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Abstract

Advancesin the efficient discovery of frequent itemsetsin |arge databases have led to the devel opment of anumber
of schemes that use frequent itemsets to aid in the development of accurate and efficient classifiers. These approaches
use the frequent itemsets to generate a set of composite features that expand the dimensionality of the underlying
dataset. In this paper, we build upon this work and (i) present a variety of schemes for composite feature selection
that achieve a substantial reduction in the number of features without adversely affecting the accuracy gains, and
(ii) show (both analytically and experimentally) that the composite feature space can lead to improved classification
modelsin the context of support vector machines, in which the dimensionality can automatically be expanded by the
use of appropriate kernel functions.
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1 Introduction

After the seminal paper by Agrawal et al. [A1S93] on association rules, the field of associating rules and especially
its sub-field of frequent itemset generation has seen a great deal of research activity. The extensive research in this
field has led to the development of efficient techniques for generating, storing and pruning frequent itemsets [ SKO01,
HPY 00, AAPOO, Zak00]. These advances accompanied by growth in the computing power has made the task of
frequent itemsets generation much more managesble, than in the past.

As aresult, we have witnessed an increased interest in developing schemes that use frequently occurring itemsets
to aid in the development of accurate and efficient classification algorithms. To this end, two genera approaches
have been developed. The first approach uses the frequently occurring itemsets to generate a set of rules, that are
then used to build rule-based classifiers [LHM98, LHPO1]. The second approach first expands the dataset’s feature
space by using the frequently occurring itemsets, and then uses traditional algorithmsto build classification modelsin
that expanded feature space [LZ099, ZLMOQO0]. Despite the differences of these approaches, the common theme that
underlies them is that they used the frequently occurring itemsets to generate a set of composite features. The idea
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of using composite features to expand the feature space is not new and has been extensively studied by the machine
learning community [S.78, Zij96]. Most of these schemes use a greedy approach to find the composite features;
hence, they do not search the entire space of all possible attribute value conjuncts. However, frequent itemset-based
approaches have the advantage of exhaustively generating all possible composite features, before selecting which ones
to use for classification. Experimental results presented in [LHM98, LHPO1, ZLMO0O, LZ099] illustrate that the use
of frequently occurring itemsets can lead to measurable improvementsin classification accuracy.

In this paper, we build upon this work and further investigate the use of frequently occurring itemsets as composite
features for classification. In particular, our research is focused in two directions. First, we investigate the impact
of various schemes for selecting the most discriminating set of composite features, and second, we investigate the
extent to which the resulting set of composite features can lead to improved classification models in the context of
support vector machines, in which the dimensionality can be automatically expanded by the use of appropriate kernel
functions. Towardsthefirst direction, we present avariety of schemesthat select a set of non-redundant discriminatory
composite features, and show that a substantial reduction in the number of features can be obtained, without adversely
affecting the accuracy gains achieved by the use of such composite features. Towards the second direction, we show
that even though higher order polynomial kernel functions do automatically generate all possible composite features,
it isstill beneficial to manually expand the feature space by using the discriminatory frequent-itemsets. We prove that
a SVM model learnt in the manually expanded feature space will have alower generalization error than that built by
the corresponding higher order polynomial kernel, a fact that was experimentally verified using a set of synthetically
generated datasets.

The paper is organized as follows, Section 2 presents the related research and Section 3 discusses the terminology
used in this paper. Section 4 explainsin detail the methodology used for classification, Section 5 presents a detailed
analysis of our approach, specifically in context of different classifiers, Section 6 presents the classification results,
and finally Section 7 presents the conclusion.

2 Related Research

Theideaof using composite features has been well studied in the field of machinelearning and goes under the name of
constructive induction. Constructive induction is a process of creating new features/attributes from the task-supplied
attributes and then building a model on both these new as well as task supplied attributes [S.78]. For most cases
this approach is diametrically opposite of dimensionality reduction; dimensionality reduction tries to eliminate at-
tributes/features whereas constructive induction expands the feature space before building the classification model.
There are many ways of creating new features, Zheng et al [Zij96] presents a discussion of using conjunctive, disunc-
tiveand x of N features. The features of type x of N werefirst studied by Murphy et al [MP91]. Brodley et al [BU92)
consider composite features which are modeled as linear functions, which operate on different attribute values. In
this paper we will be limiting ourselves to the study of conjunctive attribute values, a detailed discussion about the
advantages of using conjunctive attributes in context of different classifiersis presented in Section 5.

It is obvious that expanding the feature space to encompass all possible attribute value conjuncts/disjuncts would
make the dataset too large and intractable to build a classification model. Therefore, the main challengein the field of
constructive inductionisto intelligently search the feature space and select asmall set of composite features that leads
to an improved classifier, either by improving the accuracy or by improving the understand-ability of the model.

Constructive induction has been mainly used in the conjunction with two classification schemes. decision trees
and rule based systems, with majority of the work done on decision trees. This should not be surprising as using



composite features lead to substantially smaller and more understandable decision trees. The methodology used for
different decision tree learning is broadly the same [GD90, MR89]. First, adecision treeis built on the task-supplied
attributes, then a candidate set of composite attributes is constructed by taking conjunctions and/or dis-junctions of
attributes values along different paths of the decision tree, from this candidate set a small set of composite attributes
are retained, which are then incorporated in the dataset and these four steps are repeated in aloop. The process stops
when sufficiently accurate decision tree is built. These techniques make use of the attributes selected by the decision
tree to restrict the search space.

Composite features have also been used in conjunction with rule based systems. Zheng et al, [Zhe00] present a
maodification of the c4.5 rules scheme to use conjunctions/digunctions of attribute values. In their approach first rules
are generated using the traditional c4.5rules [Qui93] scheme, then a candidate set of conjunctive/disunctive features
are generated from these rules, next this candidate set is evaluated to retain a small set of composite attributes.

Liu etal, [LHM98] propose a novel technique for using attribute value conjunctions. First, they exhaustively
generate all possible attribute value conjuncts (composite features) using a frequent itemset discovery agorithm, next
apruning schemeis used to eliminate composite features/frequent itemsets that have support and/or confidence below
certain threshold. Thisleaves an extremely small set of composite features. Then considering each composite feature
as arule, amodified version of sequential covering algorithm for rules is run on them to obtain the final ordering of
rules. This scheme will be referred as CBA (Class based Associations). Li et al. [LHPO1] extend the CBA approach
by using amodified version of sequentia covering algorithm, where an exampleis eliminated only after it has covered
a sufficient number of rules (composite features), this scheme will be referred as CMAR (Classification based on
Multiple Association Rules).

3 Terminology

The dataset D used for classification is defined by the tuple < A, C >, where A = {A1, Ag, Az, ... A} arethe
attributes describing each example in the dataset and C is afinite set of classlabels {c1, C2, C3, . . . Cm}. Each attribute
A; isassumed to have afinite domain of attribute values that is know in advance. Note that this model cannot handle
continuous attributes and they need to be discretized beforehand [FI93, DKS95]. Each example e; in the dataset
D is represented as {(A1 = azj, A2 = agi, A3 = agi,... Ak = a), G}, where aj; corresponds to the attribute
value for attribute A1 and ¢; is the class label assigned to the example ;. From this user supplied representation a
set of composite features will be generated, such that each feature A represents a conjunction of attribute values,
Ac = {(A1 = a1i) A (A3 = agj) A (As = ask)}. For example, given the dataset shown in Figure 1, the {Outlook =

sunny A Windy = True} is an example of a composite feature. Note that a composite feature are formed by taking

conjunctions of attribute-value pairs and not just attributes. The size of a composite feature is equal to the number of

attribute-value pairs present in the composite feature.

An example g supports composite feature Ac, represented as A € g, if al the attribute-value pairs present in A
are also present . We can define a similar relationship between composite attributes themselves, Ac1 € Acp, if al
the attribute- value pairs present in A1 are also present in Aco. Furthermore Ac; isreferred as an extension of Agy, if
si ze(Ac2) = size(Ac1) + 1. For the example shown in Figure 1 the composite feature { Outl ook = sunny A Windy =
True} ispresent in example (1, 4, 5 and 8).

After selecting al the composite features, each exampleis transformed so that each example, in addition to the user
supplied attributes, it also contains the composite features it supports. To further simplify this representation we can
assign a unigque integer to al the unique attribute value pairs as well as the composite attribute selected.
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Frequent Composite Features

Figure 1: Various sub-tasks of our classification procedure as defined Section 4

4 Classification Methodology

In this section we describe in detail our methodology for building a classifier using composite features. Thistask is
divided into three subtasks:

1. Generating al the composite features above a support threshold
2. Pruning this set of to obtain a smaller set of composite features

3. Transforming the user supplied datato incorporate these sel ected composite features and learning a classifier on
this transformed dataset.

These three steps are shown in Figure 1.

4.1 Generating Composite Features

Thisisthefirst sub-task in our classification procedure; here we generate a set of candidate compositefeatures. For this
sub-task wefirst transform the dataset so that each exampleisrepresented as aset of integers, as described in Section 3.
We then run a generic frequent itemset discovery algorithm on this dataset assuming each example as a transaction
and each attribute value in the example as an item. The Frequent Itemset Discovery Algorithm, henceforth referred as
FIDA, returnsalist of itemsets which occur frequently in the dataset. Each itemset represents a composite feature that
isaconjunction of all the attribute values (items) making up that itemset. In our procedure we use LPMiner [SK01] as
our FIDA.

The notion of frequent, i.e, what composite feature is considered as frequent is controlled by a user defined param-
eter to the FIDA called support threshold. All the composite features (itemsets) generated by FIDA have a support
above the support threshold. Support for a composite feature is defined as the ratio of the number of examples which
contain the composite feature to the total number of examples in the dataset. Using a support threshold, instead of
exhaustively generating composite features, ensures that the discovered composite features are statistically significant
and not random noise. The exact value of support threshold is usually dataset dependent and is supplied by the user.



Because the different classes can be of different size, care must be taken to ensure that the composite features
properly cover al classes. For thisreason in our algorithm, wefirst partition the compl ete dataset, using the class |abel
of the examples, into specific class datasets. We then run FIDA on each of these class datasets. This partitioning
of the dataset ensures that sufficient composite features are discovered for those class labels which occur rarely in
the dataset. Next, we combine composite features discovered from each of the class dataset. After this step each
composite feature has a vector that contains the frequency with which it occurs in each class. Also, to facilitate the
efficient execution of the various composite feature sel ection scheme, which will be described in the next section, we
store the composite feature into a lattice format. Every composite feature has its child nodes those composite feature
which can be formed by extending it by one attribute value pair. The lattice representation makes the task of feature
selection extremely efficient.

4.2 Selecting Composite Features

In this sub-task we select a small set of composite features from those generated by the FIDA. There are two motiva-
tions behind feature selection: First, the generated composite features contain a lot of noise and redundancy that can
be easily eliminated, and will result in abetter classifier. Second, the number of composite features generated by FIDA
is quite large and will affect the time needed to build the classification model. Our approach for feature selection is
performed in two steps, the first step eliminates redundant composite features whereas the second step sel ects the most
discriminatory composite features.

4.2.1 Duplicate Elimination

This selection procedureis based on the observation that the composite features discovered by FIDA contain alot of
redundancy i.e., they provideidentical information. Asaresult these duplicate features can be safely removed without
affecting the accuracy of the classifier. Two composite features are said to provide identical information if the set of
supporting examples of these two composite featuresis identical.

Thelattice representation of the composite features obtained from the FIDA makesthetask of identifying duplicates
extremely easy. For every node in the lattice we compare its class distribution with its child nodes (single attribute
value extension), and we eliminate the child node if the frequency distribution is identical. It should be noted that
the set of supporting transactions for an extension is a subset of supporting transaction for a composite feature, thisis
by the subsuming property of the frequent itemsets. Secondly, we always eliminate the longer of the two composite
features to ensure that the selected feature generalizes better.

4.2.2 Selecting Discriminatory Composite Feature

In this step we further eliminate features obtained from the previous step to retain only those composite features
which are considered discriminatory. A composite feature is considered discriminatory for a particular class if its
presence or absencein an example can help in inferring the class label of that example. There are many metrics which
evaluate the discriminatory ability of a feature, and in our algorithm we have experimented with two such metrics,
confidence [A1S93] and j-measure [SG92]. Both these measures evaluate the discriminatory ability of a composite
feature w.r.t. aparticular class label. The confidence of a particular A¢ w.r.t. class¢; is defined as

confidence(Ac, G) = %
C



, Where P(A¢, ¢j) isthe probability of observing the composite feature A and the class|abel ¢; together in the dataset
and P(A¢) isthe probability of finding composite feature A in the dataset. On the other hand, the j-measure of A
w.r.t. class¢; is defined as follows:

P(cilAc)

j — measure(Ac, ¢i) = P(ci|Ac). log (W

) + (1 P(c|Ad). log (M)

1-P(c)

where P(c; | Ac) isthe conditional probability of observing the classc; given that composite feature A¢ ispresent in the
example. Studying the two formulae we can make two observations. First, confidence metric takes into account only

the presence of a composite feature in an example, whereas the j-measure considers both the presence and absence of

acompositefeature. Second, both of these metrics can be computed directly from the class distribution of acomposite
feature. Also note that all these metrics compute the discriminatory ability of a composite feature with respect to a
class-label and not the composite feature as a whole.

The next step is to use these metrics to select a small set of composite features. The procedure used hereis similar
to the one used for duplicate elimination. We compare each composite feature (A ¢) with all of its parents (Acp) using
the discriminatory metric, and decideif that composite feature has to be selected or eliminated. There are four possible
ways in which this selection can be done. Assuming that D(Ac, ¢;) is adiscriminatory function and Acp is the parent
of Ac, we can have:

Select(Ac), if Vo D(Ac, G) > max(D(Acp, Gi))
VAcp

Select(Ac), if Vo D(Ac, G) > min(D(Acp, Gi))
VAcp

Select(Ac), if 3¢ D(Ac, €i) > max(D(Acp, Ci))
VAcp

Select(Ac), if 3¢ D(Ac, Gi) > \5nAiCn(D(Acp,Ci))
P

Lets consider the right hand side of the equations, if we use the max function for selecting the composite feature, it
means that the composite feature will be selected only if its discriminatory ability is greater than all of its parents. On
the other hand, if the min function is used, then acomposite featureis selected if it is more discriminatory than at |east
one of its parents. The max function leads to an extremely selective scheme as compared to the min function. Theleft
hand side considersthe class |abel s on which the metric can be computed, the condition V ¢ impliesthat the composite
feature has to be more discriminatory w.r.t. al the classes in order for it to be selected; whereas the condition 3 ¢
implies that the composite feature has to better on any one of the class labels. The condition Vc; can never be true if
we use the confidence metric; because the sum of confidence for different class labelsis equal to 1.0.

In our scheme we use the max function and select a composite featureif it is more discriminatory on any one of the
class labels, as mentioned before we use both confidence and j-measure as our metric. There are many advantages of
this scheme. First, the computation is extremely efficient as it can be done in conjunction with duplicate elimination.



Second, we do not need any additional parameter from the user to carry out this scheme.

4.3 Building the classification model

Oncewe obtain the set of composite featureswe transform the input dataset into this expanded feature space. Now each
input exampleis represented as a boolean vector of size equal to the total number of selected compositefeatures. Each
element in the vector correspondsto a composite feature and its value is set to trueif that composite featureis present
in the example, and false otherwise. These boolean vectors are given to the classifier for building the classification
model. We have experimented with two classification schemes, C4.5 [Qui93] and SVM [Vap98]. We will next discuss
some implementation specific details about the classifiers.

We use alocally modified version of C4.5, known as C4.5-sparse, to handle the sparse and high dimensional data
generated as aresult of transforming the datasets. C4.5-sparse stores the datain a sparse format and hence can easily
handle high dimensional datasets. Support vector machines operate only on continuous attributes, hence we first
normalize each boolean vector to be of unit length and then feed this normalized vector to the SVM Classifier. We
also use SVM to directly classify the UCI datasets, in this case we first discretized all the continuous attributes. Then,
we transformed this discretized representation into a feature space such that each attribute value corresponds a new
attribute. This allows us to again represent the examples as a bool ean vector.

5 Analysis of Proposed Approach

In this section we study the advantages of using composite features in the context of two classifier: decision trees
and SVM. Since the classification methodology of these two classifiers differs a lot, we consider each one of them

separately.

5.1 Decision Trees

Zheng et al [Zhe00] provide a detailed discussion of advantages of using conjunctive attributes in context of decision
trees. Composite Features provide away of overcoming two of thewell known short comings of C4.5 [Qui93], namely
fragmentation and replication. Before we go on to discuss them, it should be noted that composite features do not
provide any additional expressive power to C4.5. The classification function learnt by using composite feature can
also belearnt by directly using C4.5, provided we have awell spread out data and thereisno noisein it. However both
of these two conditions are ailmost never fulfilled in practice.

We will study the fragmentation problem first; the decision tree is constructed by recursively partitioning the at-
tribute space using one attribute at at time, each of these partitions is represented by a node in the decision tree.
Figure 2(a) displays an example dataset and the corresponding decision tree. As can be seen from the figure the de-
cision tree needs to partition the dataset four times to capture all the examples. This repeated partitioning reduces its
generalizability and can result in lower accuracy of the classifier on the test set. On the contrary composite features
allow us to succinctly capture the concept present in the dataset and as aresult the decision tree is very compact.

Another problem observed in decision trees is replication; in replication a portion of a subtree is constructed
multiple times. An example of replication is shown in Figure 3(a). Replication a so leads to decision trees which are
deep and difficult to understand. Composite features in some cases can eliminate replication. One such examplewhere
composite features help is shown in Figure 3(b).
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(b) C4.5 with composite features

Figure 2: Fragmentation due to C4.5, (a) displays decision tree when composite features are not used (b) decision tree with
composite features.

(b) C4.5 with coposite features

Figure 3: Replication in C4.5 (a) displays a decision tree in which a sub tree is replicated (b) decision tree using composite
features.



5.2 SVM

In this section we will discuss the advantages of the proposed approach of creating and selecting composite features
in the context of Support Vector Maching(SVM) classifiers [Vap98]. Before going into the discussion we describe
terminology and briefly explain the working of the SVM classifier [WMC*00].

We assume that we are given | data pointsx; € R" labeled y € 4y drawn i.i.d. from a probability distribution
P(x, y). Support vector machines can map each example x € R" into a higher dimensional space, possibly infinite,
and construct a separating hyperplanein that space. The mapping of this input space R" to higher dimensional space
‘H is represented by x — ®(x), where different mappings lead to different SYM classifiers. One of the principle
advantages of SVM is that even though the learning is done in the higher order space individual examples need not
be transformed into this higher order space, and only a kernel function K (x, z) needs to be defined. For a smple
case the kernel function defines the inner product between two examplesin the expanded feature spacei.e., similarity
between two examples x and z. The classification of an example x involves computing the distance of the exampleto
the hyperplanein 7 and assigning in the class label depending on which side of the hyperplanethe examplelies. The
classification function is represented as,

f)=w-ox +b=>"ayiK(x.x +b,

where, w is the vector defining the hyperplane in the higher dimensional space H, «; are the weights assigned to the
input example x; which has a class label of y;. The learning process involves learning the values for «j and b. The
examples which have a non-zero value for « are called support vectors of that model.

Since SVM dlows us to operate in higher dimensional spaces one of the first questionsto ask isiif it is possible to
construct a kernel function which will operate in a space represented by the conjuncts of all the attributes. The answer
to that question is yes, polynomial kernel represented as

K, 2 =(< x~z>—i—c)d

operates in a feature space consisting of all possible conjuncts starting from order 1 al the way to order d. The
polynomial kernel operateson (”+g‘1) distinct features, which is essentialy all possible conjuncts starting from order
1to orderd.

From this discussion it would appear that exhaustively generating features outside the classifier is a wasted effort
and the same representation can be achieved, potentially in an efficient way, by using a polynomial kernel of suitable
degree. However, the key difference between the use of higher-order polynomial kernel functionsand our approachis
that in addition to finding all frequent itemsets we also perform afeature selection step that eliminates most of the non
discriminatory conjuncts. Therefore, the feature space in which our classifier operates, referred as C, is a subset (and
generally substantially smaller) than the feature space H of the polynomial kernel. In light of that, the key question
to ask is whether or not there is an advantage in learning a model in C as opposed to learning a model in 7. The
answer to this question is yes, and the reason is that even though a model learnt in C, as measured by the value of the
classification function f (x) for each example x in the training set, can potentially be learnt in #, the generalization
error of C’s model will tend to be lower compared to amodel directly learnt in 7{. These facts are provenin the rest of
this section.

Let X¢ = [Xe1, Xeo, - . - X1 ] bethe dataset in space C, and let X4y = [X#1, X342, - - . X311 be the dataset in space H.



Since the space C is subspace of #, we have

where Xp are the conjunctive features from all the examples which are pruned. Since we are learning alinear model,
the kernel function K (x, z) is equal to the inner product, < x - z >, therefore the classification function given in
Equation 5.2 can be represented in matrix notation for an examplex; as

f(xi) = Dexi Xc + be,

where D¢ isequal to [acy, o . ..aci]- [V, Yo...y1". Similarly, Equation 5.2 can be represented in matrix notation
for al the examplesin the dataset X ¢ as follows (assuming leave one out classification):

f(Xe) = DCXZ’-XC + be
The classification of | examples by learning alinear model in higher dimensional space 7 can be represented as
fXy) = DHXTHX’}-L + by,

where D, isthemodel learnt in the space 7. Notethat thedimensionof f (X ¢) and f (X4) isthe same and represents
the class labels predicted by thetwo models. Thereforeif the two modelsare to be equivalent (in terms of classification
decisions), then f (X4) = f(X¢), and using Equation 5.2 and Equation 5.2 it should be that

DyuXJ Xy +by = DyuXIXc+be
Dy = DeXEXe(XE,X3) ™+ (be — bz (XJ, Xz %

Thus, an equivalent model exists in # provided that the initial examples are linear independent (i.e., (X THXH)—l
exists).

Even though the hypothesis learnt in the lower order space can be learnt in the higher order space, there is till
merit in carrying out feature reduction because of the following argument. It has been shown that the boundsfor error,
E Perr , in Support Vector machines are defined by the formula[WMC+00]

EPgr < } E { iz }
I M2

where R is the radius of the sphere containing all the transformations of the examples, M is the maximal margin of
separation and E is the error of the classsifier. Note that the radius is computed on the transformed space # i.e, in
case of the polynomial kernel it will be calculated in the expanded space. Therefore choosing the feature space to
operate is a trade off between achieving the maximum separation M in the input examples and not adding too many
redundant dimensions so that the value of R goes up. This problem is even more critical in the case of conjunctive
attributes as the dimensionality of the transformed space grows exponentially as the order of conjunction increases.
Hence, though we do not gainin expressibility of the model by operating in the pruned feature space, we stand to gain
by substantially tightening the bounds on the error.
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To get a better understanding of this error bound and its relationship with the number of features we ran some
experiments on synthetic datasets, where we studied the effect of increasing the dimensionality on the accuracy of the
SVM classifier. The details of the experiment and the results are presented in Section 6.3.1.

6 Experimental Evaluation

In this section we experimentally eval uated the different composite feature sel ection techniques presented in Section 4.
We first describe the datasets and the methodology of our experiments. We then present the results for different
schemes in conjunction of two classifiers, C4.5 and SVM. Lastly we compare our schemes with respect to other
schemes which use composite features with the help variety of different metrics.

6.1 Dataset Characteristics & Methodology

To evaluate the performance of different selection strategies, we conducted experiments on the UCI datasets [MM98].
Table 1 displays the different characteristics of each of the datasets. There are essentially four possible classification
schemes based on different combinations of our composite feature selection strategies. First, no duplicate elimination,
no discriminatory feature selection, referred as ND-NS. Second, duplication elimination using identical class distribu-
tion, but no discriminatory feature selection, referred as | C-NS. Third, duplicate elimination and using confidence for
discriminatory feature selection, referred as | C-Co. Lastly, duplicate elimination and using j-measure for discrimina-
tory feature selection, referred as | C-JM. Besides these four selection strategies we also ran the two classifiers, C4.5
and SVM directly onthe UCI datasets.

Dataset No. Attributes | Number Number
Cont. | Disc. Examples
32 898
8 690
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768
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270
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150

anneal
austra
breast
cleve
crx
diabetes
german
glass

[y

=

§

hepati
horse
iris
labor
led7
lymph
pima
tic-tac
wine
Z00

=

3200
148
768
958
178
101

=

=
OWOWOOORARNOWONOWMOOO D

o
8 %
NWNNPARONWNNNNNDNNNDNNO

OO0 WVWOWWNOMOUTWOO WO WNO

=

Table 1: UCI dataset statistics.

We performed our experiments using a 10 way cross validation scheme and computed average accuracy across
different runs. We ran our experiments using a support threshold of 1.0% for all the datasets, except hepati,
horse where we used a support threshold of 2.0% and for 1ymph and zoo we used the support threshold of
5.0%. This was done to ensure that the composite features generated are statistically significant. For decision tree
classification we use a modified version of ¢4.5 classifier [Qui93] that can handle sparse datasets. Similarly for SVM
classification we use SVMLight [Joa99] classifier with radial basis function kernel.
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6.2 Using C4.5 Classifier

Table 2 displays the accuracy values and the number of features selected for different schemes when used in conjunc-
tion with a c4.5 classifier. The first column, Direct, displays the results obtained by directly running c4.5 on these
datasets. The remaining columns displays the accuracy and the number of composite features selected for different
classification schemes. The average accuracy is displayed at the bottom of the table. This table does not display the
scheme in which no duplicate pruning and no selection ND-NS, because the sparse ¢4.5 classifier is unable to handle
the large number of composite features; which are generated as aresult of no feature selection.

Dataset Direct IC-NS 1C-Co 1C-JM

Acc. | #Attr. Acc. # CF Acc. #CF Acc. #CF
anneal 94.76 38 | 97.44 8391 | 97.78 776 | 96.77 346
austra 85.22 14 | 84.64 | 133,218 | 82.75 6,096 | 83.77 1,929
breast 95.42 10 | 95.57 6,779 | 9557 412 | 95.71 76
cleve 80.17 13 | 79.88 21,718 | 80.19 1505 | 78.19 379
crx 84.93 15 | 84.06 | 184,472 | 84.35 8,447 | 83.91 2,641
diabetes | 76.18 8 | 75.39 823 | 76.96 109 | 77.35 54
german 72.70 20 | 66.40 | 196,190 | 67.70 | 16,141 | 69.50 | 12,749
glass 65.97 9 | 73.96 731 | 75.35 178 | 76.71 63
heart 80.00 13 | 80.00 6,189 | 79.63 493 | 81.85 162
hepati 83.25 19 | 8.71 53,797 | 82.50 2,822 | 83.08 1,808
horse 82.92 22 | 8127 47,315 | 80.97 4,204 | 80.38 2,492
iris 95.33 4 | 93.33 80 | 94.00 26 | 94.00 14
labor 79.00 16 | 87.67 1,134 | 89.33 193 | 87.33 91
led7 72.88 7| 7384 1,707 | 73.09 94 | 7391 17
lymph 79.72 18 | 79.00 35,086 | 74.24 3,469 | 72.19 2,517
pima 74.22 8 | 7761 781 | 77.09 100 | 77.34 49
tic-tac 98.64 9 | 98.02 17,021 | 97.49 3343 | 97.91 2,546
wine 92.75 13 | 94.93 20,465 | 9441 999 | 94.93 342
Z00 92.09 16 | 93.27 7,914 | 95.18 936 | 94.09 382
Avg. 82.95 83.52 83.41 83.44

Table 2: Results by using C4.5 Classifier.

After studying the Table 2 we can make the following observations. First, both the confidence and j-measure
selection schemes eliminate a large number of composite features as compared the ND-NS scheme. Some times the
reduction is up to two orders of magnitude. Of the two selection schemes, j-measure is far more selective in picking
composite features. However if we compare the average accuracy we find that the all the selection schemes outperform
the traditional c4.5 approach, albeit by a small margin. Amongst the different selection schemes, the schemes with
only duplicate elimination ND-NS performs the best.

6.3 Using SVM Classifier

Table 3 displays the results obtained by the SVM classifier. Thefirst column displays the accuracy values obtained by
directly using the SVM classifier and the remaining columnsdisplay the accuracy values and the number of composite
features obtained by different feature selection schemes outlined in Section 6.1. The last row displays the average
accuracy values for different classification schemes.

After studying the results Table 3 we can make the following observations. First, as mentioned in Section 6.2 the
selection schemes result in a drastic reduction of composite features given to the classifier. However in the case of
SVM classifier the performance of direct classifier is quite comparable to the other feature selection schemes, in fact
only two schemes IC-NSand IC-CO have average accuracy more than that of the direct SVM Classifier.

6.3.1 Evaluation using Synthetic Dataset

To get the better understanding of the Equation 5.2 and the effect of dimensionality on the error bound we conducted
some experiments by generating synthetic datasets. To keep the analysis simple the synthetic dataset contains just
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Dataset Direct ND-NS IC-NS IC-CO 1C-IM

Acc. #CF Acc. #CF Acc. #CF Acc. #CF Acc. #CF
anneal 98.33 126 | 98.44 850,419 | 97.88 8,391 | 98.33 776 | 99.00 346
austra 85.80 51 | 86.38 616,885 | 86.96 | 133,218 | 86.09 | 6,096 | 85.80 1,929
breast 97.14 30 | 97.00 12,409 | 96.86 6,779 | 96.71 412 | 97.29 76
cleve 84.11 28 | 84.44 65,433 | 8347 21,718 | 8346 | 1505 | 83.45 379
crx 86.09 55 | 86.67 | 1,154,453 | 86.52 | 184,472 | 86.09 | 8,447 | 84.49 2,641
diabetes | 77.35 16 | 78.14 1,055 | 7853 823 | 7853 109 | 77.87 54
german 75.70 61 | 71.90 667,263 | 72.30 | 196,190 | 72.60 | 6,141 | 7430 | 12,749
glass 75.33 21 | 7861 2,638 | 78.12 731 | 75.28 178 | 73.46 63
heart 82.96 19 | 85.56 10,827 | 85.56 6,189 | 84.81 493 | 82.96 162
hepati 84.38 34 | 7929 | 1,170,213 | 81.21 53,797 | 8121 | 2,822 | 85.79 1,808
horse 85.61 62 | 8261 390,272 | 84.79 47,315 | 8343 | 4,204 | 8232 2,492
iris 93.33 13 | 94.00 129 | 94.00 80 | 94.00 26 | 9333 14
labor 89.33 30 | 77.33 14,182 | 94.67 1,134 | 94.67 193 | 94.67 91
led7 7241 15 | 7125 1911 | 7219 1,707 | 73.03 94 | 72.78 17
lymph 84.38 51 | 81.05 | 2,040,379 | 80.33 35,086 | 81.67 | 3,469 | 80.38 2,517
pima 77.34 16 | 78.77 1,041 | 79.04 781 | 7852 100 | 78.52 49
tic-tac 95.41 28 | 9854 21,368 | 98.54 17,021 | 96.97 | 3,343 | 97.70 2,546
wine 99.44 38 | 98.86 526,707 | 98.30 20,465 | 99.44 999 | 98.86 342
Z00 96.00 37 | 97.00 | 1,398,654 | 92.09 7,914 | 96.00 936 | 96.00 382
Average | 85.61 85.57 85.68 85.67 85.58

Table 3: Results by using SVM Classifier

two classes. The attributes making up the dataset are of two kinds, relevant and irrelevant. The relevant attributes
influence the class label, whereas irrelevant don’t, and can be thought of as noise. For our experiments we restricted
the number of relevant attributes to three and varied the number of irrelevant attributes. The cardinality (number of
attribute values) of the relevant and irrelevant attributes is the same, equal to four and each of the attribute value is
equally likely, i.e., uniform distribution of attribute values for all the attributes.

The classification function, which determines the class label of an example, was constructed so that the class |abel
depends only on the conjuncts of the relevant attribute values. Since there are three relevant attributes each with four
possible attribute val ues, we can have 64 possible conjuncts. These 64 conjuncts are equally divided into two sets with
each set corresponding to one particular class label. Hence both the classes are equally likely and are determined by
the set in which the conjunct of the relevant attributes belongs. Furthermore, we have taken care to ensure that the
class distribution with respect to single relevant attribute value is uniform. In other words the conditional probability
of class label given the value of single relevant attribute is 0.5, whereas the conditional probability of a class label
given al three relevant attribute valuesis 1.0.

The number of non-relevant attributes control the dimensionality of the problem. To make the dataset realistic we
also added some noise to the classification function, the amount of noiseis controlled by a parameter called Rvalue, R
refers to the randomness. While assigning the class label to an example for most of the time we use the classification
function, however once in awhile we invert the result of the classification function. Specifically, if we set the R value
to be 0.95, then for 95% of timeswe will assign the class label according to the classification function and 5% of times
we will invert the class label. Though R value does not change the dimensionality of the problem it makes the dataset
more realistic.

In our experimentswe build adirect SVM classifier using polynomial kernel with thed (maximum dimensionality)
= 3. Similarly, we run of classification scheme in which the maximum size of the composite feature is restricted to
3. The support threshold for FIDA is set to 1.00 %, this ensures that all possible composite features of length 3 are
discovered. In our experiments we vary the R value from 1.0, meaning no noise, to R value of 0.7, we aso vary
the number of irrelevant attributes, starting from O indicating no irrelevant attributes to 25 irrelevant attributes. The
number of irrelevant attributes control the dimensionality of the problem, To keep the discussion simple we only use
IC-CO and IC-JM selection schemes.

The results of these experiments are shown in Figure 4. The figure contains four graphs for different R values,
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Figure 4: Accuracy values for Direct, IC-Co, IC-JM classifications schemes across varying number of irrelevant attributes and
different values of R.

each graph contains three lines corresponding to the three classification schemes, Direct, IC-CO and IC-JM. The X-
axis represents the number of irrelevant attributes and the Y-axis represents the accuracy obtained. After studying
the Figure 4, we can make couple of inferences. First, the accuracy of the Direct scheme is greatly influenced by
the number of irrelevant attributes, if we study the Figure 4 (a) we observe that the the Direct scheme which starts
off with the accuracy of 100% (i.e, with no irrelevant attributes) drops sharply to 50% as the number of irrelevant
attributes is increased to 10. On the contrary the composite features based schemes, especially the scheme IC-CO,
show considerable resilience against the number of irrelevant attributes. The accuracy of 1C-CO drops only to 80%
when 25 irrelevant attributes are added. Similarly composite feature based schemes are also moreresilient to the noise.
Second, we observe that the IC-CO schemes outperforms the IM-JM scheme, this could be because the j-measure
scheme is more selective about selecting composite features and hence could result in pruning of using features

6.4 Overall Comparison of Schemes

In this section we compare the accuracy values of al our schemes with the native classifier as well as two other
schemes based on composite features, namely CBA [LHM98] and CMAR [LHPO1]. To compare the classification
schemes across different datasets we use variety of criteria. Each of these criterion assign a single numeric value
for each classification scheme, i.e., the criteria function assigns a sing value to every accuracy column in Table 4.
Once the criteria has been computed we can compare different classification schemes by comparing the value of this
criteriafunction. We have usefour criteria 1) Average Accuracy: Thisis computed by taking mean of accuracy across
different datasets for each classification scheme, though this metric is easy to understand, it is biased by the magnitude
of the accuracy. 2) Average Deficiency: We first compute the maximum attainable accuracy for each dataset across
the different classification schemes. Then for each dataset we compute the deficiency, which is one minus the ratio
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of accuracy attained and the maximum attainable accuracy for that dataset, the average deficiency is the average of
over al datasets, ideally we would like this value to be as close to 0.0 as possible, implying the accuracy is equal the
maximum attainable accuracy. 3) Average Rank: Thisis anon parametric metric, we first compute the rank on each
dataset across different classification schemes (position in the ordered sequence) for each dataset, the average rank is
the average of al ranks, this value should be as low as possible. 4) Number of Max Datasets. This metric computes
the datasets for which a particular scheme achieves the maximum accuracy. Again we would like this value to be as
high as possible.

Dataset CBA | CMAR C4.5 SVM

Direct | IC-NS | IC-CO | IC- M Direct | ND-NS | IC-NS | IC-CO | IC-IM
anneal 97.90 97.30 94.76 97.44 97.78 96.77 98.33 98.44 97.89 98.33 99.00
austra 84.90 86.10 85.22 84.64 82.76 83.77 85.80 86.38 86.96 86.09 85.80
breast 96.30 96.40 95.42 95.56 95.57 95.71 97.14 97.00 96.86 96.71 97.29
cleve 82.80 82.20 80.17 79.88 80.19 78.19 84.11 84.44 83.47 83.46 83.45
crx 84.70 84.90 84.93 84.06 84.35 83.92 86.09 86.67 86.52 86.09 84.50
diabetes 74.50 75.80 76.18 75.39 76.96 77.35 77.35 78.14 78.53 78.53 77.88
german 73.40 74.90 72.70 66.40 67.70 69.50 75.70 71.90 72.30 72.60 74.30
glass 73.90 70.10 65.97 73.96 75.35 76.71 75.33 78.61 78.12 75.28 73.46
heart 81.90 82.20 80.00 80.00 79.63 81.85 82.96 85.56 85.56 84.82 82.96
hepati 81.80 80.50 83.25 85.71 82.50 83.08 84.38 79.29 8121 8121 85.79
horse 82.10 82.60 82.92 81.27 80.97 80.38 85.61 82.61 84.79 83.43 82.32
iris 94.70 94.00 95.33 93.33 94.00 94.00 93.33 94.00 94.00 94.00 93.33
labor 86.30 89.70 79.00 87.67 89.33 87.33 89.33 77.33 94.67 94.67 94.67
led7 71.90 72.50 72.88 73.84 73.09 73.91 7241 7125 72.19 73.03 72.78
lymph 77.80 83.10 79.72 79.00 74.24 72.19 84.38 81.05 80.33 81.67 80.38
pima 72.90 75.10 74.22 77.61 77.09 77.35 77.34 78.78 79.04 78.52 78.52
tic-tac 99.60 99.20 98.64 98.02 97.50 97.91 95.41 98.54 98.54 96.97 97.70
wine 95.00 95.00 92.75 94.93 94.41 94.93 99.44 98.86 98.30 99.44 98.86
Z00 96.80 97.10 92.09 93.27 95.18 94.09 96.00 97.00 92.09 96.00 96.00
Average 83.90 84.38 82.95 83.52 83.41 83.44 85.61 85.57 85.68 85.67 85.58
Avg. Def. 371 3.14 4.67 4.12 4.24 4.16 1.62 2.50 156 159 170
Avg. Rank 6.90 5.80 7.15 7.95 7.75 7.55 4.30 4.50 4.05 4.00 4.55
#Max Acc 1 1 1 0 0 1 4 3 3 3 4

Table 4: Overall comparison of accuracy.

Table 4 displaysthe accuracy values, as mentioned earlier theideal scheme should have alarge valuefor the metrics
and Average and # Maximum Accurate and as low value for Average Rank and Average Deficiency. The maximum
values for each of the metrics are displayed in bold, it can be seen that each metric chooses a different scheme as
its best. However we can clearly infer that the SVM based schemes outperform other schemes, amongst svm based
schemes the results are extremely close with the | S-IM having a slight edge.

7 Conclusion

In this paper we presented a number of classification algorithms that use frequent itemsets to expand the feature
space and evaluated a variety of schemes for selecting discriminating composite features. Our experimental results
show that the proposed schemes can substantially reduce the number of composite features used, which improves the
classification accuracy. Moreover, we have both analytically and experimentally shown that the pruned composite
feature space reduces the generalization error obtained by support vector machines, leading to better classifiers.
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