
Efficient Closed Pattern Mining in the Presence of Tough
Block Constraints ∗

Krishna Gade, Jianyong Wang, and George Karypis

Department of Computer Science and Engineering
Digital Technology Center/Army HPC Research Center

University of Minnesota, Minneapolis, MN 55455

{gade, jianyong, karypis}@cs.umn.edu

ABSTRACT
In recent years, various constrained frequent pattern mining
problem formulations and associated algorithms have been
developed that enable the user to specify various itemset-
based constraints that better capture the underlying appli-
cation requirements and characteristics. In this paper we
introduce a new class of block constraints that determine the
significance of an itemset pattern by considering the dense
block that is formed by the pattern’s items and its associ-
ated set of transactions. Block constraints provide a natural
framework by which a number of important problems can be
specified and make it possible to solve numerous problems
on binary and real-valued datasets. However, developing
computationally efficient algorithms to find these block con-
straints poses a number of challenges as unlike the different
itemset-based constraints studied earlier, these block con-
straints are tough as they are neither anti-monotone, mono-
tone, nor convertible. To overcome this problem, we in-
troduce a new class of pruning methods that can be used
to significantly reduce the overall search space and make
it possible to develop computationally efficient block con-
straint mining algorithms. We present an algorithm called
CBMiner that takes advantage of these pruning methods
to develop an algorithm for finding the closed itemsets that
satisfy the block constraints. Our extensive performance
study shows that CBMiner generates more concise result
set and can be order(s) of magnitude faster than the tradi-
tional frequent closed itemset mining algorithms.

∗This work was supported in part by NSF CCR-
9972519, EIA-9986042, ACI-9982274, ACI-0133464, and
ACI-0312828; the Digital Technology Center at the Uni-
versity of Minnesota; and by the Army High Performance
Computing Research Center (AHPCRC) under the auspices
of the Department of the Army, Army Research Laboratory
(ARL) under Cooperative Agreement number DAAD19-01-
2-0014. The content of which does not necessarily reflect
the position or the policy of the government, and no offi-
cial endorsement should be inferred. Access to research and
computing facilities was provided by the Digital Technology
Center and the Minnesota Supercomputing Institute.

.

1. INTRODUCTION
Finding frequent patterns in large databases is a funda-

mental data mining task with extensive applications to many
areas including association, correlation, and causality rule
discovery, association-rule-based classification, and feature-
based clustering. As a result, a vast amount of research
has focused on this problem resulting in the development of
numerous efficient algorithms. This research has been pri-
marily focused on finding frequent patterns corresponding
to itemsets and sequences, but the ubiquitous nature of the
problem has also resulted in the development of various algo-
rithms that find frequent spatial, geometric, and topological
patterns, as well.

In recent years, researchers have recognized that in many
application areas and problem settings frequency is not the
best measure to use in determining the significance of a pat-
tern as it depends on a number of other parameters such
as the type of items that it contains, the length of the pat-
tern, or various numerical attributes associated with the in-
dividual items. In such cases, even though frequent pattern
discovery algorithms can still be used as a pre-processing
step to identify a set of candidate patterns that are subse-
quently pruned by taking into account the additional param-
eters, they tend to lead to inefficient algorithms as a large
number of the discovered patterns will eventually get elimi-
nated. To address this problem, various constrained frequent
pattern mining problem formulations have been developed
that enable the user to focus on mining patterns with a rich
class of constraints that capture the application semantics.
This includes algorithms that assign different frequency con-
straints to the individual items [14, 29] and algorithms that
find the itemsets X that satisfy various quantitative con-
straints of the form avg(X) ≤ v, avg(X) ≥ v, sum(X) ≤ v,
or sum(X) ≥ v [21]. The key property of these itemset con-
straints is that they are usually (or can be converted to)
anti-monotone or monotone, making it possible to develop
computationally efficient algorithms to find the correspond-
ing patterns.

In this paper we introduce a new class of constraints re-
ferred to as block constraints, which determine the signifi-
cance of an itemset pattern by considering the dense block
that is formed by the pattern’s items and its associated set of
transactions. Specifically, we focus on three different block
constraints called block size, block sum, and block similar-
ity. The block size constraint applies to binary datasets,

1

the block sum constraint applies to datasets in which each
instance of an item has a non-negative value associated with
it that can vary across transactions, and the block similarity
constraint applies to datasets in which each transaction cor-
responds to a vector-space representation of an object and
the similarity between these objects is measured by the co-
sine of their vectors. According to the block size constraint,
a pattern is interesting if the size of its dense block (obtained
by multiplying the length of the itemset and the number of
its supporting transactions) is greater than a user-specified
threshold. Analogously, according to the block sum con-
straint, a pattern is interesting if the sum of the values of
its dense block is greater than a user-specified threshold.
Finally, according to the block similarity constraint a pat-
tern is interesting if its dense block accounts for a certain
user-specified fraction of the overall similarity between the
objects in the entire dataset.

Finding patterns satisfying the above constraints has ap-
plications in a number of different areas. For example, in
the context of market-basket analysis, the block-size and
block-sum constraints can be used to find the itemsets that
account for a certain fraction of the overall quantities sold or
revenue/profit generated, respectively, whereas in the con-
text of document clustering, the block similarity constraint
can be used to identify the set of terms that bring a set
of documents together and thus correspond to thematically
related words (commonly referred to as micro-concepts [11]).

Developing computationally efficient algorithms to find
these block constraints is particularly challenging because
unlike the different itemset-based constraints studied ear-
lier, these block constraints are tough [19] as they are neither
anti-monotone, monotone, nor convertible [19]. To overcome
this problem, we introduce a new class of pruning methods
that can be used to significantly reduce the overall search
space and make it possible to develop computationally ef-
ficient block constraint mining algorithms. Specifically, we
focus on the problem of finding the closed itemsets satis-
fying the proposed block constraints and present a projec-
tion based mining framework, called CBMiner that takes
advantage of a matrix-based representation of the dataset.
CBMiner pushes deeply the various block constraints into
closed pattern mining by using three novel classes of prun-
ing methods called column pruning, row pruning, and ma-
trix pruning that when combined lead to dramatic perfor-
mance improvements. We present an extensive experimental
evaluation using various datasets that shows that CBMiner
not only generates more concise result set, but also is much
faster than the traditional frequent closed itemset mining al-
gorithms. Moreover, we present an interesting application in
the context of document clustering that illustrates the use-
fulness of the block similarity constraint in micro-concept
discovery.

The rest of the paper is organized as follows. Section 2
introduces some basic definitions and notations. Section 3
formulates the problem and motivates each one of the three
block constraints. Section 4 describes some related work.
Section 5 derives the framework for mining closed blocks,
while Section 6 discusses in detail how to efficiently mine
closed patterns with tough block constraints. The thorough
performance study is presented in Section 7. Finally, Sec-
tion 8 provides some concluding remarks.

2. DEFINITIONS AND NOTATION

A transaction database is a set of transactions, where each
transaction is a 2-tuple containing a transaction id and a set
of items. Let I be the complete set of distinct items and T
be the complete set of transactions. Any non-empty set
of items is also called an itemset and any set of transac-
tions is called a transaction set. The frequency of an item-
set X (denoted as freq(X)) is the number of transactions
that contain all the items in X, while the support of X is
defined as σ(X)=freq (X)/|T |. For a given minimum sup-
port threshold θ (0 < θ ≤ 1), X is said to be frequent if
σ(X) ≥ θ. A frequent pattern X is called closed if there
exists no proper super-pattern of X with the same support
as X. An itemset constraint C is a predicate on the power
set 2I , i.e., C : 2I → {TRUE, FALSE}. An itemset con-
straint C is anti-monotone if for any itemset X that satis-
fies C, all the subsets of X also satisfy C, and C is mono-
tone if all the supersets of X satisfy C. For example, the
constraint σ(X) ≥ θ is anti-monotone, while σ(X) ≤ θ is
monotone. An itemset constraint is tough if it is neither
anti-monotone nor monotone, and cannot be converted to
either anti-monotone or monotone constraint.

A block is defined as a 2-tuple B = (I, T), consisting of
an itemset I and a transaction set T , such that T is the
supporting set of I. The size of a block B is defined as
BSize(B) = |I| × |T |. A weighted block is a block B = (I, T)
with a weight function w defined on the cross-product of
the itemset and transaction set, i.e., w : 2I × 2T → R+,
where R+ is the set of positive real numbers. The sum of a
weighted block B is defined as BSum(B) =

�
t∈T,i∈I w(t, i).

A (weighted) block B = (I, T) is said to be a (weighted)
closed block if and only if there exists no other (weighted)
block B′ = (I ′, T ′) such that I ′ ⊃ I and T ′ = T . Given
a (weighted) block B = (I, T), a (weighted) block B′ =
(I ′, T ′) is a proper superblock of B if I ′ ⊃ I and T ′ ⊆ T . In
such a case B is called a (weighted) proper subblock of B′.
We will use B′ ⊃ B to denote that B′ is a proper superblock
of B and B ⊂ B′ to denote that B is a proper subblock of
B′.

A block constraint C is a predicate on the power set 2I×T ,
i.e., C : 2I×T → {TRUE, FALSE}. A block B is called a
valid block for constraint C if it satisfies constraint C (i.e.,
C(B) is TRUE). A block constraint C is a tough constraint
if there is no dependency between the satisfaction/violation
of a constraint by a block and the satisfaction/violation of
the constraint by any of its superblocks or subblocks.

A transaction-item matrix M is a matrix where each row
r represents a transaction and each column c represents an
item in T such that the value of the (r, c) entry of the matrix,
denoted by M(r, c) is one iff transaction r supports c, oth-
erwise M(r, c) is zero. Similarly a weighted transaction-item
matrix M is a transaction-item matrix where for each row
r and for each column c, M(r, c) is equal to w(r, c) (where
w is a positive weight function defined on all transaction-
item pairs in T). A (weighted) block B = (I, T) can be
redefined as a (weighted) dense submatrix of the (weighted)
transaction-item matrix M formed with the rows of T and
columns of I such that ∀r ∈ T and ∀c ∈ I we have M(r, c) =
1 (M(r, c) > 0).

Given a pre-defined ordering of the columns of M and a
set p of columns in M, a p-projected matrix w.r.t. M, M|p,
is defined as the submatrix of M containing only the rows
that support itemset p and the columns that appear after p
in matrix M. For any transaction t in M|p, its size is defined

2

as the number of non-zero elements in its corresponding row
of M|p and will be denoted by |t|. For any column x of M|p,
the matrix obtained by keeping only the rows of M|p that
contain x is denoted as M|xp . For each matrix M|p and M|xp
we will denote their set of corresponding transactions and
items as T |p, T |xp , I|p, and I|xp , respectively.

Given a set of m-dimensional vectors A = {�d1, �d2, . . . , �dn},
the composite vector of A is denoted by �D and is defined

to be
�

�d∈A �d. Given a weighted block B = (I, T), the

composite vector of the block is denoted by �BI and is the
|I|-dimensional vector obtained as follows. For each item

i ∈ I, the ith dimension of �BI , denoted by �BI(i), is equal

to
�

∀t∈T w(t, i), otherwise if i /∈ I, �BI(i) = 0. Also, given
a p-projected matrix M|p, the composite vector of an item

x within M|p is denoted by �Bx and is the |I|-dimensional
vector obtained from the transactions included in T |xp such

that for every i ∈ I|xp , �Bx(i) =
�

∀t∈T |xp
w(t, i), otherwise if

i /∈ I|xp , �Bx(i) = 0.
Given a matrix M, the column-sum of column i in M

is denoted by csumM(i) and is defined to be equal to the
sum of the values of the column i of M, i.e., csumM(i) =�

t M(t, i). Similarly, the row-sum of row t in M is denoted
by rsumM(t) and is defined to be equal to the sum of the
values of the row t of M, i.e., rsumM(t) =

�
i M(t, i).

3. PROBLEM DEFINITION
In this paper we develop efficient algorithms for finding

valid closed blocks that satisfy certain tough block con-
straints. Specifically, we focus on three types of block con-
straints that are motivated and described in this section.

Block Size Constraint In the context of market-basket
analysis we are often interested in finding the set of itemsets
each of which accounts for a certain fraction of the overall
number of transactions that was performed during a certain
period of time. Given an itemset I and its supporting set
T , the extent to which I will satisfy this constraint will de-
pend on whether or not |I|× |T | is no less than the specified
fraction. Finding this type of itemsets is the motivation be-
hind the first block-constraint that we study, which focuses
on finding all blocks B = (I, T) whose size is no less than
a certain threshold. Specifically, given a binary transaction
database T , the block-size constraint is defined as

BSize(B) ≥ θN, (1)

where 0 < θ ≤ 1 and N is the total number of non-zeros in
the transaction-item matrix of T , i.e., N =

�
t∈T |t|.

Note that depending on the size of the itemsets associated
with each valid block, the minimum required size of the cor-
responding transaction set will be different. Small itemsets
will require larger transaction sets, whereas large itemsets
will lead to valid blocks with smaller transaction sets. As
a result, even if an itemset I is not part of a valid block,
an extension of I, I ′, may become valid (e.g., cases in which
the support of I ′ does not significantly decrease compared to
the support of I). Similarly, an itemset I which is not part
of any valid block may contain subsets that are part of some
valid blocks (e.g., cases in which the support of the subset is
significantly greater than the support of I). Consequently,
the block-size constraint is a tough constraint as it is neither
anti-monotone nor monotone, and cannot be converted to
either anti-monotone or monotone constraints.

Block Sum Constraint In cases in which there is a non-
negative weight associated with each individual transaction-
item pair (e.g., sales or profit achieved by selling an item to
a customer), in addition to finding all itemsets that satisfy
a certain block-size constraint we may also be interested in
finding the itemsets whose corresponding weighted blocks
have a block-sum that is greater than a certain threshold.
For example, in the context of market-basket analysis, these
itemsets can be used to identify the product groups that
account for a certain fraction of the overall sales, profits, etc.
Motivated by this, the second block-constraint that we study
extends the notion of the block-size constraint to weighted
blocks. Formally, given a transaction database T , and a
weight function w the block-sum constraint is defined as

BSum(B) ≥ θW, (2)

where 0 < θ ≤ 1 and W is the sum of the weights of
all the transaction-item pairs in the database, i.e., W =�

t∈T ,i∈I w(t, i). Note that since the block-sum constraint
is a generalization of the block-size constraint it also repre-
sents a tough constraint.

Block Similarity Constraint The last block constraint
that we will study is motivated by the problem of find-
ing groups of thematically related words in large document
datasets, each potentially describing a different micro-concept
present in the collection. One way of finding such groups
is to analyze the document-term matrix associated with the
dataset and find sets of words that satisfy either a user spec-
ified minimum support constraint or a block-size constraint
(as defined earlier). However, the limitation of these ap-
proaches is that they do not account for the weights that
are often associated with the various words as a result of
the widely used tf-idf (term-frequency—inverse document-
frequency) vector-space model [24]. In general, groups of
words that have higher weights will more likely represent
a thematically coherent concept than words that have very
low weights, even if the latter groups have higher support.
This often happens with words that are common in almost
all the documents and will be assigned very low weight due
to their high document frequency [3].

One way of addressing this problem is to first apply the tf-
idf model on each document vector, scale the resulting doc-
ument vectors to be of the same length (e.g., unit length),
and then find the groups of related words by using the pre-
viously defined block-sum constraint. However, within the
context of the vector-space model, a more natural way of
measuring the importance of a group of words is to look at
how much they contribute to the overall similarity between
the documents in the collection. In other words, the micro-
concept discovery problem can be formulated as that of find-
ing all groups of words such that the removal of each group
from their supporting documents will decrease the aggregate
similarity between the documents by a certain fraction. In
general, groups of words that are large, supported by many
documents, and have high weights will tend to contribute a
higher fraction to the aggregate similarity and hence form
better micro-concepts.

Discovering groups of words that satisfy the above prop-
erty led us to develop the block-similarity constraint that
is defined as follows. Let A = {d1, d2, . . . , dn} be a set of
n documents modeled by their unit-length tf-idf representa-
tion of the set of documents, let m be the distinct number of
terms in A, let B = (I, T) be a weighted block with I being a

3

set of words and T being its supporting set of documents, let
S be the sum of the pairwise similarities between the docu-
ments in A, and let S′ be the sum of the pairwise similarities
between the documents in A obtained after zeroing-out the
entries corresponding to block B. The similarity of the block
B is defined to be the loss in the aggregate pairwise similar-
ity resulting from removing B, i.e., BSim(B) = S − S′, and
the block-similarity constraint is defined as

BSim(B) ≥ θS, (3)

where 0 < θ ≤ 1.
In this paper, we will measure the similarity between two

documents di and dj in A by computing the dot-product of

their corresponding vectors �di and �dj (i.e., sim(di, dj) = �di ·
�dj). Since the documents in A have already been scaled to be
of unit length, this similarity measure is nothing more than
the cosine of their respective vectors, which is used widely
in information retrieval. The advantage of the dot-product-
based similarity measure is that it allows us to easily and
efficiently compute both S and S′. Specifically, if �D is the
composite vector of A, it can be shown that S = �D · �D.
Similarly, if B = (I, T) is a weighted block of A, and �BI

is its corresponding composite vector it can be shown that
S′ = (�D − �BI) · (�D − �BI). As a result, the similarity of a
block B = (I, T) is given by

BSim(B) = S − S′ = 2 �D · �BI − �BI · �BI . (4)

To simplify the presentation of the three block constraints
and the associated algorithms, in the rest of this paper we
will consider the set of documents A as forming a weighted
transaction-item matrix M whose rows and columns corre-
spond to the documents and terms of A, respectively. As a

result, each matrix entry M(i, j) will be equal to �di(j) (i.e.,
the value in the di’s vector along the jth dimension).

4. RELATED RESEARCH
Efficient algorithms for finding frequent itemsets in large

databases have been one of the key success stories in data
mining research [2, 17, 6, 4, 10, 33]. One of the early com-
putationally efficient algorithms was Apriori [2], which finds
frequent itemsets of length l based on the previously mined
frequent itemsets of length (l-1). More recently, a set of
database-projection-based methods [1, 10, 22] have been de-
veloped that significantly reduce the complexity of finding
frequent long patterns. This study extends the projection-
based method to mine valid sub-matrices with tough block
constraints.

The frequent itemset mining algorithms usually generate
a large number of frequent itemsets when the support is
low. To solve this problem, two general classes of techniques
were proposed. The first is mining closed/maximal patterns.
Typical examples include Max-Miner [4], A-close [18], MA-
FIA [8], CHARM [33], CFP-tree [15], and CLOSET+ [28].
The redundant pattern pruning and column fusing methods
adopted by CBMiner have been popularly used in different
forms by several previous studies [4, 32, 23, 8, 33, 28, 15].
The second class focuses on mining constrained patterns by
integrating various anti-monotone, monotone, or convertible
constraints. The constrained association rule mining prob-
lem was first considered in [27] but only for item specific
constraints. Since then a number of different constrained
frequent pattern mining algorithms have been proposed [5,

16, 19, 21, 7, 20, 13, 12]. All these algorithms concentrate
on constrained itemset mining with various anti-monotone,
monotone, succinct or convertible constraints.

Very recently some work [30] has been done to push aggre-
gate constraints in the context of iceberg-cube computing.
This algorithm mines aggregate constraints in the GROUP
BY partitions of an SQL query by using a divide-and-appro-
ximate strategy. The algorithm makes use of the strategy to
derive a sequence of weaker anti-monotone constraints for a
given non-anti-monotone constraint to prune the nodes in
the search tree. Recently the LPMiner algorithm [25] was
proposed to mine itemsets with length-decreasing support
constraints. It uses a novel SVE property to prune the un-
promising transactions of the projected databases based on
the length of the transactions. Later the SVE property has
been used to mine sequences and closed itemsets with length
decreasing support constraints [26, 31]. We also explore the
SVE property in the context of mining closed patterns with
block constraints in Section 6.2 to prune the unpromising
rows of a prefix-projected matrix.

5. MATRIX-PROJECTION BASED PATTERN
MINING

In this section we describe the ClsdPtrnMiner algo-
rithm, which forms the basis of CBMiner algorithm. Cls-
dPtrnMiner follows the widely used projection-based pat-
tern mining paradigm [1, 10, 22], which can be used to
efficiently mine the complete set of frequent patterns in a
depth-first search order and as we will see later, it can be
easily adapted to mine valid closed block patterns. A key
characteristic of ClsdPtrnMiner (as well as CBMiner)
is that it represents the transaction database T using the
transaction-item matrix M and employs a number of effi-
cient sparse matrix storage and access schemes, allowing it
to achieve high computational efficiency. For the remain-
der of this section we describe the basic structure of Cls-
dPtrnMiner for the problem of enumerating all patterns
satisfying a constant minimum support constraint and then
introduce several pruning methods to accelerate the frequent
closed pattern mining. The extension of this algorithm for
finding the closed blocks that satisfy the three tough block
constraints described in Section 3 will be described later in
Section 6.

5.1 Frequent Pattern Enumeration
Given a database, the complete set of itemsets can be

organized into a lattice if the items are in a predefined order,
and the problem of frequent pattern mining then becomes
how to traverse the lattice to find the frequent ones. The
ClsdPtrnMiner algorithm adopts the depth-first search
traversal and uses the downward closure property to prune
the infrequent columns from further mining. Figure 1(a)
shows a database example with a minimum support 0.5.
If we remove the set of infrequent columns, {b,f,h,i,k,m},
and sort the set of frequent columns in frequency-increasing
order, then part of the lattice (i.e., pattern tree) formed
from column set {g,a,c,e,d} can be organized into the one
shown in Figure 1(b). Each node in the lattice is labeled in
the form p:q, where p is a prefix itemset and q is the set of
local columns appeared in the p-projected matrix, M|p. At
a certain node during the depth-first traversal of the lattice,
if the corresponding prefix p is infrequent, we stop mining

4

{}:{g,a,c,e,d}

g:{a,c,e,d} a:{c,e,d} c:{e,d} e:{d} d

ga:{c,e,d} gc:{e,d} ge:{d} gd ac:{e,d} ae:{d} ad ce:{d} cd ed

gac:{e,d} gae:{d} gad gce:{d}gcd ged ace:{d} acd aed ced

gace:{d} gacd gaed gced aced

gaced

TID Items

1 c, d, e, f, g, i

2 a, c, d, e, m

3 a, b, d, e, g, k

4 a, c, d, h

(a)

(b)

Figure 1: (a) A transaction database with θ ≥ 0.5;
(b) The pattern tree.

the sub-tree under this node. Otherwise, we report p as a
frequent pattern, build its projected matrix, M|p, find its
locally frequent columns in M|p and use them to grow p to
get longer itemsets.

To store the various projected matrices efficiently, we adopt
the CSR sparse storage scheme [9]. The CSR format utilizes
two one-dimensional arrays: the first stores the actual non-
zero elements of the matrix in a row (or column) major or-
der, and the second stores the indices corresponding to the
beginning of each row (or column). To ensure that both the
matrix projection as well as the column frequency count-
ing are performed efficiently, we maintain both the row- and
the column-based representation of the matrix. The overall
complexity of the algorithm depends on the two key steps
of sorting and projecting. We used the radix sort algorithm
to sort the column frequencies which has a time complexity
that is linear in the number of columns being sorted, and
because of our matrix-storage scheme, projecting the matrix
on the column is linear on the number of non-zeros in the
projected matrix. Our matrix-projection based pattern enu-
meration method shares some of the ideas with the recently
developed array-projection based method [22], which was
shown to achieve good performance, especially for sparse
datasets.

5.2 Frequent Closed Pattern Mining
The above frequent pattern enumeration method can find

the complete set of frequent itemsets. To get the set of fre-
quent closed itemsets, we need to check whether a newly
found itemset is closed or not and sift out the redundant
(i.e., non-closed) ones. The pattern closure checking in Cls-
dPtrnMiner works as follows. We maintain the set of fre-
quent closed itemsets mined so far in a hash-table H using
the sum of the transaction-IDs of the supporting transac-
tions as the hash-key [32, 33]. Upon getting a new itemset
p, we check against the set of already mined closed itemsets
which have the same hash-key value as the one derived from
p’s sum of transaction-IDs, to see if there is any itemset that
is a proper superset of p with the same support. If that is
the case, p is non-closed, otherwise the union of p and the
set of its local columns with the same support as p forms a

closed itemset.
In the pattern enumeration process, some prefix itemsets

or columns are unpromising to generate closed itemsets and
thus can be pruned. ClsdPtrnMiner adopts two pruning
methods, redundant pattern pruning and column fusing [4,
32, 23, 8, 33, 28]. Also, to make the matrix a more com-
pact representation, we propose the row fusing method to
compress the projected matrix.

1. Redundant Pattern Pruning (RPP) Once we
find that a prefix itemset is non-closed, that is, it is a
proper subset of another already mined closed itemset
with the same support, it can be safely pruned, and the
sub-tree under the node corresponding to this prefix
will not be traversed.

2. Column Fusing (CF) This optimization performs
two different tasks. First, it fuses the completely dense
columns of the projected matrix M|p to the prefix
itemset p and removes them from M|p, and thus avoid-
ing projections on them. Second, it fuses columns in
M|p that have identical supporting transaction sets
into a single column, and removes the original columns
from M|p. By fusing them, the algorithm reduces the
number of projections that need to be performed, as
it essentially allows for the pattern to grow by adding
multiple columns in a single step.

3. Row Fusing (RF) The motivation behind this opti-
mization is to compress the projected matrix M|p by
fusing together the identical rows of the matrix into a
single row. To ensure that the frequencies of the var-
ious patterns are computed correctly, each row of the
matrix has a count associated with it indicating the
number of rows in the original matrix that it corre-
sponds to.

By integrating the above optimization methods with the
frequent pattern enumeration process, we get the ClsdP-
trnMiner algorithm as shown in Algorithm 5.1. It takes
as input the current pattern p, the p-projected matrix M|p,
the given minimum support θ, and the current hash-table H.
The algorithm initially sorts the columns of M|p and elimi-
nates any infrequent columns and then proceeds to perform
Column Fusing and Row Fusing. After that it enters its
main computational loop which extends p by adding each
column a ∈ M|p, checks to see if p ∪ {a} can be pruned
by comparing it against H (Redundant Pattern Pruning),
projects M|p on a, checks to see if p ∪ {a} is closed, and
finally calls itself recursively for pattern p ∪ {a}.

Algorithm 5.1: ClsdPtrnMiner(p,M|p, θ, H)

Sort the columns ofM|p in frequency increasing order
Prune the columns in M|p whose support is less than θ
if no column is frequent
then return

Do Column Fusing for the columns in M|p
Do Row Fusing for the rows in M|p
for each column a ∈ M|p

do

���������
��������

if p ∪ {a} is a Redundant Pattern
then continue

Project M|p on a to get M|p∪{a}
if there is no dense column in M|p∪{a}

then

�
Output the closed pattern p ∪ {a}
Insert p ∪ {a} into the hash-table H

ClsdPtrnMiner(p ∪ {a},M|p∪{a}, θ, H)
return

5

6. CLOSED BLOCK MINING WITH TOUGH
CONSTRAINTS

Like the traditional frequent closed pattern mining algo-
rithms, ClsdPtrnMiner works under the constant sup-
port threshold framework and uses the downward closure
property to prune infrequent columns. However, with tough
block constraints, the nice properties derived from the anti-
monotone (or monotone) constraints no longer hold to be
used to prune search space. Designing effective pruning
methods for tough block constraints is especially challeng-
ing. To address this challenge we developed three classes of
pruning methods, called column-pruning, row-pruning and
matrix pruning, which eliminate the unpromising columns,
rows and projected matrices from mining. The specific de-
tails of these pruning methods are different for each of the
three block constraints and will be described later in this
section.

By incorporating these three pruning methods with the
overall structure of ClsdPtrnMiner, we can easily derive
the CBMiner algorithm that mines efficiently the set of all
valid closed block patterns. The pseudo code for CBMiner
is shown in Algorithm 6.1. It takes as input the current pat-
tern p, its corresponding p-projected matrix M|p, the hash-
table H that stores the valid closed blocks that were dis-
covered so far, and the block-constraint C that corresponds
to either the block-size, block-sum, or block-similarity con-
straint. Since it is derived from ClsdPtrnMiner algo-
rithm, it has many steps in common and for this reason
we will only describe its key differences.

Algorithm 6.1: CBMiner(p,M|p, H, C)

Sort the columns ofM|p in frequency increasing order
if matrix M|p can be pruned
then return

Prune the columns in M|p
if no column is valid
then return

Do Column Fusing for the columns in M|p
Do Row Fusing for the rows in M|p
for each column a ∈ M|p

do

�������������
������������

if p ∪ {a} is a Redundant Pattern
then continue

let B = (p ∪ {a},T |ap)
Project M|p on a to get M|p∪{a}
if � dense column in M|p∪{a} and C(B) = TRUE

then

�
Output the closed block B
Insert B into the hash-table H

Prune the rows of M|p∪{a}
CBMiner(p ∪ {a},M|p∪{a}, H, C)

return

The first difference has to do with the pruning methods.
Specifically, instead of using the constant support-based col-
umn pruning, CBMiner uses the newly proposed column-
pruning, row-pruning and matrix pruning methods, which
are derived from the tough block constraints. The second
difference has to do with the implementation of the column
fusion and row fusion optimizations for the block-sum and
block-similarity constraints. In the case of the block-sum
constraint, the values of the fused columns (and rows) corre-
spond to the sum of the values of their constituent columns
(and rows). This ensures that the resulting fused matrix

contains all necessary information to correctly evaluate the
constraints. In the case of the block-similarity constraint,
since the correct evaluation of the constraints requires ac-
cess to the individual column- and row-values, we do not
perform any column/row fusion.

Following we will introduce in detail the three pruning
methods, column-pruning, row-pruning and matrix pruning,
in terms of the three different block constraints.

6.1 Column Pruning
Given a prefix itemset p and its projected matrix M|p, the

idea behind column pruning is to identify for each column
x ∈ M|p a necessary condition that must be satisfied such
that there is a valid block B = (p ∪ γ, T |p∪γ) for which γ
is a subset of the columns in M|p and x ∈ γ. Using this
condition, we can then eliminate from M|p all the columns
that do not satisfy it, as these columns cannot be part of
a valid block that contain p. Note that for each column x
that we eliminate, we prevent the exploration of the sub-
tree associated with the pattern p ∪ {x}, thus, significantly
reducing the overall search space.

6.1.1 Block Size
The necessary condition for the block-size constraint is

encapsulated in the following lemma (Refer to Section 2 for
a description of the notation used).

Lemma 1 (Block-Size Column Pruning) Let p be a pat-
tern and x a column in M|p. Then in order for x to be
part of a valid block that satisfies the block-size constraint
of Equation 1 and is obtained from extending p by adding
columns from M|p, the following must hold:

BSize(p, T |xp) +
�

t∈T |xp

|t| ≥ θN. (5)

Proof. Let γ be any arbitrary set of columns in M|p
such that x ∈ γ and the block B = (p ∪ γ, T |p∪γ) satisfies
the block-size constraint. Then from the definition of the
block-size constraint we have that

|p ∪ γ| × |T |p∪γ | ≥ θ × N.

Also, because T |xp ⊇ T |p∪γ and for ∀t ∈ T |p∪γ , |t| ≥ |γ|, the
following holds:
�

t∈T |xp

(|p| + |t|) ≥
�

t∈T |p∪γ

(|p| + |t|) ≥ |p ∪ γ| × |T |p∪γ |.

Equation 5 can be obtained by combining the above two
inequalities and using the fact that BSize(p, T |xp) = |p| ×
|T |xp |.

For each column in M|p, Equation 5 can be evaluated by
adding up the lengths of the rows that it supports. These
sums can be computed for all the columns by performing a
single scan of the p-projected matrix.

6.1.2 Block Sum
The necessary condition for the block-sum constraint is

similar in nature to that of the block-size constraint and is
encapsulated in the following lemma.

Lemma 2 (Block-Sum Column Pruning) Let p be a pat-
tern and x a column of M|p. Then in order for x to be
part of a valid block that satisfies the block-sum constraint

6

of Equation 2 and is obtained by extending p with columns
in M|p, the following must hold:

BSum(p, T |xp) +
�

t∈T |xp ,j∈I|p

M|p(t, j) ≥ θW. (6)

This lemma can be proved in a similar way to Lemma 1
and the actual proof is omitted. Note that the summation
on the left-hand-side of Equation 6 is nothing more than the
sum of the non-zero elements of each row in T |xp .

The various quantities required to evaluate Equation 6
can be computed efficiently by performing a single scan of
the block (p, T |xp) to compute the sum of each row, and two
scans of the matrix M|p. The first scan will compute the
sum of the non-zero elements of each row, and the second
scan will compute the summation term in Equation 6 for
each column.

6.1.3 Block Similarity
Let �D be the composite vector of T and consider a p-

projected weighted matrix M|p. The necessary condition
for the block-similarity constraint is encapsulated in the fol-
lowing lemma.

Lemma 3 (Block-Similarity Column Pruning) Let p be
a pattern, (p, T |p) its corresponding block, and x a column of
M|p. Then in order for x to be part of a block that satisfies
the block-similarity constraint of Equation 3 and is obtained
by extending p with columns in M|p, the following must hold:

2 �D · (�Bx + �Bp) ≥ θS (7)

Proof. Let γ be any arbitrary set of columns in M|p
such that x ∈ γ and the block B = (p ∪ γ, T |p∪γ) satisfies

the block-similarity constraint, and let �Bp∪γ be its corre-
sponding composite vector. Then from the definition of the
block-similarity constraint we have that

2 �D · �Bp∪γ − �Bp∪γ · �Bp∪γ ≥ θS

Also, because T |p ⊇ T |xp ⊇ T |p∪γ , the following holds:

2 �D · (�Bp + �Bx) ≥ 2 �D · �Bp∪γ ≥ 2 �D · �Bp∪γ − �Bp∪γ · �Bp∪γ

Hence the above two in-equalities prove the lemma.

For each column of M|p, evaluating the above equation
incurs a computational cost equivalent to one scan of the
p-projected matrix, which is very costly. So, we make use of
the following lemma, which approximates Equation 7.

Lemma 4 (Approximate Block-Similarity Column Prun-
ing) Let ξ be the maximum value across the m dimensions

of vector �D and τ be the maximum row-sum over all the
rows of the p-projected matrix M|p. Then in order for x to
be part of a block that satisfies the block-similarity constraint
of Equation 3 and is obtained by extending p with columns
in M|p, the following must hold:

freq(x) ≥ θS − 2 �D · �Bp

2ξτ
(8)

Proof. Let ζ be the maximum row-sum over all the rows
of M|xp , we can then rewrite the dot product 2 �D · �Bx as

follows:

2 �D · �Bx = 2
�

i∈I|xp

(�D(i) × csumM|xp
(i))

≤ 2ξ
�

i∈I|xp

(csumM|xp
(i))

= 2ξ
�

t∈T |xp

(rsumM|xp
(t))

≤ 2ξζfreq(x) ≤ 2ξτ freq(x).

Combining this inequality with Equation 7 proves the lemma.

In a single scan of the projected matrix, we can compute
the frequency of all its columns along with the value of τ .
Hence the complexity is of the order of the size of the pro-
jected matrix.

6.2 Row Pruning
Given a pattern p and its projected matrix M|p, the idea

behind row pruning is to identify for each row t ∈ M|p a
necessary condition that must be satisfied such that there
is a valid block B = (p ∪ γ, T |p∪γ) for which γ ⊆ t. Using
this condition, we can then eliminate from M|p all the rows
that do not satisfy it, as these rows cannot be part of a valid
block that contain p. By eliminating such rows we reduce the
size of Mp and thus reduce the amount of time required to
perform subsequent projections and enhance future column
pruning operations.

To derive such conditions we make use of the Smallest
Valid Extension (SVE) principle, originally introduced in
[25] for finding itemsets with length-decreasing support con-
straint. In the context of block constraints considered in this
paper, the smallest valid extension of a prefix p is defined as
the length of the smallest possible extension γ to p (where
γ is a set of columns in M|p), such that the resulting block
B = (p∪γ,T |p∪γ) is valid for a given constraint C. That is,

SVE(p) = min
γ⊆I |p

{|γ| | C(p ∪ γ, T |p∪γ) = TRUE}.

Knowing the SVE of a pattern, we can then eliminate all
the rows whose length is smaller than the SVE value. Note
that the SVE of a pattern that already corresponds to a
valid block will be by definition zero. For this reason, the
row-pruning is only applied when the pattern p does not
correspond to a valid block.

In the rest of this section we describe how to obtain such
SVE-based necessary conditions for the block-size, block-
sum, and block-similarity constraints.

6.2.1 Block Size
The SVE of a pattern p for the block-size constraint is

given by the following lemma.

Lemma 5 (Block-Size Row Pruning) Let p be a pattern
such that B = (p, T |p) does not satisfy the block-size con-
straint. Then the smallest valid extension of p for the block-
size constraint of Equation 1 is

SVE(p) ≥ θN − BSize(B)

|T |p|
. (9)

Proof. We will show that it holds by contradiction. As-
sume that there is a set of items γ such that the block

7

B′ = (p ∪ γ, T |p∪γ) is valid and

|γ| <
θN − BSize(B)

|T |p|
. (10)

Because |T |p∪γ | ≤ |T |p|, we have that

BSize(B′) = (|p ∪ γ|) × |T |p∪γ | ≤ BSize(B) + |γ| × |T |p|.
(11)

Combining Equation 10 and Equation 11 we have

BSize(B′) < θN,

indicating that B′ does not satisfy the block-size constraint,
violating our initial assumption about B′. This means that p
needs to be extended by adding at least (θN−BSize(B))/|T |p|
items.

The complexity of computing the SVE(p) is Θ(1).

6.2.2 Block Sum
The SVE of a pattern p for the block-sum constraint is

given by the following lemma.

Lemma 6 (Block-Sum Row Pruning) Let p be a pattern
such that B = (p, T |p) does not satisfy the block-sum con-
straint, and z be the maximum column-sum over all columns
of M|p. Then the smallest valid extension of p for the block-
sum constraint of Equation 2 is

SVE(p) ≥ θW − BSum(B)

z
. (12)

Proof. As with Lemma 5 we will show that it holds by
contradiction. Assume that there is a set of items γ such
that the block B′ = (p ∪ γ, T |p∪γ) is valid and

|γ| <
θW − BSum(B)

z
. (13)

Because |T |p∪γ | ≤ |T |p|, each column of γ must contribute
no greater than z to the block-sum of B′, we have that

BSum(B′) ≤ BSum(B) + |γ| × z. (14)

Combining Equation 13 and Equation 14 we have that

BSum(B′) < θW,

indicating that B′ does not satisfy the block-sum constraint,
violating our initial assumption about B′. This means that p
needs to be extended by adding at least (θW −BSum(B))/z
items.

The complexity of computing the SVE(p) is of the order of
the size of the projected matrix as we need one scan of the
projected matrix to compute the maximum of the column-
sums.

6.2.3 Block Similarity
Let �D be the composite vector of T and consider a p-

projected weighted matrix M|p. The column-similarity of
column x in M|p is denoted by csimM|p(x) and is defined

to be equal to 2 �D(x)csumM|p(x)−csum2

M|p
(x). Given this

definition, the SVE of a pattern p for the block-similarity
constraint is given by the following lemma.

Lemma 7 (Block-Similarity Row Pruning) Let p be a
pattern such that B = (p, T |p) does not satisfy the block-
similarity constraint, and z is the maximum column-similarity

over all columns of M|p. Then the smallest valid extension
of p for the block-similarity constraint of Equation 3 is

SVE(p) ≥ θS − BSim(B)

z
. (15)

The proof is similar to that used for Lemma 6. In partic-
ular, each column of M|p can contribute at most z to the
overall block-similarity, and thus p needs to grow by adding
at least (θS − BSim(B))/z items. The actual details of the
proof are omitted. The complexity of computing the SVE(p)
is identical to that for the block-sum constraint.

6.3 Matrix Pruning
Given a prefix itemset p and its projected matrix M|p, the

column pruning and row pruning methods are very effective
in pruning some unpromising columns and rows from M|p.
However, in many cases the whole projected matrix M|p
cannot be used to generate any valid block patterns and
thus can be pruned. Hence we developed another class of
pruning method called matrix pruning in order to further
prune the search space in terms of the block size, block sum,
and block similarity constraints.

6.3.1 Block Size
The necessary condition for the block-size constraint is

encapsulated in the following lemma.

Lemma 8 (Block-Size Matrix Pruning) Let p be a pat-
tern and t a transaction in M|p. Then in order for M|p to
be used to generate any valid block that satisfies the block-
size constraint of Equation 1 and is obtained by extending p
with some columns in M|p, the following must hold:

BSize(p, T |p) +
�

t∈T |p

|t| ≥ θN. (16)

Proof. Let γ be any arbitrary set of columns in M|p
such that the block B = (p ∪ γ, T |p∪γ) satisfies the block-
size constraint, that is:

|p ∪ γ| × |T |p∪γ | ≥ θ × N.

Because T |p∪γ ⊆ T |p and for ∀t ∈ T |p∪γ , |t| ≥ |γ|, the
following holds:
�

t∈T |p

(|p| + |t|) ≥
�

t∈T |p∪γ

(|p| + |t|) ≥ |p ∪ γ| × |T |p∪γ |.

Equation 16 can be obtained by combining the above two
inequalities and using the fact that BSize(p, T |p) = |p| ×
|T |p|.

The sums in Equation 16 can be computed by a single
scan of the p-projected matrix M|p.

6.3.2 Block Sum
The necessary condition for the block-sum constraint is

stated in the following lemma.

Lemma 9 (Block-Sum Matrix Pruning) Let p be a pat-
tern, x a column in M|p, and t a transaction in M|p. Then
in order for M|p to be used to generate any valid block that
satisfies the block-sum constraint of Equation 2 and is ob-
tained by extending p with some columns in M|p, the fol-
lowing must hold:

BSum(p, T |p) +
�

t∈T |p,x∈I|p

M|p(t, x) ≥ θW. (17)

8

This lemma can be proved in a similar way to Lemma 8
and the actual proof is omitted. Note that the summation
on the left-hand-side of Equation 17 is nothing more than
the sum of the non-zero elements of each row in T |p and can
be computed in one scan of the p-projected matrix.

6.3.3 Block Similarity
Using the definition of the column-similarity introduced in

Section 6.2.3, the necessary condition for the block-similarity
constraint can be stated as follows:

Lemma 10 (Block-Similarity Matrix Pruning) Let p be
a pattern, x a column of M|p, and csimM|p(x) the column-
similarity of x in M|p. Then in order for M|p to be used
to generate any valid blocks that satisfy the block-similarity
constraint of Equation 3 and is obtained from extending p
with some columns in M|p, the following must hold:

BSim(p, T |p) +
�

x∈I|p

csimM|p(x) ≥ θS (18)

The proof is similar to that used for Lemma 6.8. In
particular, each column x of M|p can contribute at most
csimM|p(x) to the overall block-similarity and thus the whole
matrix M|p contributes at most the sum of the column-
similarities of its columns. The actual details of the proof
are omitted. The column-similarities of all the columns can
be computed in a single scan of the p-projected matrix.

Data # Trans # Items A.(M.)tran.len.
gazelle 59601 498 2.5(267)
BMSWebView2 77512 3340 4.6(161)
pumsb* 49046 2089 50.5(63)
big-market 838466 38336 3.12(90)
Sports 8580 126373 258.3(2344)
T40I10D100K 100000 1000 39.6(77)

Table 1: Dataset Characteristics.

7. EXPERIMENTS

7.1 Test Environment and Datasets
In this section, we evaluate CBMiner for all three con-

straints. All the experiments were performed on a 2GHz
Intel P4 processor with 2GB of memory running Linux.
CBMiner was implemented in C and all times reported
are in seconds. Since there are no existing closed block-
constraint mining algorithms, we chose one of the most re-
cently developed frequent closed itemset mining algorithms,
CLOSET+ [28], for our comparisons. We compared CBMiner
with a Linux executable version of CLOSET+, by provid-
ing the minimum frequency of the valid closed block pat-
terns generated by CBMiner as the absolute minimum sup-
port threshold to CLOSET+. This ensures that CLOSET+
will discover all the patterns found by CBMiner. How-
ever, CLOSET+ will find additional patterns that do not
satisfy the various block constraints. We compared the run-
ning times as well as the number of patterns generated by
CBMiner with those of CLOSET+. We also evaluated the
pruning methods that we proposed and their various pos-
sible combinations. We used five real datasets and several
synthetic datasets to evaluate the algorithm performance,
the effectiveness of the pruning methods, and the scalability

in terms of the database size. The characteristics (number
of transactions, number of items and the average(maximum)
transaction lengths) of the datasets are shown in the Table 1.

Real datasets: The gazelle and BMSWebView2 datasets
contain the click-stream data from Gazelle.com. The pumsb*
dataset contains census data and big-market dataset con-
tains the transaction information of a retail store. The sports
dataset is a document dataset obtained from San Jose Mer-
cury (TREC).

Synthetic datasets: The synthetic datasets were gener-
ated from IBM dataset generator, with average transaction
lengths of 40,20,30 and frequent itemset lengths of 10,10,15
respectively. We used T40I10D100K for our comparisons
with CLOSET+ as it was used in many previous perfor-
mance studies and the remaining two datasets, T20I10D100Kx
and T30I15D100Kx, for our scalability experiments.

7.2 Experimental Results

7.2.1 Comparison with CLOSET+
We performed numerous experiments to compare CBMiner

with CLOSET+. Figs. 2–9 show the comparison results
for the BSize constraint and datasets gazelle, big-market,
pumsb*, and T40I10D100K, while Figs. 10–11 show the re-
sults for the BSum constraint and the sports dataset, and
Figs. 12–13 show the results for the BSim constraint and
the BMSWebView2 dataset. From these results we can
see that, in general, CBMiner is substantially faster than
CLOSET+. This is primary due to the fact that, as it was
expected, CLOSET+ produces significantly more patterns
than those produced by CBMiner. For datasets with short
transactions like gazelle, BMSWebView2, and big-market,
CBMiner can be order(s) of magnitude faster than CLOSET+,
and finds order(s) of magnitude fewer patterns. While for
the datasets with long transactions like pumsb*, sports, and
T40I10D100K, CLOSET+ is a little faster at high block
threshold of BSize and BSum, but once the threshold is low-
ered, there is an explosive increase in the number of frequent
closed itemsets (e.g., with BSize/BSum 0.2% CLOSET+
generates several orders of magnitude more patterns than
CBMiner). These results illustrate that the pruning meth-
ods used by CBMiner are indeed effective in reducing the
overall search space, leading to substantial performance im-
provements.

1

10

100

1000

10000

100000

1e+06

1e+07

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

#
 o

f
P

a
tt
e
rn

s
 (

in
 l
o
g
s
c
a
le

)

% Minimum BSize

CBMiner
Closet+

Fig. 2. # Patt. (gazelle).

1

10

100

1000

10000

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
im

e
 (

in
 s

e
c
o
n
d
s
 o

n
 l
o
g
s
c
a
le

)

% Minimum BSize

CBMiner
Closet+

Fig. 3. Runtime (gazelle).

7.2.2 Effectiveness of the Pruning Methods

9

1

10

100

1000

10000

100000

1e+06

1e+07

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

#
 o

f
P

a
tt
e
rn

s
 (

in
 l
o
g
s
c
a
le

)

(1/10000) Minimum BSize

CBMiner
Closet+

Fig. 4. # Patt.
(big-market).

1

10

100

1000

10000

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
im

e
 (

in
 s

e
c
o
n
d
s
 o

n
 l
o
g
s
c
a
le

)
(1/10000) Minimum BSize

CBMiner
Closet+

Fig. 5. Runtime
(big-market).

1

10

100

1000

10000

100000

1e+06

1e+07

6 6.5 7 7.5 8 8.5 9 9.5 10

#
 o

f
P

a
tt
e
rn

s
 (

in
 l
o
g
s
c
a
le

)

% Minimum BSize

CBMiner
Closet+

Fig. 6. # Patt. (pumsb*).

1

10

100

1000

10000

6 6.5 7 7.5 8 8.5 9 9.5 10

T
im

e
 (

in
 s

e
c
o
n
d
s
 o

n
 l
o
g
s
c
a
le

)

% Minimum BSize

CBMiner
Closet+

Fig. 7. Runtime (pumsb*).

We evaluated the effectiveness of the three newly pro-
posed pruning methods, Column Pruning (CP), Row Prun-
ing (RP), and Matrix Pruning (MP) through their various
combinations. Figs. 14–15 show the comparison results for
the BSize constraint and datasets gazelle and BMSWeb-
View2, Fig. 16 shows the results for the BSum constraint
and dataset pumsb*, while Fig. 17 shows the results for the
BSim constraint and dataset big-market. These results show
that the combination of all the three pruning techniques (de-
noted as CP+RP+MP) is always faster than each individual
pruning method, and for the BSize and BSum constraints
the overall ranking of the pruning effectiveness among the
three methods is Column Pruning > Matrix Pruning >
Row Pruning, while for the BSim constraint Matrix Pruning
is more effective than Row Pruning and Column Pruning.
Note that if we do not apply any of these three pruning
methods (denoted as No-Pruning), CBMiner will run too
slow, and for this reason we do not show the curves corre-
sponding to No-Pruning in Figs. 14–17.

7.2.3 Scalability Study
We used the IBM synthetic datasets T20I10D100K and

T30I15D100K for the scalability test of CBMiner. We repli-
cated their sizes ‘x’ times, where ‘x’ varies from 2 to 10. For
the T20I10D100Kx series of datasets, we fixed the BSize,
BSum threshold at 0.02% and BSim threshold at 0.20%. For
the T30I15D100Kx series of datasets, we fixed the BSize and
BSum thresholds at 0.05% and BSim threshold at 0.20%.
From Figs. 18 and 19, we can see that CBMiner has linear
scalability on all the three constraints.

7.3 Application - Micro Concept Discovery

1

10

100

1000

10000

100000

1e+06

1e+07

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

#
 o

f
P

a
tt
e
rn

s
 (

in
 l
o
g
s
c
a
le

)

% Minimum BSize

CBMiner
Closet+

Fig. 8. # Patt.
(T40I10D100K).

1

10

100

1000

10000

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
im

e
 (

in
 s

e
c
o
n
d
s
 o

n
 l
o
g
s
c
a
le

)

% Minimum BSize

CBMiner
Closet+

Fig. 9. Runtime
(T40I10D100K).

1

10

100

1000

10000

100000

1e+06

1e+07

0.5 0.6 0.7 0.8 0.9 1

#
 o

f
P

a
tt
e
rn

s
 (

in
 l
o
g
s
c
a
le

)

% Minimum BSum

CBMiner
Closet+

Fig. 10. # Patt. (sports).

1

10

100

1000

10000

100000

0.5 0.6 0.7 0.8 0.9 1

T
im

e
 (

in
 s

e
c
o
n
d
s
 o

n
 l
o
g
s
c
a
le

)

% Minimum BSum

CBMiner
Closet+

Fig. 11. Runtime (sports).

Finally, we demonstrate an application for the three block
constraints in the context of document clustering by show-
ing that the blocks discovered by these constraints represent
sets of documents that have a great chance of belonging to
the same cluster and hence can be used to identify potential
cores of natural clusters in data as well as thematically re-
lated words. For this application we chose two additional
document datasets viz., LA1 and Classic in addition to
Sports. The LA1 dataset contains articles that appeared
in LA Times news, whereas the Classic dataset contains
abstracts of technical papers. Some of the characteristics of
these datasets are shown in Table 2. We scaled the document
vectors using the well known tf-idf scaling and normalized
using L2-norm and used our closed block mining algorithm
with block size, block-sum and block-similarity constraints.
From the patterns that were found we chose the 1000 high-
est ranked patterns on the basis of the constraint value.
For example, for the block sum constraint, we selected the
top-1000 blocks ranked on block sum and in the same way
for block-size and block-similarity constraints. For each of
the top-1000 blocks we computed the entropies [34] of the
documents that formed the supporting set of the block and
took the average of the 1000 entropies. Similarly, we com-
puted the average block pattern frequency and average block

Data No. of documents No. of terms No. of classes
Classic 7089 12009 4
Sports 8580 18324 7
LA1 3204 31472 6

Table 2: Summary of document datasets used for
the application.

10

10000

100000

1e+06

1e+07

0.5 0.6 0.7 0.8 0.9 1

#
 o

f
P

a
tt
e
rn

s
 (

in
 l
o
g
s
c
a
le

)

(1/1000) Minimum BSim

CBMiner
Closet+

Fig. 12. # Patt.
(BMSWebView2).

1

10

100

1000

0.5 0.6 0.7 0.8 0.9 1

T
im

e
 (

in
 s

e
c
o
n
d
s
 o

n
 l
o
g
s
c
a
le

)
(1/1000) Minimum BSim

CBMiner
Closet+

Fig. 13. Runtime
(BMSWebView2).

5

10

15

20

25

30

35

40

45

50

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
im

e
 (

in
 s

e
c
o
n
d
s
)

% Minimum BSize

CP+RP+MP
CP
RP
MP

Fig. 14. Pruning methods.
(gazelle).

10

20

30

40

50

60

70

80

90

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

T
im

e
 (

in
 s

e
c
o
n
d
s
)

% Minimum BSize

CP+RP+MP
CP
RP
MP

Fig. 15. Pruning methods.
(BMSWebView2).

pattern length. For comparison purposes, we also used the
CLOSET+ algorithm to find a set of frequent closed item-
sets and also selected the 1000 most frequent itemsets dis-
covered by CLOSET+. Fig. 20 shows the average entropy,
frequency, and length of the various patterns discovered by
the four algorithms for the three datasets. Note that the
CLOSET+ results are labeled as “freq”.

From these results we can see that the average entropy
of the patterns discovered by the four schemes are quite
small, indicating that all of them do reasonably well in
identifying itemsets whose supporting documents are pri-
marily from a single class. Despite that, we can see that
the block-similarity constraint outperforms the rest, as it
leads to the lowest entropies (i.e., purest clusters) for all
datasets. This verifies our initial motivation for defining the
block-similarity constraint, as it is able to better capture
the characteristics of the underlying datasets and problem,
and discover sets of words that are thematically very re-
lated. The block-size and the itemset support constraints
show some inconsistency in finding good concepts as they
do not account for the weights associated with the terms in
the document-term matrices. On the other hand the block-
sum constraint does reasonably well as it was able to take
into account the differences in the terms weights provided
by the L2-norm and tf-idf scaling for the document vectors.
Also note that the highest ranked patterns discovered by
the frequent closed mining algorithm (CLOSET+) are in
general quite short compared to the length of the patterns
discovered by the block constraints.

8. CONCLUSION AND FUTURE WORK

0

200

400

600

800

1000

1200

1400

6 6.5 7 7.5 8 8.5 9 9.5 10

T
im

e
 (

in
 s

e
c
o
n
d
s
)

% Minimum BSum

CP+RP+MP
CP
RP
MP

Fig. 16. Pruning methods.
(pumsb*).

50

100

150

200

250

300

350

400

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
im

e
 (

in
 s

e
c
o
n
d
s
)

(1/10000) Minimum BSim

CP+RP+MP
CP
RP
MP

Fig. 17. Pruning methods.
(big-market).

10

100

1000

10000

2 3 4 5 6 7 8 9 10

T
im

e
 (

in
 s

e
c
o
n
d
s
 o

n
 l
o
g
s
c
a
le

)

Database Replication Factor

BSize = 0.02%
BSum = 0.02%
BSim = 0.20%

Fig. 18. scalability
(T20I10D100Kx).

10

100

1000

10000

2 3 4 5 6 7 8 9 10

T
im

e
 (

in
 s

e
c
o
n
d
s
 o

n
 l
o
g
s
c
a
le

)

Database Replication Factor

BSize = 0.05%
BSum = 0.05%
BSim = 0.20%

Fig. 19. scalability
(T30I15D100Kx).

In this paper we studied how to mine valid closed pat-
terns with tough block constraints and proposed a matrix-
projection based framework called CBMiner for mining closed
block patterns in transaction-item or document-term matri-
ces effectively. Under this framework we mainly discussed
three typical block constraints viz., block size, block sum and
block similarity. Some widely adopted properties derived
from the anti-monotone or monotone constraints no longer
hold to be used to prune search space for these tough block
constraints. As a result, we specifically proposed three novel
pruning methods, column pruning, row pruning and matrix
pruning, which can push deeply the block constraints into
pattern discovery and prune the unpromising columns, rows,
and projected matrices effectively. Moreover, our experi-
mental results show CBMiner finds much fewer patterns
and runs order(s) of magnitude faster than the traditional
frequent closed pattern mining algorithms.

9. REFERENCES
[1] R. Agarwal, C. Aggarwal, V. Prasad, and

V. Crestana. A tree projection algorithm for
generation of large itemsets for association rules. IBM
Research Report, RC21341, November 1998.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. of the 20th VLDB,
September 1994.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison Wesley, 1999.

[4] R. Bayardo. Efficiently mining long patterns from

11

0

200

400

600

800

1000

1200

1400

1600

1800

freq size sum sim freq size sum sim freq size sum sim

classic classic classic classic sports sports sports sports la1 la1 la1 la1

Constraint & Dataset

Pa
tte

rn
 F

re
qu

en
cy

0

0.02

0.04

0.06

0.08

0.1

0.12

freq size sum sim freq size sum sim freq size sum sim

classic classic classic classic sports sports sports sports la1 la1 la1 la1

Constraint & Dataset

En
tro

py

0

5

10

15

20

25

freq size sum sim freq size sum sim freq size sum sim

classic classic classic classic sports sports sports sports la1 la1 la1 la1

Constraint & Dataset

Pa
tte

rn
 L

en
gt

h

Fig. 20 Evaluation of the quality of the top-1000 patterns discovered by various algorithms.

databases. In Proc. of the ACM SIGMOD’98, June
1998.

[5] R. Bayardo, R. Agrawal, and D. Gunopulos.
Constrained based rule mining for large dense
databases. In Proc. of the ICDE’99, Mar. 1999.

[6] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur.
Dynamic itemset counting and implication rules for
market basket data. In ACM SIGMOD 1997, 05 1997.

[7] C. Bucila, J. Gehrke, D. Kifer, and W. White.
Dualminer : A dual-pruning algorithm for itemsets
with constraints. In ACM KDD, 2002.

[8] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A
maximal frequent itemset algorithm for transactional
databases. In Proc. of the ICDE 01, April 2001.

[9] A. Grama, A. Gupta, G. Karypis, and V. Kumar.
Introduction to Parallel Computing: Design and
Analysis of Algorithms, 2nd Edition. Adison Wesley
Publishing Company, 2003.

[10] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In Proc. 2000
ACM-SIGMOD, pages 1–12, May 2000.

[11] G. Karypis and E. H. Han. Fast supervised
dimensionality reduction algorithm with applications
to document categorization & retrieval. In Proc. of
CIKM, 2000.

[12] D. Kifer, C. Bucila, J. Gehrke, and W. White. How to
quickly find a witness. In 22nd ACM
SIGACT-SIGMOND-SIGART Symposium on
Principles of Database Systems (PODS), 2003.

[13] C.K.-S. Leung, L.V.S. Lakshmanan, and R.T. Ng.
Exploiting succinct constraitnts using fp-trees. In
ACM SIGKDD Explorations, Volume 4, pages 40–50,
2002.

[14] B. Liu, W. Hsu, and Y. Ma. Mining association rules
with multiple minimum supports. In Knowledge
Discovery and Data Mining, pages 337–341, 1999.

[15] G. Liu, H. Lu, W. Lou, and J.X. Yu. On computing
and querying frequent patterns. In Proc. of the ACM
SIGKDD’03, Aug. 2003.

[16] R. Ng, Laks V. S. Lakshmanan, J. Han, and T. Mah.
Exploratory mining via constrained frequent set
queries. In Proc. of the ACM SIGMOD’99, June 1999.

[17] J. Park, M. Chen, and P. Yu. An effective hash based
algorithm for mining association rules. In Proc. of the
ACM SIGMOD’95, 1995.

[18] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Discovering frequent closed itemsets for association
rules. In Proc. of the ICDT 99, Jan. 1999.

[19] J. Pei and J. Han. Can we push more constraints into
frequent pattern mining? In Proc. of ACM SIGKDD,
2000.

[20] J. Pei and J. Han. Constrained frequent pattern
mining : A pattern-growth view. In ACM SIGKDD
Explorations, Volume 4, pages 31–40, 2002.

[21] J. Pei, J. Han, and L.V.S. Lakshmanan. Mining
frequent itemsets with convertible constraints. In
IEEE ICDE, 2001.

[22] J. Pei, J. Han, H. Liu, and S. Nishio et al. H-mine :
Hyper structure mining of frequent patterns
databases. In IEEE Conference on Data Mining, 2001.

[23] J. Pei, J. Han, and R. Mao. Closet: An efficient
algorithm for mining frequent closed itemsets. In Proc.
2000 of ACM-SIGMOD Int. Workshop on Data
Mining and Knowledge Discovery, 2000.

[24] G. Salton. Automatic Text Processing: The
Transformation, Analysis, and Retrieval of
Information by Computer. Addison-Wesley, 1989.

[25] M. Seno and G. Karypis. Lpminer: An algorithm for
finding frequent itemsets using length-decreasing
support constraint. In ICDM, 2001.

[26] M. Seno and G. Karypis. Slpminer: An algorithm for
finding frequent sequential patterns using
length-decreasing support constraint. In ICDM, 2002.

[27] R. Srikant, Q. Vu, and R. Agrawal. Mining
associations rules with item constraints. In 3th ACM
SIGKDD, pages 67–73, 1997.

[28] J. Wang, J. Han, and J. Pei. Closet+: Searching for
the best strategies for mining frequent closed itemsets.
In Proc. of the ACM SIGKDD’03, Aug. 2003.

[29] K. Wang, Y. He, and J. Han. Mining frequent itemsets
using support constraints. In The VLDB Journal,
pages 43–52, 2000.

[30] K. Wang, Y. Jiang, J. Xu Yu, G. Dong, and J. Han.
Pusing aggregate constraints by
divide-and-approximate. In Proc. of ICDE, 2003.

[31] J. Wang and G. Karypis. Bamboo: Itemset mining by
deeply pushing the length-decreasing support
constraint. Technical Report TR #03–40, Department
of Computer Science, University of Minnesota,
Minneapolis, MN, 2003. Available on the WWW at

12

http://cs.umn.edu/˜karypis/publications.

[32] M. Zaki. Generating non-redundant association rules.
In 6th ACM SIGKDD, pages 34–43, 2000.

[33] M. Zaki and C. Hsiao. Charm: An efficient algorithm
for closed itemset mining. In Proc. SDM’02, April
2002.

[34] Y. Zhao and G. Karypis. Criterion functions for
document clustering: Experiments and analysis.
Machine Learning, in press.

13

