
Using Conjunction of Attribute Values for Classification∗

Mukund Deshpande and George Karypis

University of Minnesota, Department of Computer Science/Army HPC Research Center
Minneapolis, MN 55455

Technical Report #02-011

Abstract

Advances in the efficient discovery of frequent itemsets in large databases have led to the development of a number
of schemes that use frequent itemsets to aid in the development of accurate and efficient classifiers. These approaches
use the frequent itemsets to generate a set of composite features that expand the dimensionality of the underlying
dataset. In this paper, we build upon this work and (i) present a variety of schemes for composite feature selection
that achieve a substantial reduction in the number of features without adversely affecting the accuracy gains, and
(ii) show (both analytically and experimentally) that the composite feature space can lead to improved classification
models in the context of support vector machines, in which the dimensionality can automatically be expanded by the
use of appropriate kernel functions.

Keywords: Classification, SVM, Feature Selection, Conjunctive Attributes

1 Introduction

After the seminal paper by Agrawal et al. [AIS93] on association rules, the field of associating rules and especially

its sub-field of frequent itemset generation has seen a great deal of research activity. The extensive research in this

field has led to the development of efficient techniques for generating, storing and pruning frequent itemsets [SK01,

HPY00, AAP00, Zak00]. These advances accompanied by growth in the computing power has made the task of

frequent itemsets generation much more manageable, than in the past.

As a result, we have witnessed an increased interest in developing schemes that use frequently occurring itemsets

to aid in the development of accurate and efficient classification algorithms. To this end, two general approaches

have been developed. The first approach uses the frequently occurring itemsets to generate a set of rules, that are

then used to build rule-based classifiers [LHM98, LHP01]. The second approach first expands the dataset’s feature

space by using the frequently occurring itemsets, and then uses traditional algorithms to build classification models in

that expanded feature space [LZO99, ZLM00]. Despite the differences of these approaches, the common theme that

underlies them is that they used the frequently occurring itemsets to generate a set of composite features. The idea

∗This work was supported by NSF CCR-9972519, EIA-9986042, ACI-9982274, NASA NCC 21231, and Army High Performance Computing
Research Center contract number DAAD19-01-2-0014.

1

of using composite features to expand the feature space is not new and has been extensively studied by the machine

learning community [S.78, Zij96]. Most of these schemes use a greedy approach to find the composite features;

hence, they do not search the entire space of all possible attribute value conjuncts. However, frequent itemset-based

approaches have the advantage of exhaustively generating all possible composite features, before selecting which ones

to use for classification. Experimental results presented in [LHM98, LHP01, ZLM00, LZO99] illustrate that the use

of frequently occurring itemsets can lead to measurable improvements in classification accuracy.

In this paper, we build upon this work and further investigate the use of frequently occurring itemsets as composite

features for classification. In particular, our research is focused in two directions. First, we investigate the impact

of various schemes for selecting the most discriminating set of composite features, and second, we investigate the

extent to which the resulting set of composite features can lead to improved classification models in the context of

support vector machines, in which the dimensionality can be automatically expanded by the use of appropriate kernel

functions. Towards the first direction, we present a variety of schemes that select a set of non-redundant discriminatory

composite features, and show that a substantial reduction in the number of features can be obtained, without adversely

affecting the accuracy gains achieved by the use of such composite features. Towards the second direction, we show

that even though higher order polynomial kernel functions do automatically generate all possible composite features,

it is still beneficial to manually expand the feature space by using the discriminatory frequent-itemsets. We prove that

a SVM model learnt in the manually expanded feature space will have a lower generalization error than that built by

the corresponding higher order polynomial kernel, a fact that was experimentally verified using a set of synthetically

generated datasets.

The paper is organized as follows, Section 2 presents the related research and Section 3 discusses the terminology

used in this paper. Section 4 explains in detail the methodology used for classification, Section 5 presents a detailed

analysis of our approach, specifically in context of different classifiers, Section 6 presents the classification results,

and finally Section 7 presents the conclusion.

2 Related Research

The idea of using composite features has been well studied in the field of machine learning and goes under the name of

constructive induction. Constructive induction is a process of creating new features/attributes from the task-supplied

attributes and then building a model on both these new as well as task supplied attributes [S.78]. For most cases

this approach is diametrically opposite of dimensionality reduction; dimensionality reduction tries to eliminate at-

tributes/features whereas constructive induction expands the feature space before building the classification model.

There are many ways of creating new features, Zheng et al [Zij96] presents a discussion of using conjunctive, disjunc-

tive and x of N features. The features of type x of N were first studied by Murphy et al [MP91]. Brodley et al [BU92]

consider composite features which are modeled as linear functions, which operate on different attribute values. In

this paper we will be limiting ourselves to the study of conjunctive attribute values, a detailed discussion about the

advantages of using conjunctive attributes in context of different classifiers is presented in Section 5.

It is obvious that expanding the feature space to encompass all possible attribute value conjuncts/disjuncts would

make the dataset too large and intractable to build a classification model. Therefore, the main challenge in the field of

constructive induction is to intelligently search the feature space and select a small set of composite features that leads

to an improved classifier, either by improving the accuracy or by improving the understand-ability of the model.

Constructive induction has been mainly used in the conjunction with two classification schemes: decision trees

and rule based systems, with majority of the work done on decision trees. This should not be surprising as using

2

composite features lead to substantially smaller and more understandable decision trees. The methodology used for

different decision tree learning is broadly the same [GD90, MR89]. First, a decision tree is built on the task-supplied

attributes, then a candidate set of composite attributes is constructed by taking conjunctions and/or dis-junctions of

attributes values along different paths of the decision tree, from this candidate set a small set of composite attributes

are retained, which are then incorporated in the dataset and these four steps are repeated in a loop. The process stops

when sufficiently accurate decision tree is built. These techniques make use of the attributes selected by the decision

tree to restrict the search space.

Composite features have also been used in conjunction with rule based systems. Zheng et al, [Zhe00] present a

modification of the c4.5 rules scheme to use conjunctions/disjunctions of attribute values. In their approach first rules

are generated using the traditional c4.5rules [Qui93] scheme, then a candidate set of conjunctive/disjunctive features

are generated from these rules, next this candidate set is evaluated to retain a small set of composite attributes.

Liu et al, [LHM98] propose a novel technique for using attribute value conjunctions. First, they exhaustively

generate all possible attribute value conjuncts (composite features) using a frequent itemset discovery algorithm, next

a pruning scheme is used to eliminate composite features/frequent itemsets that have support and/or confidence below

certain threshold. This leaves an extremely small set of composite features. Then considering each composite feature

as a rule, a modified version of sequential covering algorithm for rules is run on them to obtain the final ordering of

rules. This scheme will be referred as CBA (Class based Associations). Li et al. [LHP01] extend the CBA approach

by using a modified version of sequential covering algorithm, where an example is eliminated only after it has covered

a sufficient number of rules (composite features), this scheme will be referred as CMAR (Classification based on

Multiple Association Rules).

3 Terminology

The dataset � used for classification is defined by the tuple < A, C >, where A = {A 1, A2, A3, . . . Ak} are the

attributes describing each example in the dataset and C is a finite set of class labels {c1, c2, c3, . . . cm}. Each attribute

Ai is assumed to have a finite domain of attribute values that is know in advance. Note that this model cannot handle

continuous attributes and they need to be discretized beforehand [FI93, DKS95]. Each example e i in the dataset

� is represented as {(A1 = a1i , A2 = a2i , A3 = a3i , . . . Ak = aki), ci }, where a1i corresponds to the attribute

value for attribute A1 and ci is the class label assigned to the example ei . From this user supplied representation a

set of composite features will be generated, such that each feature A c represents a conjunction of attribute values,

Ac = {(A1 = a1i) ∧ (A3 = a3 j) ∧ (A5 = a5k)}. For example, given the dataset shown in Figure 1, the {Outlook =
sunny ∧ Windy = True} is an example of a composite feature. Note that a composite feature are formed by taking

conjunctions of attribute-value pairs and not just attributes. The size of a composite feature is equal to the number of

attribute-value pairs present in the composite feature.

An example ei supports composite feature Ac, represented as Ac ∈ ei , if all the attribute-value pairs present in Ac

are also present ei . We can define a similar relationship between composite attributes themselves, A c1 ∈ Ac2, if all

the attribute- value pairs present in Ac1 are also present in Ac2. Furthermore Ac1 is referred as an extension of Ac2, if

si ze(Ac2) = si ze(Ac1)+1. For the example shown in Figure 1 the composite feature {Outlook = sunny ∧Windy =
True} is present in example (1, 4, 5 and 8).

After selecting all the composite features, each example is transformed so that each example, in addition to the user

supplied attributes, it also contains the composite features it supports. To further simplify this representation we can

assign a unique integer to all the unique attribute value pairs as well as the composite attribute selected.

3

 EID Outlook Humidity Windy CID=1 CID=4 CID=7 Class

1 Sunny Low True True False True Play
2 Rain High True False False False Play
3 Overcast Low True False False False No Play
4 Sunny Low True True False True Play
5 Sunny High True False False False No Play
6 Rain High True False False False No Play
7 Overcast High False False True False Play
8 Sunny Low True True False True Play
9 Overcast High False False True False Play
10 Rain High False False True False Play

Transformed Input Dataset

Transforming Input
Sequences

Classification
Stage

Support
Vectors/

Decision Tree

3

4

Selecting Composite
Features

2

EID Outlook Humidity Windy Class
1 Sunny Low True Play
2 Rain High True Play
3 Overcast Low True No Play
4 Sunny Low True Play
5 Sunny High True No Play
6 Rain High True No Play
7 Overcast High False Play
8 Sunny Low True Play
9 Overcast High False Play
10 Rain High False Play

Input Dataset

CID Composite Feature P NP CID Composite Feature P NP
1 (O=Sunny) AND (H=Low) 3 0 2 (O=Sunny) AND (W= True) 3 1
3 (H =Low) AND (W = True) 1 2 4 (H=High) AND (W =False) 3 0
5 (O = Rain) AND (W = True) 2 1 6 (H=High) AND (W=True) 1 2
7 (O = Sunny) AND (H = Low) AND (Wind = True) 3 0

Frequent Composite Features

CID Composite Feature P NP
1 (O=Sunny) AND (H=Low) 3 0
5 (H = High) AND (W = False) 3 0
7 (O=Sunny) AND (H=Low)AND(Wind=True) 3 0

Selected Composite Features

1 Discovering
Frequent Itemsets
Sup. Thresh: 30%

Figure 1: Various sub-tasks of our classification procedure as defined Section 4

4 Classification Methodology

In this section we describe in detail our methodology for building a classifier using composite features. This task is

divided into three subtasks:

1. Generating all the composite features above a support threshold

2. Pruning this set of to obtain a smaller set of composite features

3. Transforming the user supplied data to incorporate these selected composite features and learning a classifier on

this transformed dataset.

These three steps are shown in Figure 1.

4.1 Generating Composite Features

This is the first sub-task in our classification procedure; here we generate a set of candidate composite features. For this

sub-task we first transform the dataset so that each example is represented as a set of integers, as described in Section 3.

We then run a generic frequent itemset discovery algorithm on this dataset assuming each example as a transaction

and each attribute value in the example as an item. The Frequent Itemset Discovery Algorithm, henceforth referred as

FIDA, returns a list of itemsets which occur frequently in the dataset. Each itemset represents a composite feature that

is a conjunction of all the attribute values (items) making up that itemset. In our procedure we use LPMiner [SK01] as

our FIDA.

The notion of frequent, i.e, what composite feature is considered as frequent is controlled by a user defined param-

eter to the FIDA called support threshold. All the composite features (itemsets) generated by FIDA have a support

above the support threshold. Support for a composite feature is defined as the ratio of the number of examples which

contain the composite feature to the total number of examples in the dataset. Using a support threshold, instead of

exhaustively generating composite features, ensures that the discovered composite features are statistically significant

and not random noise. The exact value of support threshold is usually dataset dependent and is supplied by the user.

4

Because the different classes can be of different size, care must be taken to ensure that the composite features

properly cover all classes. For this reason in our algorithm, we first partition the complete dataset, using the class label

of the examples, into specific class datasets. We then run FIDA on each of these class datasets. This partitioning

of the dataset ensures that sufficient composite features are discovered for those class labels which occur rarely in

the dataset. Next, we combine composite features discovered from each of the class dataset. After this step each

composite feature has a vector that contains the frequency with which it occurs in each class. Also, to facilitate the

efficient execution of the various composite feature selection scheme, which will be described in the next section, we

store the composite feature into a lattice format. Every composite feature has its child nodes those composite feature

which can be formed by extending it by one attribute value pair. The lattice representation makes the task of feature

selection extremely efficient.

4.2 Selecting Composite Features

In this sub-task we select a small set of composite features from those generated by the FIDA. There are two motiva-

tions behind feature selection: First, the generated composite features contain a lot of noise and redundancy that can

be easily eliminated, and will result in a better classifier. Second, the number of composite features generated by FIDA

is quite large and will affect the time needed to build the classification model. Our approach for feature selection is

performed in two steps, the first step eliminates redundant composite features whereas the second step selects the most

discriminatory composite features.

4.2.1 Duplicate Elimination

This selection procedure is based on the observation that the composite features discovered by FIDA contain a lot of

redundancy i.e., they provide identical information. As a result these duplicate features can be safely removed without

affecting the accuracy of the classifier. Two composite features are said to provide identical information if the set of

supporting examples of these two composite features is identical.

The lattice representation of the composite features obtained from the FIDA makes the task of identifying duplicates

extremely easy. For every node in the lattice we compare its class distribution with its child nodes (single attribute

value extension), and we eliminate the child node if the frequency distribution is identical. It should be noted that

the set of supporting transactions for an extension is a subset of supporting transaction for a composite feature, this is

by the subsuming property of the frequent itemsets. Secondly, we always eliminate the longer of the two composite

features to ensure that the selected feature generalizes better.

4.2.2 Selecting Discriminatory Composite Feature

In this step we further eliminate features obtained from the previous step to retain only those composite features

which are considered discriminatory. A composite feature is considered discriminatory for a particular class if its

presence or absence in an example can help in inferring the class label of that example. There are many metrics which

evaluate the discriminatory ability of a feature, and in our algorithm we have experimented with two such metrics,

confidence [AIS93] and j-measure [SG92]. Both these measures evaluate the discriminatory ability of a composite

feature w.r.t. a particular class label. The confidence of a particular A c w.r.t. class ci is defined as

con f idence(Ac, ci) = P(Ac, ci)

P(Ac)

5

, where P(Ac, ci) is the probability of observing the composite feature A c and the class label ci together in the dataset

and P(Ac) is the probability of finding composite feature A c in the dataset. On the other hand, the j-measure of A c

w.r.t. class ci is defined as follows:

j − measure(Ac, ci) = P(ci |Ac). log

(
P(ci |Ac)

P(ci)

)
+ (1 − P(ci |Ac)). log

(
1 − P(ci |Ac)

1 − P(ci)

)
,

where P(ci |Ac) is the conditional probability of observing the class c i given that composite feature Ac is present in the

example. Studying the two formulae we can make two observations: First, confidence metric takes into account only

the presence of a composite feature in an example, whereas the j-measure considers both the presence and absence of

a composite feature. Second, both of these metrics can be computed directly from the class distribution of a composite

feature. Also note that all these metrics compute the discriminatory ability of a composite feature with respect to a

class-label and not the composite feature as a whole.

The next step is to use these metrics to select a small set of composite features. The procedure used here is similar

to the one used for duplicate elimination. We compare each composite feature (A c) with all of its parents (Acp) using

the discriminatory metric, and decide if that composite feature has to be selected or eliminated. There are four possible

ways in which this selection can be done. Assuming that D(Ac, ci) is a discriminatory function and Acp is the parent

of Ac, we can have:

Select (Ac), i f ∀ci D(Ac, ci) > max
∀Acp

(D(Acp, ci))

Select (Ac), i f ∀ci D(Ac, ci) > min∀Acp
(D(Acp, ci))

Select (Ac), i f ∃ci D(Ac, ci) > max∀Acp
(D(Acp, ci))

Select (Ac), i f ∃ci D(Ac, ci) > min∀Acp
(D(Acp, ci))

Lets consider the right hand side of the equations, if we use the max function for selecting the composite feature, it

means that the composite feature will be selected only if its discriminatory ability is greater than all of its parents. On

the other hand, if the min function is used, then a composite feature is selected if it is more discriminatory than at least

one of its parents. The max function leads to an extremely selective scheme as compared to the min function. The left

hand side considers the class labels on which the metric can be computed, the condition ∀ c i implies that the composite

feature has to be more discriminatory w.r.t. all the classes in order for it to be selected; whereas the condition ∃ c i

implies that the composite feature has to better on any one of the class labels. The condition ∀c i can never be true if

we use the confidence metric; because the sum of confidence for different class labels is equal to 1.0.

In our scheme we use the max function and select a composite feature if it is more discriminatory on any one of the

class labels, as mentioned before we use both confidence and j-measure as our metric. There are many advantages of

this scheme. First, the computation is extremely efficient as it can be done in conjunction with duplicate elimination.

6

Second, we do not need any additional parameter from the user to carry out this scheme.

4.3 Building the classification model

Once we obtain the set of composite features we transform the input dataset into this expanded feature space. Now each

input example is represented as a boolean vector of size equal to the total number of selected composite features. Each

element in the vector corresponds to a composite feature and its value is set to true if that composite feature is present

in the example, and false otherwise. These boolean vectors are given to the classifier for building the classification

model. We have experimented with two classification schemes, C4.5 [Qui93] and SVM [Vap98]. We will next discuss

some implementation specific details about the classifiers.

We use a locally modified version of C4.5, known as C4.5-sparse, to handle the sparse and high dimensional data

generated as a result of transforming the datasets. C4.5-sparse stores the data in a sparse format and hence can easily

handle high dimensional datasets. Support vector machines operate only on continuous attributes, hence we first

normalize each boolean vector to be of unit length and then feed this normalized vector to the SVM Classifier. We

also use SVM to directly classify the UCI datasets, in this case we first discretized all the continuous attributes. Then,

we transformed this discretized representation into a feature space such that each attribute value corresponds a new

attribute. This allows us to again represent the examples as a boolean vector.

5 Analysis of Proposed Approach

In this section we study the advantages of using composite features in the context of two classifier: decision trees

and SVM. Since the classification methodology of these two classifiers differs a lot, we consider each one of them

separately.

5.1 Decision Trees

Zheng et al [Zhe00] provide a detailed discussion of advantages of using conjunctive attributes in context of decision

trees. Composite Features provide a way of overcoming two of the well known short comings of C4.5 [Qui93], namely

fragmentation and replication. Before we go on to discuss them, it should be noted that composite features do not

provide any additional expressive power to C4.5. The classification function learnt by using composite feature can

also be learnt by directly using C4.5, provided we have a well spread out data and there is no noise in it. However both

of these two conditions are almost never fulfilled in practice.

We will study the fragmentation problem first; the decision tree is constructed by recursively partitioning the at-

tribute space using one attribute at at time, each of these partitions is represented by a node in the decision tree.

Figure 2(a) displays an example dataset and the corresponding decision tree. As can be seen from the figure the de-

cision tree needs to partition the dataset four times to capture all the examples. This repeated partitioning reduces its

generalizability and can result in lower accuracy of the classifier on the test set. On the contrary composite features

allow us to succinctly capture the concept present in the dataset and as a result the decision tree is very compact.

Another problem observed in decision trees is replication; in replication a portion of a subtree is constructed

multiple times. An example of replication is shown in Figure 3(a). Replication also leads to decision trees which are

deep and difficult to understand. Composite features in some cases can eliminate replication. One such example where

composite features help is shown in Figure 3(b).

7

(a) C4.5 with univariate attributes

a2

a1

v22

v21

v11 v12

a1 < v12

a2 < v22

a1 < v11

a2 < v21

a2

a1

v22

v21

v11 v12

v11 < a1 < v12
AND

v21 < a2 < v22

(b) C4.5 with composite features

Figure 2: Fragmentation due to C4.5, (a) displays decision tree when composite features are not used (b) decision tree with
composite features.

A And B

A

B

D

C

True

TrueTrue

True

D

C
True

True

False

False

False

False

False

False

(a) C4.5 with univariate attributes

C And D

True

True

False

(b) C4.5 with coposite features

Figure 3: Replication in C4.5 (a) displays a decision tree in which a sub tree is replicated (b) decision tree using composite
features.

8

5.2 SVM

In this section we will discuss the advantages of the proposed approach of creating and selecting composite features

in the context of Support Vector Machine(SVM) classifiers [Vap98]. Before going into the discussion we describe

terminology and briefly explain the working of the SVM classifier [WMC +00].

We assume that we are given l data points x i ∈ Rn labeled y ∈ ±y drawn i.i.d. from a probability distribution

P(x, y). Support vector machines can map each example x ∈ R n into a higher dimensional space, possibly infinite,

and construct a separating hyperplane in that space. The mapping of this input space R n to higher dimensional space

� is represented by x �→ �(x), where different mappings lead to different SVM classifiers. One of the principle

advantages of SVM is that even though the learning is done in the higher order space individual examples need not

be transformed into this higher order space, and only a kernel function K (x, z) needs to be defined. For a simple

case the kernel function defines the inner product between two examples in the expanded feature space i.e., similarity

between two examples x and z. The classification of an example x involves computing the distance of the example to

the hyperplane in � and assigning in the class label depending on which side of the hyperplane the example lies. The

classification function is represented as,

f (x) = w · �(x) + b =
∑

i

α0
i yi K (xi , x) + b,

where, w is the vector defining the hyperplane in the higher dimensional space �, α i are the weights assigned to the

input example xi which has a class label of yi . The learning process involves learning the values for α i and b. The

examples which have a non-zero value for α are called support vectors of that model.

Since SVM allows us to operate in higher dimensional spaces one of the first questions to ask is if it is possible to

construct a kernel function which will operate in a space represented by the conjuncts of all the attributes. The answer

to that question is yes, polynomial kernel represented as

K (x, z) = (< x · z > +c)d

operates in a feature space consisting of all possible conjuncts starting from order 1 all the way to order d. The

polynomial kernel operates on
(n+d−1

d

)
distinct features, which is essentially all possible conjuncts starting from order

1 to order d.

From this discussion it would appear that exhaustively generating features outside the classifier is a wasted effort

and the same representation can be achieved, potentially in an efficient way, by using a polynomial kernel of suitable

degree. However, the key difference between the use of higher-order polynomial kernel functions and our approach is

that in addition to finding all frequent itemsets we also perform a feature selection step that eliminates most of the non

discriminatory conjuncts. Therefore, the feature space in which our classifier operates, referred as �, is a subset (and

generally substantially smaller) than the feature space � of the polynomial kernel. In light of that, the key question

to ask is whether or not there is an advantage in learning a model in � as opposed to learning a model in �. The

answer to this question is yes, and the reason is that even though a model learnt in �, as measured by the value of the

classification function f (x) for each example x in the training set, can potentially be learnt in �, the generalization

error of �’s model will tend to be lower compared to a model directly learnt in�. These facts are proven in the rest of

this section.

Let X� = [x�1, x�2, . . . x�l] be the dataset in space �, and let X� = [x�1, x�2, . . . x�l] be the dataset in space�.

9

Since the space � is subspace of�, we have

X� =
[

X�
X�

]
,

where X� are the conjunctive features from all the examples which are pruned. Since we are learning a linear model,

the kernel function K (x, z) is equal to the inner product, < x · z >, therefore the classification function given in

Equation 5.2 can be represented in matrix notation for an example x i as

f (xi) = D�xT
i X� + b� ,

where D� is equal to [α�1, α�2 . . . α�l] · [y1, y2 . . . yl]T . Similarly, Equation 5.2 can be represented in matrix notation

for all the examples in the dataset X� as follows (assuming leave one out classification):

f (X�) = D�XT
�

X� + b�

The classification of l examples by learning a linear model in higher dimensional space� can be represented as

f (X�) = D�XT
�

X� + b�,

where D� is the model learnt in the space�. Note that the dimension of f (X�) and f (X�) is the same and represents

the class labels predicted by the two models. Therefore if the two models are to be equivalent (in terms of classification

decisions), then f (X�) = f (X�), and using Equation 5.2 and Equation 5.2 it should be that

D�XT
�

X� + b� = D�XT
�

X� + b�

D� = D�XT
�

X�(X
T
�

X�)−1 + (b� − b�)(XT
�

X�)−1.

Thus, an equivalent model exists in � provided that the initial examples are linear independent (i.e., (X T
�

X�)−1

exists).

Even though the hypothesis learnt in the lower order space can be learnt in the higher order space, there is still

merit in carrying out feature reduction because of the following argument. It has been shown that the bounds for error,

E Perr , in Support Vector machines are defined by the formula [WMC +00]

E Perr ≤ 1

l
E

{
R2

M2

}

where R is the radius of the sphere containing all the transformations of the examples, M is the maximal margin of

separation and E is the error of the classsifier. Note that the radius is computed on the transformed space � i.e., in

case of the polynomial kernel it will be calculated in the expanded space. Therefore choosing the feature space to

operate is a trade off between achieving the maximum separation M in the input examples and not adding too many

redundant dimensions so that the value of R goes up. This problem is even more critical in the case of conjunctive

attributes as the dimensionality of the transformed space grows exponentially as the order of conjunction increases.

Hence, though we do not gain in expressibility of the model by operating in the pruned feature space, we stand to gain

by substantially tightening the bounds on the error.

10

To get a better understanding of this error bound and its relationship with the number of features we ran some

experiments on synthetic datasets, where we studied the effect of increasing the dimensionality on the accuracy of the

SVM classifier. The details of the experiment and the results are presented in Section 6.3.1.

6 Experimental Evaluation

In this section we experimentally evaluated the different composite feature selection techniques presented in Section 4.

We first describe the datasets and the methodology of our experiments. We then present the results for different

schemes in conjunction of two classifiers, C4.5 and SVM. Lastly we compare our schemes with respect to other

schemes which use composite features with the help variety of different metrics.

6.1 Dataset Characteristics & Methodology

To evaluate the performance of different selection strategies, we conducted experiments on the UCI datasets [MM98].

Table 1 displays the different characteristics of each of the datasets. There are essentially four possible classification

schemes based on different combinations of our composite feature selection strategies. First, no duplicate elimination,

no discriminatory feature selection, referred as ND-NS. Second, duplication elimination using identical class distribu-

tion, but no discriminatory feature selection, referred as IC-NS. Third, duplicate elimination and using confidence for

discriminatory feature selection, referred as IC-Co. Lastly, duplicate elimination and using j-measure for discrimina-

tory feature selection, referred as IC-JM. Besides these four selection strategies we also ran the two classifiers, C4.5

and SVM directly on the UCI datasets.

Dataset No. Attributes Number Number
Cont. Disc. Classes Examples

anneal 6 32 6 898
austra 6 8 2 690
breast 10 0 2 699
cleve 6 7 2 303
crx 6 9 2 690
diabetes 8 0 2 768
german 7 13 2 1000
glass 9 0 7 214
heart 13 0 2 270
hepati 6 13 2 155
horse 7 15 2 368
iris 4 0 3 150
labor 8 8 2 57
led7 0 7 10 3200
lymph 0 18 4 148
pima 8 0 2 768
tic-tac 0 9 2 958
wine 13 0 3 178
zoo 0 16 7 101

Table 1: UCI dataset statistics.

We performed our experiments using a 10 way cross validation scheme and computed average accuracy across

different runs. We ran our experiments using a support threshold of 1.0% for all the datasets, except hepati,

horse where we used a support threshold of 2.0% and for lymph and zoo we used the support threshold of

5.0%. This was done to ensure that the composite features generated are statistically significant. For decision tree

classification we use a modified version of c4.5 classifier [Qui93] that can handle sparse datasets. Similarly for SVM

classification we use SVMLight [Joa99] classifier with radial basis function kernel.

11

6.2 Using C4.5 Classifier

Table 2 displays the accuracy values and the number of features selected for different schemes when used in conjunc-

tion with a c4.5 classifier. The first column, Direct, displays the results obtained by directly running c4.5 on these

datasets. The remaining columns displays the accuracy and the number of composite features selected for different

classification schemes. The average accuracy is displayed at the bottom of the table. This table does not display the

scheme in which no duplicate pruning and no selection ND-NS, because the sparse c4.5 classifier is unable to handle

the large number of composite features; which are generated as a result of no feature selection.

Dataset Direct IC-NS IC-Co IC-JM
Acc. # Attr. Acc. # CF Acc. # CF Acc. # CF

anneal 94.76 38 97.44 8391 97.78 776 96.77 346
austra 85.22 14 84.64 133,218 82.75 6,096 83.77 1,929
breast 95.42 10 95.57 6,779 95.57 412 95.71 76
cleve 80.17 13 79.88 21,718 80.19 1,505 78.19 379
crx 84.93 15 84.06 184,472 84.35 8,447 83.91 2,641
diabetes 76.18 8 75.39 823 76.96 109 77.35 54
german 72.70 20 66.40 196,190 67.70 16,141 69.50 12,749
glass 65.97 9 73.96 731 75.35 178 76.71 63
heart 80.00 13 80.00 6,189 79.63 493 81.85 162
hepati 83.25 19 85.71 53,797 82.50 2,822 83.08 1,808
horse 82.92 22 81.27 47,315 80.97 4,204 80.38 2,492
iris 95.33 4 93.33 80 94.00 26 94.00 14
labor 79.00 16 87.67 1,134 89.33 193 87.33 91
led7 72.88 7 73.84 1,707 73.09 94 73.91 17
lymph 79.72 18 79.00 35,086 74.24 3,469 72.19 2,517
pima 74.22 8 77.61 781 77.09 100 77.34 49
tic-tac 98.64 9 98.02 17,021 97.49 3,343 97.91 2,546
wine 92.75 13 94.93 20,465 94.41 999 94.93 342
zoo 92.09 16 93.27 7,914 95.18 936 94.09 382
Avg. 82.95 83.52 83.41 83.44

Table 2: Results by using C4.5 Classifier.

After studying the Table 2 we can make the following observations. First, both the confidence and j-measure

selection schemes eliminate a large number of composite features as compared the ND-NS scheme. Some times the

reduction is up to two orders of magnitude. Of the two selection schemes, j-measure is far more selective in picking

composite features. However if we compare the average accuracy we find that the all the selection schemes outperform

the traditional c4.5 approach, albeit by a small margin. Amongst the different selection schemes, the schemes with

only duplicate elimination ND-NS performs the best.

6.3 Using SVM Classifier

Table 3 displays the results obtained by the SVM classifier. The first column displays the accuracy values obtained by

directly using the SVM classifier and the remaining columns display the accuracy values and the number of composite

features obtained by different feature selection schemes outlined in Section 6.1. The last row displays the average

accuracy values for different classification schemes.

After studying the results Table 3 we can make the following observations. First, as mentioned in Section 6.2 the

selection schemes result in a drastic reduction of composite features given to the classifier. However in the case of

SVM classifier the performance of direct classifier is quite comparable to the other feature selection schemes, in fact

only two schemes IC-NS and IC-CO have average accuracy more than that of the direct SVM Classifier.

6.3.1 Evaluation using Synthetic Dataset

To get the better understanding of the Equation 5.2 and the effect of dimensionality on the error bound we conducted

some experiments by generating synthetic datasets. To keep the analysis simple the synthetic dataset contains just

12

Dataset Direct ND-NS IC-NS IC-CO IC-JM
Acc. # CF Acc. # CF Acc. # CF Acc. # CF Acc. # CF

anneal 98.33 126 98.44 850,419 97.88 8,391 98.33 776 99.00 346
austra 85.80 51 86.38 616,885 86.96 133,218 86.09 6,096 85.80 1,929
breast 97.14 30 97.00 12,409 96.86 6,779 96.71 ,412 97.29 76
cleve 84.11 28 84.44 65,433 83.47 21,718 83.46 1,505 83.45 379
crx 86.09 55 86.67 1,154,453 86.52 184,472 86.09 8,447 84.49 2,641
diabetes 77.35 16 78.14 1,055 78.53 823 78.53 ,109 77.87 54
german 75.70 61 71.90 667,263 72.30 196,190 72.60 6,141 74.30 12,749
glass 75.33 21 78.61 2,638 78.12 731 75.28 ,178 73.46 63
heart 82.96 19 85.56 10,827 85.56 6,189 84.81 ,493 82.96 162
hepati 84.38 34 79.29 1,170,213 81.21 53,797 81.21 2,822 85.79 1,808
horse 85.61 62 82.61 390,272 84.79 47,315 83.43 4,204 82.32 2,492
iris 93.33 13 94.00 ,129 94.00 80 94.00 26 93.33 14
labor 89.33 30 77.33 14,182 94.67 1,134 94.67 193 94.67 91
led7 72.41 15 71.25 1,911 72.19 1,707 73.03 94 72.78 17
lymph 84.38 51 81.05 2,040,379 80.33 35,086 81.67 3,469 80.38 2,517
pima 77.34 16 78.77 1,041 79.04 781 78.52 100 78.52 49
tic-tac 95.41 28 98.54 21,368 98.54 17,021 96.97 3,343 97.70 2,546
wine 99.44 38 98.86 526,707 98.30 20,465 99.44 999 98.86 342
zoo 96.00 37 97.00 1,398,654 92.09 7,914 96.00 936 96.00 382
Average 85.61 85.57 85.68 85.67 85.58

Table 3: Results by using SVM Classifier

two classes. The attributes making up the dataset are of two kinds, relevant and irrelevant. The relevant attributes

influence the class label, whereas irrelevant don’t, and can be thought of as noise. For our experiments we restricted

the number of relevant attributes to three and varied the number of irrelevant attributes. The cardinality (number of

attribute values) of the relevant and irrelevant attributes is the same, equal to four and each of the attribute value is

equally likely, i.e., uniform distribution of attribute values for all the attributes.

The classification function, which determines the class label of an example, was constructed so that the class label

depends only on the conjuncts of the relevant attribute values. Since there are three relevant attributes each with four

possible attribute values, we can have 64 possible conjuncts. These 64 conjuncts are equally divided into two sets with

each set corresponding to one particular class label. Hence both the classes are equally likely and are determined by

the set in which the conjunct of the relevant attributes belongs. Furthermore, we have taken care to ensure that the

class distribution with respect to single relevant attribute value is uniform. In other words the conditional probability

of class label given the value of single relevant attribute is 0.5, whereas the conditional probability of a class label

given all three relevant attribute values is 1.0.

The number of non-relevant attributes control the dimensionality of the problem. To make the dataset realistic we

also added some noise to the classification function, the amount of noise is controlled by a parameter called R value, R

refers to the randomness. While assigning the class label to an example for most of the time we use the classification

function, however once in a while we invert the result of the classification function. Specifically, if we set the R value

to be 0.95, then for 95% of times we will assign the class label according to the classification function and 5% of times

we will invert the class label. Though R value does not change the dimensionality of the problem it makes the dataset

more realistic.

In our experiments we build a direct SVM classifier using polynomial kernel with the d (maximum dimensionality)

= 3. Similarly, we run of classification scheme in which the maximum size of the composite feature is restricted to

3. The support threshold for FIDA is set to 1.00 %, this ensures that all possible composite features of length 3 are

discovered. In our experiments we vary the R value from 1.0, meaning no noise, to R value of 0.7, we also vary

the number of irrelevant attributes, starting from 0 indicating no irrelevant attributes to 25 irrelevant attributes. The

number of irrelevant attributes control the dimensionality of the problem, To keep the discussion simple we only use

IC-CO and IC-JM selection schemes.

The results of these experiments are shown in Figure 4. The figure contains four graphs for different R values,

13

Accuracy Comparison for R=1.0

40

60

80

100

120

0 5 10 15 20 25

Number of Irrelevant Attributes

%
ag

e
A

cc
u

ra
cy

Direct

IC-Co

IC-JM

(a) Accuracy Values for R=1.0

Accuracy Comparison for R=0.9

40

60

80

100

120

0 5 10 15 20 25

Number of Irrelevant Attributes

%
ag

e
A

cc
u

ra
cy

Direct

IC-Co

IC-JM

(b) Accuracy Values for R=0.9

Accuracy Comparison for R=0.8

40

60

80

100

120

0 5 10 15 20 25

Number of Irrelevant Attributes

%
ag

e
A

cc
u

ra
cy

Direct

IC-Co

IC-JM

(c) Accuracy Values for R=0.8

Accuracy Comparison for R=0.7

40

60

80

100

120

0 5 10 15 20 25

Number of Irrelevant Attributes

%
ag

e
A

cc
u

ra
cy

Direct

IC-Co

IC-JM

(d) Accuracy Values for R=0.7

Figure 4: Accuracy values for Direct, IC-Co, IC-JM classifications schemes across varying number of irrelevant attributes and
different values of R.

each graph contains three lines corresponding to the three classification schemes, Direct, IC-CO and IC-JM. The X-

axis represents the number of irrelevant attributes and the Y-axis represents the accuracy obtained. After studying

the Figure 4, we can make couple of inferences. First, the accuracy of the Direct scheme is greatly influenced by

the number of irrelevant attributes, if we study the Figure 4 (a) we observe that the the Direct scheme which starts

off with the accuracy of 100% (i.e, with no irrelevant attributes) drops sharply to 50% as the number of irrelevant

attributes is increased to 10. On the contrary the composite features based schemes, especially the scheme IC-CO,

show considerable resilience against the number of irrelevant attributes. The accuracy of IC-CO drops only to 80%

when 25 irrelevant attributes are added. Similarly composite feature based schemes are also more resilient to the noise.

Second, we observe that the IC-CO schemes outperforms the IM-JM scheme, this could be because the j-measure

scheme is more selective about selecting composite features and hence could result in pruning of using features

6.4 Overall Comparison of Schemes

In this section we compare the accuracy values of all our schemes with the native classifier as well as two other

schemes based on composite features, namely CBA [LHM98] and CMAR [LHP01]. To compare the classification

schemes across different datasets we use variety of criteria. Each of these criterion assign a single numeric value

for each classification scheme, i.e., the criteria function assigns a sing value to every accuracy column in Table 4.

Once the criteria has been computed we can compare different classification schemes by comparing the value of this

criteria function. We have use four criteria 1) Average Accuracy: This is computed by taking mean of accuracy across

different datasets for each classification scheme, though this metric is easy to understand, it is biased by the magnitude

of the accuracy. 2) Average Deficiency: We first compute the maximum attainable accuracy for each dataset across

the different classification schemes. Then for each dataset we compute the deficiency, which is one minus the ratio

14

of accuracy attained and the maximum attainable accuracy for that dataset, the average deficiency is the average of

over all datasets, ideally we would like this value to be as close to 0.0 as possible, implying the accuracy is equal the

maximum attainable accuracy. 3) Average Rank: This is a non parametric metric, we first compute the rank on each

dataset across different classification schemes (position in the ordered sequence) for each dataset, the average rank is

the average of all ranks, this value should be as low as possible. 4) Number of Max Datasets: This metric computes

the datasets for which a particular scheme achieves the maximum accuracy. Again we would like this value to be as

high as possible.

Dataset CBA CMAR C4.5 SVM
Direct IC-NS IC-CO IC-JM Direct ND-NS IC-NS IC-CO IC-JM

anneal 97.90 97.30 94.76 97.44 97.78 96.77 98.33 98.44 97.89 98.33 99.00
austra 84.90 86.10 85.22 84.64 82.76 83.77 85.80 86.38 86.96 86.09 85.80
breast 96.30 96.40 95.42 95.56 95.57 95.71 97.14 97.00 96.86 96.71 97.29
cleve 82.80 82.20 80.17 79.88 80.19 78.19 84.11 84.44 83.47 83.46 83.45
crx 84.70 84.90 84.93 84.06 84.35 83.92 86.09 86.67 86.52 86.09 84.50
diabetes 74.50 75.80 76.18 75.39 76.96 77.35 77.35 78.14 78.53 78.53 77.88
german 73.40 74.90 72.70 66.40 67.70 69.50 75.70 71.90 72.30 72.60 74.30
glass 73.90 70.10 65.97 73.96 75.35 76.71 75.33 78.61 78.12 75.28 73.46
heart 81.90 82.20 80.00 80.00 79.63 81.85 82.96 85.56 85.56 84.82 82.96
hepati 81.80 80.50 83.25 85.71 82.50 83.08 84.38 79.29 81.21 81.21 85.79
horse 82.10 82.60 82.92 81.27 80.97 80.38 85.61 82.61 84.79 83.43 82.32
iris 94.70 94.00 95.33 93.33 94.00 94.00 93.33 94.00 94.00 94.00 93.33
labor 86.30 89.70 79.00 87.67 89.33 87.33 89.33 77.33 94.67 94.67 94.67
led7 71.90 72.50 72.88 73.84 73.09 73.91 72.41 71.25 72.19 73.03 72.78
lymph 77.80 83.10 79.72 79.00 74.24 72.19 84.38 81.05 80.33 81.67 80.38
pima 72.90 75.10 74.22 77.61 77.09 77.35 77.34 78.78 79.04 78.52 78.52
tic-tac 99.60 99.20 98.64 98.02 97.50 97.91 95.41 98.54 98.54 96.97 97.70
wine 95.00 95.00 92.75 94.93 94.41 94.93 99.44 98.86 98.30 99.44 98.86
zoo 96.80 97.10 92.09 93.27 95.18 94.09 96.00 97.00 92.09 96.00 96.00
Average 83.90 84.38 82.95 83.52 83.41 83.44 85.61 85.57 85.68 85.67 85.58
Avg. Def. 3.71 3.14 4.67 4.12 4.24 4.16 1.62 2.50 1.56 1.59 1.70
Avg. Rank 6.90 5.80 7.15 7.95 7.75 7.55 4.30 4.50 4.05 4.00 4.55
Max Acc 1 1 1 0 0 1 4 3 3 3 4

Table 4: Overall comparison of accuracy.

Table 4 displays the accuracy values, as mentioned earlier the ideal scheme should have a large value for the metrics

and Average and # Maximum Accurate and as low value for Average Rank and Average Deficiency. The maximum

values for each of the metrics are displayed in bold, it can be seen that each metric chooses a different scheme as

its best. However we can clearly infer that the SVM based schemes outperform other schemes, amongst svm based

schemes the results are extremely close with the IS-JM having a slight edge.

7 Conclusion

In this paper we presented a number of classification algorithms that use frequent itemsets to expand the feature

space and evaluated a variety of schemes for selecting discriminating composite features. Our experimental results

show that the proposed schemes can substantially reduce the number of composite features used, which improves the

classification accuracy. Moreover, we have both analytically and experimentally shown that the pruned composite

feature space reduces the generalization error obtained by support vector machines, leading to better classifiers.

References

[AAP00] Ramesh Agrawal, Charu Aggarwal, and V. V. V. Prasad. Depth first generation of long patterns. In

Proceedings of the 7th International Conference on Knowledge Discovery and Data Mining, August

2000.

[AIS93] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large

15

databases. In Proc. of 1993 ACM-SIGMOD Int. Conf. on Management of Data, Washington, D.C., 1993.

[BU92] Carla E. Brodley and Paul E. Utgoff. Multivariate versus univariate dcision trees. Technical report,

University of Massachusetts, 1992.

[DKS95] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsupervised discretisation of

continuous features. In Machine Learning: Proceedings of the Twelfth Internation Conference, 1995.

[FI93] Usama M. Fayyad and Keki B. Irani. Multi-interval discretization of continuous-valued attributes for

classification learning. In Proceedings of the 13th International Joint Conference on Artificial Intelli-

gence, 1993.

[GD90] Pagallo G. and Hassler D. Boolean feature discovery in empirical learning. Machine Learning, 1990.

[HPY00] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate generation. In Proc.

2000 ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD’00), Dallas, TX, May 2000.

[Joa99] T. Joachims. Advances in Kernel Methods: Support Vector Learning, chapter Making large-Scale SVM

Learning Practical. MIT-Press, 1999.

[LHM98] Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification and association rule mining. In 4th

Internation Conference on Knowledge Discovery and Data Mining, 1998.

[LHP01] Wenmin Li, Jiawei Han, and Jian Pei. Cmar: Accurate and efficient classification based on multiple

class-association rules. In IEEE International Conference on Data Mining, 2001. Also available as a

UMN-CS technical report, TR# 01-026.

[LZO99] Neal Lesh, Mohammed J. Zaki, and Mitsunari Ogihara. Mining features for sequence classification. In

5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 1999.

[MM98] C.J. Merz and P.M. Murphy. UCI repository of machine learning databases, 1998.

[MP91] Patrick M. Murphy and Michael J. Pazzani. Id2-of-3: Constructive induction of m-of-n concepts for

discriminators in decision trees. In Proc. of the 8th IntẆorkshop on Machine Learning, 1991.

[MR89] C. J. Matheus and L.A. Rendell. Constructive induction on decision trees. In Proceedings of the Eleventh

International Joint Conference on Artifical Intelligence, 1989.

[Qui93] J. Ross Quinlan. C4.5: Programs for machine learning. Morgan Kaufmann, San Mateo, CA, 1993.

[S.78] Michalski R. S. Pattern recognition as knowledge guided computer induction. Technical report, Univer-

sity of Illinois at Urbana Champaign, 1978.

[SG92] P. Smyth and R. M. Goodman. An information theoretic approach to rule induction from databases. IEEE

transactions on Knowledge and Data Engineering, 4(4):301–316, August 1992.

[SK01] Masakazu Seno and George Karypis. Lpminer: An algorithm for finding frequent itemsets using length-

decreasing support constraint. In IEEE International Conference on Data Mining, 2001. Also available

as a UMN-CS technical report, TR# 01-026.

[Vap98] V. Vapnik. Statistical Learning Theory. John Wiley, New York, 1998.

[WMC+00] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature selection fof svms.

Advances in Neural Information Processing Systems, 2000.

16

[Zak00] Mohammed Javeed Zaki. Scalable algorithms for association mining. Knowledge and Data Engineering,

12(2):372–390, 2000.

[Zhe00] Zijian Zheng. Constructing conjunctive attributes using production rules. Journal of Research and

Practice in Information Technology, 2000.

[Zij96] Zheng Zijian. A comparison of constructive induction with different types of new attribute. Technical

report, School of Computing and Mathematics, Deakin University, Geelong, Victoria, Australia, 1996.

[ZLM00] Mohamed J. Zaki, Neal Lesh, and Ogihara Mitsunari. Planmine: Predicting plan failures using sequence

mining. Intelligence Review, special issue on the Application of Data Mining, 2000.

17

