
customer over all catalogs that the customer receives.) 

Figure 3: Results from a small sample, 
exhaustive enumeration technique and a 
larger sample, non-exhaustive enumeration 
technique, as a fraction of HCC for the 
ECOM data set (2 catalogs, 16 items). 
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The first line corresponds to a single mailing solution with a total of 32 catalogs each having 32 items. From this 
solution, we can obtain a variety of solutions to the multiple-mailings problem by splitting each catalog of 32 items 
into a larger number of smaller catalogs (i.e., using the naïve approach described in Section 4.2). For example, we 
can obtain a solution in which k=32, l=2, and q=16, by simply splitting each one of the original catalogs into two 
smaller catalogs each having only 16 items. However, the total profit for each of those solutions would be the same.  

The remaining lines of Table 2 show the solutions of different multiple-mailings problem instances obtained using 
our multiple mailings algorithm described in Section 4.2. For instance, the second line corresponds to the solution of 
the problem in which k=32, l=2, and q=16, the third line corresponds to the solution of the problem in which k=32, 
l=4, and q=8, and so on. Note that the different instances of the multiple mailings problem in Table 2 were selected 
in such a way (k was kept fixed, l was increased while q was decreased) so that we can compare the results against 
those obtained by the naïve algorithm (first row of the table). Note that the last column of Table 2, shows the profit 
achieved by our multiple mailings algorithm relative to that achieved by the naïve algorithm. 

 

k 
Catalogs 

(per iteration) 

l 
Catalogs per customer

(iterations) 

q 
Items per Catalog Profit Ratio to 

Naïve 

32 1 32 1586931 1.00 
32 2 16 1756678 1.11 
32 4 8 1892627 1.19 
32 8 4 1980063 1.25 
32 16 2 2055711 1.30 
32 32 1 2101629 1.32 

Table 2:  Solutions produced by the multiple mailings algorithm compared to the naive approach. 

 

From the results in Table 2, we can see that our algorithm finds catalogs that achieve considerably better results (as 
measured by the overall profit) compared to those achieve by the naïve algorithm. Moreover, as q increases, the 
performance difference also increases. This was expected because, as discussed in Section 4.2, our algorithm by 
computing different customer segmentations for each of the different mailings is able to better optimize the overall 
profit.  

An interesting observation that can be made from the results in Table 2, is that as we increase the number of catalogs 
sent to each customer (by increasing q) we achieve higher profit even thought the total number of items seen by each 
customer is the same. The reason for that is that by increasing q we are able to achieve a higher degree of 
personalization; thus, we are able to better target the different customers. However, the rate of improvement in profit 
tends to decrease as q increases, indicating that multiple catalogs are quite effective in personalizing the marketing 
campaign and after some point, the additional improvements achieved by better personalization are only marginal. 
This effect is important because there is always a trade-off between the degree of personalization and the cost 
associated with highly personalized marketing campaigns. The different solutions to the multiple mailings problem 
can be used to find the right balance between and optimize the overall utility of the marketing campaign. 

5.3 Evaluation of Catalog Creation Algorithms With Respect to Optimal Performance 
In this section we examine how close our algorithms come to optimal performance.  This is not a question that we 
can fully answer, although the examination of theoretical bounds is helpful.  Eventually we also hope to use models 
of customer data to generate artificial data where the optimal catalogs are known and then evaluate our algorithms 
on this data.  

Consider a set of k catalogs, each with q items.  Can we find an upper bound on the profit achieved by our catalogs?  
If so, then we could express the performance of our algorithms as a percentage of this bound.  There is such a bound, 
albeit not a very tight one, at least for some cases. 

We can find a bound on the profit of k catalogs, each with q items, by constructing a catalog of k * q items and using 
the profit of this catalog as our bound. To see this, consider putting k catalogs together to form a single catalog of k * 
q items. The profit of this combined catalog must be at least as much as the previous k catalogs since each customer 
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sees all the “old” items, as well as many new ones. Thus, this combined catalog can be no better than the optimal 
catalog of k * q items. 

Table 3 shows how this bound can be applied to a collection of catalogs. (We are using the ECOM data set here.)  
Each entry in the table represents a set of catalogs where the total number of all items in all catalogs is 32.  
However, this is the only constant, and all of the other quantities vary:  the number of catalogs, the number of 
catalogs per customer, and the number of items per catalog. The important idea to keep in mind is that in all cases, 
putting together all the catalogs yields a combined catalog of 32 items, and thus, we can bound the results for any of 
these collections of catalogs by the profit of the optimal catalog for 32 items. 

 

k 
Catalogs 

(per iteration) 

l 
Catalogs per 

customer 
(iterations) 

q 
Items per 
Catalog 

Total profit Ratio to 
Bound 

1 1 32 411,466 1.00 
1 2 16 411,466 1.00 
1 4 8 411,466 1.00 
1 8 4 411,466 1.00 
1 16 2 411,466 1.00 
1 32 1 411,466 1.00 
2 1 16 391,199 0.95 
2 2 8 404,520 0.98 
2 4 4 404,928 0.98 
2 8 2 407,978 0.99 
2 16 1 408,877 0.99 
4 1 8 380,040 0.92 
4 2 4 394,699 0.96 
4 4 2 403,725 0.98 
4 8 1 405,746 0.99 
8 1 4 367,925 0.89 
8 2 2 390,309 0.95 
8 4 1 400,971 0.97 

16 1 2 358,594 0.87 
16 2 1 387,873 0.94 
32 1 1 361,539 0.88 

Table 3.  Profit as Fraction of Bound for Different Sets of Catalogs with a Total of 32 items. 
 

The first six entries are really just different instances of 1 catalog of 32 items, (possibly split into multiple catalogs) 
which is sent to all customers.  This catalog represents the optimal profit for a maximum of 32 items.  The profit for 
all other cases shown must be less than this bound, although we emphasize that the true optimal bounds for these 
other cases may be less than that of the theoretically optimal bound for 1 catalog of 32 items. In other words, the 
fractions in Table 3 represent worst-case bounds on how close our catalog solutions are to the optimal solution of 
each case. 

Looking at the results in Table 3, we can see that the multiple mailings algorithm performs quite well. In general, the 
different solutions are within 10% of the upper bound on the potential profit. Furthermore, since some of the cases in 
Table 3 represent sets of catalogs with just 1 catalog per customer, we can also conclude that our single mailing 
algorithm is working well for these cases.   

Unfortunately, for catalog configurations with larger numbers of catalogs and items, this bound is no longer so tight.  
For example, for the ECOM data set, if we have k  = 16, l = 2, q  = 16, then the profit of the catalogs produced by 
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our multiple mailings algorithm is 1,586,930 or 70% of the bound of 2,249,918, which is the maximum for one 
catalog of 512 items.  It is likely that the optimum profit for this case is less than the bound of 2,249,918, but we can 
no longer accurately judge how well our catalog creation algorithm is performing. 

We caution that it can be difficult to make a tradeoff between the total number of catalogs, the number of catalogs 
per customer, the number of items per catalog and the number of items per customer.  Solutions from the multiple 
mailings algorithm can be combined with other business information to help answer that question. 

6 Conclusions 
The presentation of promotional product information to customers via the Web has become increasingly important 
for retailers.  While product information can sometimes be effectively and efficiently personalized to the individual 
level, there are common situations where this is not the case, e.g., e-mailed “mini-catalogs” and banner ads.  In such 
cases, retailers must decide what sets of products (catalogs) should be presented to customers so as to maximize 
profit.  While this problem falls under the framework of the single mailing catalog creation problem introduced in 
[KPRS98], that paper did not consider the case of multiple mailings and the algorithms which that paper introduced 
for solving the single mailing problem are not practical for any but the smallest problems.  

In this paper we have presented algorithms that efficiently solve both the single mailing and multiple mailings 
problems.  There are three approaches for the single mailing problem:  a gradient ascent approach (DCC) that 
attempts to directly optimize the objective (e.g. maximize profit), a customer clustering approach (ICC) that 
indirectly attempts to optimize results by grouping similar customers, and a hybrid of these two approaches (HCC).  
The combined approach appears to be the best technique, although the gradient ascent approach outperforms it when 
the number of products is small.   Finally, our technique for solving the multiple mailings problem finds a solution 
by simply and efficiently solving a series of single mailing problems.  

The performance of our algorithms with respect to what is optimally possible is a key issue.  However, we were able 
analyze the behavior of our algorithms with respect to a theoretical bound and, in some cases, show good 
performance for both the single mailing and multiple mailings algorithms.  However, this is an area for further 
investigation. 
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