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Many advanced algorithms have difficulty dealing with highly variable
clusters that do not follow a preconceived model. By basing its selections
on both interconnectivity and closeness, the Chameleon algorithm yields
accurate results for these highly variable clusters.

lustering is a discovery process in data min-
ing.* It groups a set of data in a way that
maximizes the similarity within clusters and
minimizes the similarity between two dif-
ferent clusters.*? These discovered clusters
can help explain the characteristics of the underlying
data distribution and serve as the foundation for other
data mining and analysis techniques. Clustering is use-
ful in characterizing customer groups based on pur-
chasing patterns, categorizing Web documents,?
grouping genes and proteins that have similar func-
tionality,* grouping spatial locations prone to earth-
guakes based on seismological data, and so on.

Most existing clustering algorithms find clusters
that fit some static model. Although effective in some
cases, these algorithms can break down—that is, clus-
ter the data incorrectly—if the user doesn’t select
appropriate static-model parameters. Or sometimes
the model cannot adequately capture the clusters’
characteristics. Most of these algorithms break down
when the data contains clusters of diverse shapes, den-
sities, and sizes.

Existing algorithms use a static model of the clusters
and do not use information about the nature of indi-
vidual clusters as they are merged. Furthermore, one
set of schemes (the CURE algorithm and related
schemes) ignores the information about the aggregate
interconnectivity of items in two clusters. The other
set of schemes (the Rock algorithm, group averaging
method, and related schemes) ignores information
about the closeness of two clusters as defined by the
similarity of the closest items across two clusters. (For
more information, see the *““Limitations of Traditional
Clustering Algorithms™ sidebar.)

By only considering either interconnectivity or close-
ness, these algorithms can easily select and merge the
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wrong pair of clusters. For instance, an algorithm that
focuses only on the closeness of two clusters will incor-
rectly merge the clusters in Figure 1a over those in
Figure 1b. Similarly, an algorithm that focuses only on
interconnectivity will, in Figure 2, incorrectly merge
the dark-blue with the red cluster rather than the green
one. Here, we assume that the aggregate interconnec-
tivity between the items in the dark-blue and red clus-
ters is greater than that of the dark-blue and green
clusters. However, the border points of the dark-blue
cluster are much closer to those of the green cluster
than those of the red cluster.

CHAMELEON: CLUSTERING USING
DYNAMIC MODELING

Chameleon is a new agglomerative hierarchical clus-
tering algorithm that overcomes the limitations of
existing clustering algorithms. Figure 3 (on page 70)
provides an overview of the overall approach used by
Chameleon to find the clusters in a data set.

The Chameleon algorithm’s key feature is that it
accounts for both interconnectivity and closeness in
identifying the most similar pair of clusters. It thus
avoids the limitations discussed earlier. Furthermore,
Chameleon uses a novel approach to model the degree
of interconnectivity and closeness between each pair of
clusters. This approach considers the internal charac-
teristics of the clusters themselves. Thus, it does not
depend on astatic, user-supplied model and can auto-
matically adapt to the internal characteristics of the
merged clusters.

Chameleon operates on a sparse graph in which
nodes represent data items, and weighted edges rep-
resent similarities among the data items. This sparse-
graph representation allows Chameleon to scale to
large data sets and to successfully use data sets that
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are available only in similarity space and not in met-
ric spaces.® Data sets in a metric space have a fixed
number of attributes for each data item, whereas data
sets in a similarity space only provide similarities
between data items.

Chameleon finds the clusters in the data set by using
a two-phase algorithm. During the first phase,
Chameleon uses a graph-partitioning algorithm to
cluster the data items into several relatively small sub-
clusters. During the second phase, it uses an algorithm
to find the genuine clusters by repeatedly combining
these subclusters.

Modeling the data

Given a matrix whose entries represent the similar-
ity between data items, many methods can be used to
find a graph representation.?® In fact, modeling data
items as a graph is very common in many hierarchical
clustering algorithms.28° Chameleon’s sparse-graph
representation of the items is based on the commonly
used k-nearest-neighbor graph approach. Each vertex
of the k-nearest-neighbor graph represents a data item.
An edge exists between two vertices v and u if u is
among the k most similar points of v, or v is among
the k most similar points of u.

(a) (b)

Figure 1. Algorithms based only on closeness will incorrectly merge (a) the dark-blue
and green clusters because these two clusters are closer together than (b) the red and
cyan clusters.

Figure 2. Algorithms based only on the interconnectivity of two clusters will incorrectly
merge the dark-blue and red clusters rather than dark-blue and green clusters.

Limitations of Traditional Clustering Algorithms

Partition-based clustering techniques
such as K-Means? and Clarans® attempt
to break a data set into K clusters such
that the partition optimizes a given crite-
rion. These algorithms assume that clus-
ters are hyper-ellipsoidal and of similar
sizes. They can’t find clusters that vary in
size, as shown in Figure Al, or concave
shapes, as shown in Figure A2.

DBScan’ (Density-Based Spatial Clus-
tering of Applications with Noise), a well-
known spatial clustering algorithm, can
find clusters of arbitrary shapes. DBScan
defines a cluster to be a maximum set of
density-connected points, which means
that every core point in a cluster must
have at least a minimum number of points
(MinPts) within a given radius (Eps).
DBScan assumes that all points within
genuine clusters can be reached from one
another by traversing a path of density-
connected points and points across dif-
ferent clusters cannot. DBScan can find

the cluster density is uniform.
Hierarchical clustering algorithms pro-
duce a nested sequence of clusters with a
single, all-inclusive cluster at the top and
single-point clusters at the bottom.
Agglomerative hierarchical algorithms?
start with each data point as a separate
cluster. Each step of the algorithm involves
merging two clusters that are the most
similar. After each merger, the total num-

ber of clusters decreases by one. Users can
repeat these steps until they obtain the
desired number of clusters or the distance
between the two closest clusters goes
above a certain threshold. The many vari-
ations of agglomerative hierarchical algo-
rithms? primarily differ in how they
update the similarity between existing and
merged clusters.

In some hierarchical methods, each clus-
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arbitrarily shaped clusters if the cluster Figure A. Data sets on which centroid and medoid approaches fail: Clusters (1) of widely different

density can be determined beforehand and

sizes and (2) with concave shapes.
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Data set

Construct a
sparse graph

Figure 3. Chameleon

uses a two-phase
algorithm, which first
partitions the data
items into subclus-
ters and then repeat-
edly combines these
subclusters to obtain
the final clusters.

k-nearest
neighbor graph

Figure 4 illustrates the 1-, 2-, and 3-nearest-neigh-
bor graphs of a simple data set. There are several
advantages to representing the items to be clustered
using a k-nearest-neighbor graph. Data items that are
far apart are completely disconnected, and the weights
on the edges capture the underlying population den-
sity of the space. Items in denser and sparser regions
are modeled uniformly, and the sparsity of the repre-
sentation leads to computationally efficient algo-
rithms. Because Chameleon operates on a sparse
graph, each cluster is nothing more than a subgraph
of the data set’s original sparse-graph representation.

Modeling cluster similarity

Chameleon uses a dynamic modeling framework to
determine the similarity between pairs of clusters by look-
ing at their relative interconnectivity (RI) and relative
closeness (RC). Chameleon selects pairs to merge for
which both RI and RC are high. That is, it selects clus-
ters that are well interconnected as well as close together.
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Relative interconnectivity. Clustering algorithms typ-
ically measure the absolute interconnectivity between
clusters C; and C; in terms of edge cut—the sum of the
weight of the edges that straddle the two clusters,
which we denote EC(C;, C)). Relative interconnectivity
between clusters is their absolute interconnectivity nor-
malized with respect to their internal interconnectivi-
ties. To get the cluster’s internal interconnectivity, we
sum the edges crossing a min-cut bisection that splits
the cluster into two roughly equal parts. Recent
advances in graph partitioning have made it possible
to efficiently find such quantities.*®

Thus, the relative interconnectivity between a pair
of clusters C; and C; is

EC(C;.C;)
[EC(C))|+[Ec(c))
2
By focusing on relative interconnectivity, Chameleon

RIC;,C;) =

ter is represented by a centroid or medoid—
a data point that is the closest to the center
of the cluster—and the similarity between
two clusters is measured by the similarity
between the centroids/medoids. Both of
these schemes fail for data in which points
in a given cluster are closer to the center of
another cluster than to the center of their
own cluster. This situation occurs in many
natural clusters,*® for example, if there is a
large variation in cluster sizes, as in Figure
AL, or when cluster shapes are concave, as in
Figure A2.

The single-link hierarchical method? mea-
sures the similarity between two clusters by
the similarity of the closest pair of data
points belonging to different clusters. Unlike
the centroid/medoid-based methods, this
method can find clusters of arbitrary shape
and different sizes. However, it is highly sus-
ceptible to noise, outliers, and artifacts.

Researchers have proposed CURE®
(Clustering Using Representatives) to rem-
edy the drawbacks of both of these meth-
ods while combining their advantages. In
CURE, acluster is represented by selecting
a constant number of well-scattered points
and shrinking them toward the cluster’s
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centroid, according to a shrinking factor.
CURE measures the similarity between two
clusters by the similarity of the closest pair
of points belonging to different clusters.

Unlike centroid/medoid-based methods,
CURE can find clusters of arbitrary shapes
and sizes, as it represents each cluster via
multiple representative points. Shrinking the
representative points toward the centroid
allows CURE to avoid some of the problems
associated with noise and outliers. However,
these techniques fail to account for special
characteristics of individual clusters. They
can make incorrect merging decisions when
the underlying data does not follow the
assumed model or when noise is present.

In some algorithms, the similarity
between two clusters is captured by the
aggregate of the similarities (that is, the
interconnectivity) among pairs of items
belonging to different clusters. The ratio-
nale for this approach is that subclusters
belonging to the same cluster will tend to
have high interconnectivity. But the aggre-
gate interconnectivity between two clusters
depends on the size of the clusters; in gen-
eral, pairs of larger clusters will have higher
interconnectivity.

Many such schemes normalize the aggre-
gate similarity between a pair of clusters
with respect to the expected intercon-
nectivity of the clusters involved. For ex-
ample, the widely used group-average
method? assumes fully connected clusters,
and thus scales the aggregate similarity
between two clusters by n x m, where n and
m are the number of members in the two
clusters.

Rock® (Robust Clustering Using Links),
a recently developed algorithm that oper-
ates on a derived similarity graph, scales the
aggregate interconnectivity with respect to
a user-specified interconnectivity model.
However, the major limitation of all such
schemes is that they assume a static, user-
supplied interconnectivity model. Such
models are inflexible and can easily lead to
incorrect merging decisions when the model
under- or overestimates the interconnectiv-
ity of the data set or when different clusters
exhibit different interconnectivity charac-
teristics. Although some schemes allow the
connectivity to vary for different problem
domains (as does Rock®), it is still the same
for all clusters irrespective of their densities
and shapes.
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can overcome the limitations of existing algorithms
that use static interconnectivity models. Relative inter-
connectivity can account for differences in cluster
shapes as well as differences in the degree of intercon-
nectivity for different clusters.

Relative closeness. Relative closeness involves con-
cepts that are analogous to those developed for rela-
tive interconnectivity. The absolute closeness of
clusters is the average weight (as opposed to the sum
of weights for interconnectivity) of the edges that con-
nect vertices in C; to those in C;. Since these connec-
tions come from the k-nearest-neighbor graph, their
average strength provides a good measure of the affin-
ity between the data items along the interface layer of
the two clusters. At the same time, this measure is tol-
erant of outliers and noise.

To get a cluster’s internal closeness, we take the
average of the edge weights across a min-cut bisection
that splits the cluster into two roughly equal parts.

The relative closeness between a pair of clusters is the
absolute closeness normalized with respect to the inter-
nal closeness of the two clusters:

SEC(C;,C;)

RC(C;,C)) =

Cl creers C sree
el "4 ol 4

where SEC(C;) and” SEC(C)) are the average weights of
the edges that belong in the min-cut bisector of clusters
C,and C;, and SEC(C;, C)) is the average weight of the
edges that connect vertices in C;and C;. Terms |C;| and
|Cy| are the number of data points in each cluster. This
equation also normalizes the absolute closeness of the
two clusters by the weighted average of the internal
closeness of C; and C;. This discourages the merging
of small sparse clusters into large dense clusters.

In general, the relative closeness between two clus-
ters is less than one because the edges that connect
vertices in different clusters have a smaller weight.

By focusing on the relative closeness, Chameleon can
overcome the limitations of existing algorithms that look
only at the absolute closeness. By looking at the relative
closeness, Chameleon correctly merges clusters so that
the resulting cluster has a uniform degree of closeness
between its items.

Process

The dynamic framework for modeling cluster sim-
ilarity is applicable only when each cluster contains a
sufficiently large number of vertices (data items). The
reason is that to compute the relative interconnectiv-
ity and closeness of clusters, Chameleon needs to com-
pute each cluster’s internal interconnectivity and
closeness, neither of which can be accurately calcu-
lated for clusters containing a few data points. For this

Figure 4. K-nearest-neighbor graphs from original data in two dimensions: (a) original

data, (b) 1-, (c) 2-, and (d) 3-nearest neighbor graphs.

reason, Chameleon has a first phase that clusters the
data items into several subclusters that contain a suf-
ficient number of items to allow dynamic modeling. In
a second phase, it discovers the genuine clusters in the
data set by using the dynamic modeling framework
to hierarchically merge these subclusters.

Chameleon finds the initial subclusters using
hMetis,° a fast, high-quality graph-partitioning algo-
rithm. hMetis partitions the k-nearest-neighbor graph
of the data set into several partitions such that it min-
imizes the edge cut. Since each edge in the k-nearest-
neighbor graph represents the similarity among data
points, a partitioning that minimizes the edge cut
effectively minimizes the relationship (affinity) among
data points across the partitions.

After finding subclusters, Chameleon switches to
an algorithm that repeatedly combines these small
subclusters, using the relative interconnectivity and
relative closeness framework. There are many ways
to develop an algorithm that accounts for both of
these measures. Chameleon uses two different
schemes.

User-specified thresholds. The first merges only
those pairs of clusters exceeding user-specified thresh-
olds for relative interconnectivity (Tg,) and relative
closeness (Tgc). In this approach, Chameleon visits
each cluster C; and checks for adjacent clusters C;
with Rl and RC that exceed these thresholds.

If more than one adjacent cluster satisfies these con-
ditions, then Chameleon will merge C; with the clus-
ter that it is most connected to—that is, the pair C;
and C; with the highest absolute interconnectivity.

Once Chameleon chooses a partner for every clus-
ter, it performs these mergers and repeats the entire
process. Users can control the characteristics of the
desired clusters with T, and Tgc.

Function-defined optimization. The second scheme
implemented in Chameleon uses a function to com-
bine the relative interconnectivity and relative close-
ness. Chameleon selects cluster pairs that maximize
this function. Since our goal is to merge pairs for which
both the relative interconnectivity and relative close-
ness are high, a natural way of defining such a function
is to take their product. That is, select clusters that
maximize RI(C;,C)) x RC(C;,C)). This formula gives
equal importance to both parameters. However, quite
often we may prefer clusters that give a higher prefer-
ence to one of these two measures. For this reason,
Chameleon selects the pair of clusters that maximizes

RI(C,,C) x RC(C,,C)*

August 1999



Figure 5. Four data
sets used in our
experiments: (a) DS1
has 8,000 points;

(b) DS2 has 6,000
points; (c) DS3 has
10,000 points; and
(d) DS4 has 8,000
points.

where a is a user-specified parameter. If a > 1, then
Chameleon gives a higher importance to the relative
closeness, and when a < 1, it gives a higher impor-
tance to the relative interconnectivity.

RESULTS AND COMPARISONS

We compared Chameleon’s performance against
that of CURE® and DBScan’ on four different data
sets. These data sets contain from 6,000 to 10,000
points in two dimensions; the points form geometric
shapes as shown in Figure 5. These data sets represent
some difficult clustering instances because they con-
tain clusters of arbitrary shape, proximity, orienta-
tion, and varying densities. They also contain
significant noise and special artifacts. Many of these
results are available at http://www.cs.umn.edu/
~han/chameleon.html.

Chameleon is applicable to any data set for which
a similarity matrix is available (or can be constructed).

However, we evaluated it with two-dimensional data
sets because similar data sets have been used to eval-
uate other state-of-the-art algorithms. Clusters in 2D
data sets are also easy to visualize and compare.
Figure 6 shows the clusters that Chameleon found
for each of the four data sets, using the same set of
parameter values. In particular, we used k = 10 in a
function-defined optimization with a = 2.0. Points in
different clusters are represented using a combination
of colors and glyphs. As a result, points that belong
to the same cluster use both the same color and glyph.
For example, in the DS3 clusters, there are two cyan
clusters. One contains the points in the region between
the two circles inside the ellipse, and the other, the line
between the two horizontal bars and the c-shaped clus-
ter. Two clusters are dark blue—one corresponds to the
upside-down c-shaped cluster and the other, the circle
inside the candy cane. Their points use different glyphs
(bells and squares for the first pair, and squares and

Figure 6. Clusters
discovered by
Chameleon for the
four data sets.
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bells for the second), so they denote different clusters.

The clustering shown in Figure 6 corresponds to the
earliest point at which Chameleon was able to find the
genuine clusters in the data set. That is, they corre-
spond to the earliest iteration at which Chameleon
identifies the genuine clusters and places each in a sin-
gle cluster. Thus for a given data set, Figure 6 shows
more than the number of genuine clusters; the addi-
tional clusters contain outliers.

Chameleon correctly identifies the genuine clus-
ters in all four data sets. For example, in DS1,
Chameleon finds six clusters, five of which are gen-
uine clusters, and the sixth (shown in brown) corre-
sponds to outliers that connect the two ellipsoid
clusters. In DS3, Chameleon finds the nine genuine
clusters and two clusters that contain outliers. In DS2
and DS4, Chameleon accurately finds only the gen-
uine cluster.

CURE

We also evaluated CURE, which has been shown to
effectively find clusters in two-dimensional data sets.®
CURE was able to find the right clusters for DS1 and
DS2, but it failed to find the right clusters on the
remaining two data sets. Figure 7 shows the results

obtained by CURE for the DS3 and DS4 data sets.

For each of the data sets, Figure 7 shows two dif-
ferent clustering solutions containing different num-
bers of clusters. The clustering solution in Figure 7a
corresponds to the earliest point in the process in
which CURE merges subclusters that belong to two
different genuine clusters. As we can see from Figure
7b, in the case of DS3, CURE makes a mistake when
going down to 25 clusters, as it merges one of the cir-
cles inside the ellipse with a portion of the ellipse.

Similarly, in the case of DS4 (Figure 7¢), CURE
also makes a mistake when going down to 25 clus-
ters by merging the small circular cluster with a por-
tion of the upside-down Y-shaped cluster. The second
clustering solution (Figure 7d) corresponds to solu-
tions that contain as many clusters as those discov-
ered by Chameleon. These solutions are considerably
worse than the first set of solutions, indicating that
CURE’s merging scheme makes multiple mistakes
for these data sets.

DBSCAN

Figure 8 shows the clusters found by DBScan for
DS1 and DS2, using different values of the Eps para-
meter. Following the recommendation of DBScan’s
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Figure 7. Clusters
identified by CURE
with shrinking factor
0.3 and number of
representative points
equal to 10. For DS3,
CURE first merges
subclusters that
belong to two differ-
ent subclusters at
(a) 25 clusters.

With (b) 11 clusters
specified—the same
number that
Chameleon found—
CURE obtains the
result shown.

CURE produced
these results for
DS4 with (c) 25

and (d) 8 clusters
specified.
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Figure 8. DBScan
results for DS1 with
MinPts at 4 and Eps at
(a) 0.5and (b) 0.4.

(b)

©

Figure 9. DBScan
results for DS2 with
MinPts at 4 and Eps at
(a) 5.0, (b) 3.5, and
(c) 3.0.

developers,” we fixed the MinPts at 4 and varied Eps in
these experiments.

The clusters produced for DS1 illustrate that DBScan
cannot effectively find clusters of different density. In
Figure 8a, DBScan puts the two red ellipses (at the top
of the image) into the same cluster because the outlier
points satisfy the density requirements as dictated by
the Eps and MinPts parameters. Decreasing the value
of Eps can separate these clusters, as shown in Figure
8b for Eps at 0.4. Although DBScan separates the
ellipses without fragmenting them, it now fragments
the largest—but lower density—cluster into several
small subclusters. Our experiments have shown that
DBScan exhibits similar characteristics on DS4.

The clusters produced for DS2 illustrate that DBScan
cannot effectively find clusters with variable internal
densities. Figure 9a through Figure 9c show a sequence
of three clustering solutions for decreasing values of
Eps. As we decrease Eps in the hope of separating the
two clusters, the natural clusters in the data set are frag-
mented into several smaller clusters.

DBScan finds the correct clusters in DS3 given the
right combination of Eps and MinPts. If we fix MinPts
at 4, then the algorithm works fine on this data set as
long as Eps is from 5.7 to 6.1.

nearest-neighbor graph, it is entirely possible to

use other graph representations—such as those
based on mutual shared neighbors,28*—which are
suitable for particular application domains. Fur-
thermore, different domains may require different
models for capturing relative closeness and intercon-
nectivity. In any of these situations, we believe that the
two-phase framework of Chameleon would still be
highly effective. Our future research includes the veri-

Even though we chose to model the data using a k-
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fication of Chameleon on different application do-
mains. We also want to study the effectiveness of dif-
ferent techniques for modeling data as well as cluster
similarity. O
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