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Abstract

In this paper we study the problem of classifying chemical com-
pound datasets. We present a sub-structure-based classifica-
tion algorithm that decouples the sub-structure discovery pro-
cess from the classification model construction and uses frequent
subgraph discovery algorithms to find all topological and geo-
metric sub-structures present in the dataset. The advantage of
our approach is that during classification model construction,
all relevant sub-structures are available allowing the classifier to
intelligently select the most discriminating ones. The computa-
tional scalability is ensured by the use of highly efficient frequent
subgraph discovery algorithms coupled with aggressive feature
selection. Our experimental evaluation on eight different clas-
sification problems shows that our approach is computationally
scalable and on the average, outperforms existing schemes by
10% to 35%.

1 Introduction

Discovering new drugs is an expensive and challenging
process. Any new drug should not only produce the de-
sired response to the disease but should do so with mini-
mal side effects and be superior to the existing drugs in the
market. One of the key steps in the drug design process
is to identify the chemical compounds (widely referred
to as “hit” compounds) that display the desired and re-
producible behavior against the disease [29] in a biologi-
cal experiment. The standard technique to discover such
compounds is to evaluate them with a biological experi-
ment, known as an assay. The 1990s saw the widespread
adoption of high-throughput screening (HTS), which use
highly automated techniques to conduct the biological as-
says and can be used to screen a large number of com-
pounds. Though in principle, HTS techniques can be used
to test each compound against every biological assay, it is
never practically feasible for the following reasons. First,
the number of chemical compounds that have been syn-
thesized or can be synthesized using combinatorial chem-
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istry techniques is extremely large. Evaluating this large
set of compounds using HTS can be prohibitively expen-
sive. Second, not all biological assays can be converted
to high throughput format. Third, in most cases it is hard
to find all the desirable properties in a single compound
and chemists are interested not just identifying the hits but
studying what part of the chemical compound leads to de-
sirable behavior, so that new compounds can be rationally
synthesized.

The goal of this paper is to develop computational tech-
niques based on classification that can be used to identify
the hit compounds. These computational techniques can
be used to replace or supplement the biological assay tech-
niques. One of the key challenges in developing classifi-
cation techniques for chemical compounds stems from the
fact that their properties are strongly related to their chem-
ical structure. However, traditional machine learning tech-
niques are suited to handle datasets represented by multi-
dimensional vectors or sequences, and cannot handle the
structural nature of the chemical structures.

In recent years two classes of techniques have been de-
veloped for solving the chemical compound classification
problem. The first class builds a classification model us-
ing a set of physico-chemical properties derived from the
compounds structure, called quantitative structure-activity
relationships (QSAR) [16, 17, 1], whereas the second class
operates directly on the structure of the chemical com-
pound and try to automatically identify a small number
of chemical sub-structures that can be used to discrimi-
nate between the different classes [3, 46, 19, 27, 8]. A
number of comparative studies [43, 22] have shown that
techniques based on the automatic discovery of chemi-
cal sub-structures are superior to those based on QSAR
properties and require limited user intervention and do-
main knowledge. However, despite their success, a key
limitation of these techniques is that they rely on heuris-
tic search methods to discover these sub-structures. Even
though such approaches reduce the inherently high com-
putational complexity associated with these schemes, they
may lead to sub-optimal classifiers in cases in which the
heuristic search failed to uncover sub-structures that are
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critical for the classification task.
In this paper we present a sub-structure-based classifier

that overcomes the limitations associated with existing al-
gorithms1. One of the key ideas of our approach is to de-
couple the sub-structure discovery process from the classi-
fication model construction step and use frequent subgraph
discovery algorithms to find all chemical sub-structures
that occur a sufficiently large number of times. Once the
complete set of these sub-structures has been identified,
our algorithm then proceeds to build a classification model
based on them. The advantage of such an approach is
that during classification model construction, all relevant
sub-structures are available allowing the classifier to in-
telligently select the most discriminating ones. To ensure
that such an approach is computationally scalable, we use
recently developed [25, 27] highly efficient frequent sub-
graph discovery algorithms coupled with aggressive fea-
ture selection to reduce both the amount of time required
to build as well as to apply the classification model. In ad-
dition, we present a sub-structure discovery algorithm that
finds a set of sub-structures whose geometry is conserved,
further improving the classification performance of our al-
gorithm.

We experimentally evaluated the performance of our al-
gorithms on eight different problems derived from three
publically available datasets and compared their perfor-
mance against that of traditional QSAR-based classi-
fiers and existing sub-structure classifiers based on SUB-
DUE [4] and SubdueCl [15]. Our results show that
our approach, on the average, outperforms QSAR-based
schemes by 35% and SUBDUE-based schemes by 10%.

The rest of the paper is organized as follows. Sec-
tion 2 provides some background information related to
chemical compounds, their activity, and their representa-
tion. Section 3 provides a survey on the related research
in this area. Section 4 provides the details of our chem-
ical compound classification approach. Section 5 experi-
mentally evaluates its performance and compares it against
other approaches. Finally, Section 6 provides outlines di-
rections of future research and provides some concluding
remarks.

2 Background

A chemical compound consists of different atoms being
held together via bonds adopting a well-defined geometric
configuration. Figure 1(a) represents the chemical com-
pound Flucytosine from the DTP AIDS repository [10] it
consists of a central aromatic ring and other elements like
N, O and F. The representation shown in the figure is a
typical graphical representation that most chemists work
with.

1A preliminary version of some of the algorithms described in this
paper were presented in the BIOKDD2002 workshop [8].
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Figure 1: Chemical and Graphical representation of Flucy-
tosine

There are many different ways to represent such chem-
ical compounds. The simplest representation is the molec-
ular formula that lists the various atoms making up
the compound; the molecular formula for Flucytosine is
C4H4FN3O. However this representation is woefully in-
adequate to capture the structure of the chemical com-
pound. It was recognized early on that it was possible
for two chemical compounds to have identical molecular
formula but completely different chemical properties [14].
A more sophisticated representation can be achieved us-
ing the SMILES [6] representation, it not only represents
the atoms but also represents the bonds between differ-
ent atoms. The SMILES representation for Flucytosine is
Nc1nc(O)ncc1F. Though SMILES representation is a
compact it is not guaranteed to be unique, furthermore the
representation is quite restrictive to work with [24].

The activity of a compound largely depends on its
chemical structure and the arrangement of different atoms
in 3D space. As a result, effective classification algorithms
must be able to directly take into account the structural na-
ture of these datasets. In this paper we represent each com-
pound as undirected graphs. The vertices of these graphs
correspond to the various atoms, and the edges correspond
to the bonds between the atoms. Each of the vertices and
edges has a label associated with it. The labels on the ver-
tices correspond to the type of atoms and the labels on
the edges correspond to the type of bonds. As an exam-
ple, Figure 1(b) shows the representation of Flucytosine in
terms of this graph model. We will refer to this represen-
tation as the topological graph representation of a chem-
ical compound. Note that such representations are quite
commonly used by many chemical modeling software and
are referred as the connection table for the chemical com-
pound [30].

In addition, since chemical compounds have a physi-
cal three-dimensional structure, each vertex of the graph
has a 3D-coordinate indicating the position of the cor-
responding atom in 3D space. However, there are two
key issues that need to be considered when working with
the compound’s 3D structure. First, the number of ex-
perimentally determined molecular geometries is limited
(about 270,000 X -ray structures in the Cambridge Crys-
tallographic Database compared to 15 millions of known
compounds). As a result, the 3D geometry of a compound
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needs to be computationally determined, which may in-
troduce certain amount of error. To address this prob-
lem, we use the Corina [13] software package to compute
the 3D coordinates for all the chemical compounds in our
datasets. Corina is a rule- and data-based system that has
been experimentally shown to predict the 3D structure of
compounds with high-accuracy. Second, each compound
can have multiple low-energy conformations (i.e., multiple
3D structures) that need to be taken into account in order
to achieve the highest possible classification performance.
However, due to time constraints, in this study we do not
take into account these multiple conformations but instead
use the single low-energy conformation that is returned by
Corina’s default settings. However, as discussed in Sec-
tion 4.1.2, the presented approach for extracting geomet-
ric sub-structures can be easily extended to cases in which
multiple conformations are considered as well. Neverthe-
less, despite this simplification, as our experiments in Sec-
tion 5 will show, incorporating 3D structure information
leads to measurable improvements in the overall classifi-
cation performance. We will refer to this representation
as the geometric graph representation of a chemical com-
pound.

The meaning of the various classes in the input dataset
is application dependent. In some applications, the classes
will capture the extent to which a particular compound is
toxic, whereas in other applications they may capture the
extent to which a compound can inhibit (or enhance) a par-
ticular factor and/or active site. In most applications each
of the compounds is assigned to only one of two classes,
that are commonly referred to as the positive and negative
class. The positive class corresponds to compounds that
exhibit the property in question, whereas the compounds
of the negative class do not. Throughout this paper we
will be restricting ourselves to only two classes, though
all the techniques described here can be easily extended to
multi-class as well as multi-label classification problems.

Another important aspect of modeling chemical com-
pounds is the naming of single and double bonds inside
aromatic rings. Typically in an aromatic ring of a chem-
ical compound though the number of single and double
bonds is fixed, the exact position of double and single
bonds is not fixed, this is because of the phenomenon of
resonance [14]. It is worth noting that the exact position of
double and single bond in an aromatic ring does not affect
the chemical properties of a chemical compound. To cap-
ture this uncertainty in the position of single and double
bond we represent all the bonds making up the aromatic
ring with a new bond type called the aromatic bond. An-
other aspect of the chemical compounds is that the number
of hydrogen bonds connected to a particular carbon atom
can usually be inferred from the bonds connecting that car-
bon atom [14], therefore in our representation we do not
represent the hydrogen atoms that are connected to the car-
bon atoms, such hydrogen atoms are referred as non-polar

hydrogen atoms. Note that the above transformations are
widely used by many chemistry modeling tools and are
usually referred to as structure normalization [30].

3 Related Research

In the early 1960s, the pioneering work of Hansch et al.
[16, 17] demonstrated that the biological activity of a
chemical compound is a function of its physico-chemical
properties. These physico-chemical properties are usu-
ally derived from the compound’s structure and are called
quantitative structure-activity relationships (QSAR). Ex-
amples of such physico-chemical properties include the
molecular weight, total energy, dipole moment, solvent
accessible area, etc. Over the years a number of differ-
ent QSAR properties have been developed (GAUSSIAN
contains over 50) and they are used extensively to model
and analyze chemical compounds within the pharmaceu-
tical industry. The amount of time required to compute
these QSAR properties varies from property to property.
Some of them can be computed very fast (e.g., molecular
weight), while others require time-consuming numerical
simulations (e.g., dipole-moment, total energy) that can
only be performed for small datasets.

In QSAR-based classification methods, each chemical
compound is transformed into a vector of numerical val-
ues, corresponding to the various QSAR properties. Af-
ter this transformation any traditional classifier capable of
handling numerical features can be used for the classifi-
cation task. Early research on QSAR-based classification
methods focused primarily on regression-based techniques
[16, 12]; however, more sophisticated classifiers have also
been used. For example, Andrea and Kalayeh [2] show
that neural networks can achieve better accuracies over
regression-based techniques, whereas An and Wang [1] re-
port that decision tree classifiers applied on QSAR features
outperform those based on neural networks and logistic re-
gression.

The key challenge in using QSAR-based approaches
stems from the fact that the classification performance re-
lies, to a large extent, on the a priori identification of
the relevant QSAR properties that capture the structure-
activity relationships for the particular classification prob-
lem. Identifying this relevant set of QSAR properties re-
quires considerable domain expertise and extensive ex-
perimentation. To overcome this problem, a different set
of techniques have been developed that operate directly
on the structure of the chemical compound and try to
automatically identify a small number of chemical sub-
structures that can be used to discriminate between the dif-
ferent classes.

One of the earlier approaches that follow this paradigm
are based on inductive logic programming (ILP) [36]. In
this approach the chemical compound is expressed using
first order logic. Each atom is represented as a predicate
consisting of atomID and the element, and a bond is rep-
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resented as a predicate consisting of two atomIDs. Us-
ing this representation, an ILP system discovers rules (i.e.,
conjunction of predicates) that are good for discriminating
the different classes. Since these rules consist of predicates
describing atoms and bonds, they essentially correspond to
sub-structures that are present in the chemical compounds.
The pioneering work in this field was done by King et al.
in the early 1990s [23, 22]. They applied an ILP system,
Golem [37], to study the behavior of 44 trimethoprin ana-
logues and their observed inhibition of Escherichia coli
dihydrofolate reductase. They reported an improvement
in classification accuracy over the traditional QSAR-based
models. Srinivasan et al. [43] present a detailed compar-
ison of the features generated by ILP with the traditional
QSAR features used for classifying chemical compounds.
They show that for some applications features discovered
by ILP approaches lead to a significant lift in the perfor-
mance. Besides improved classification performance, an
additional advantage of these structure-based approaches
is that the discovered rules (i.e., sub-structures) can be
easily understood by experts and could be used to check
the correctness of the model and to provide insights in the
chemical behavior of the compounds.

Though ILP-based approaches are quite powerful, the
high computational complexity of the underlying rule-
induction system limits the size of the dataset for which
they can be applied. Furthermore, they tend to produce
rules consisting of relatively small sub-structures (usu-
ally three to four atoms [5, 7]), limiting the size of struc-
tural constraints that are being discovered and hence af-
fecting the classification performance. Another drawback
of these approaches is that in order to reduce their com-
putational complexity they employ various heuristics to
prune the explored search-space [35], potentially miss-
ing sub-structures that are important for the classifica-
tion task. One exception is the WARMR system [5, 7]
that is specifically developed for chemical compounds and
discovers all possible sub-structures above a certain fre-
quency threshold. However, WARMR’s computational
complexity is very high and can only be used to dis-
cover sub-substructures that occur with relatively high fre-
quency.

One of the fundamental reasons limiting the scalability
of ILP-based approaches is the first order logic-based rep-
resentation that they use. This representation is much more
powerful than what is needed to model chemical com-
pounds and discover sub-structures. For this reason a num-
ber of researchers have explored the much simpler graph-
based representation of the chemical compound’s topol-
ogy and transformed the problem of finding chemical sub-
structures to that of finding subgraphs in this graph-based
representation [3, 46, 19]. Probably the most well-known
approach is the SUBDUE system [18, 4]. SUBDUE finds
patterns which can effectively compress the original in-
put data based on the minimum description length (MDL)

principle, by substituting those patterns with a single ver-
tex. To narrow the search-space and improve its compu-
tational efficiency, SUBDUE uses a heuristic beam search
approach, which quite often results in failing to find sub-
graphs that are frequent. The SUBDUE system was also
later extended to classify graphs and was referred as Sub-
dueCL [15]. In SubdueCL instead of using minimum de-
scription length as a heuristic a measure similar to confi-
dence of a subgraph is used as a heuristic.

Finally, another heuristics based scheme targeted for
chemical compounds is MOLFEA [24]. In this scheme
each chemical compound is represented as a SMILES
string, and is thought of as sequence of SMILES objects.
This representation simplifies the problem to discovering
frequently occurring sub-sequences.

4 Classification Based on Frequent
Subgraphs

The previous research on classifying chemical compounds
(discussed in Section 3) has shown that techniques based
on the automatic discovery of chemical sub-structures are
superior to those based on QSAR properties and require
limited user intervention and domain knowledge. How-
ever, despite their success, a key limitation of both the
ILP- and the subgraph-based techniques, is that they rely
on heuristic search methods to discover the sub-structures
to be used for classification. As discussed in Section 3,
even though such approaches reduce the inherently high
computational complexity associated with these schemes,
they may lead to sub-optimal classifiers in cases in which
the heuristic search failed to uncover sub-structures that
are critical for the classification task.

To overcome this problem, we developed a classifi-
cation algorithm for chemical compounds that uses the
graph-based representation and limits the number of sub-
structures that are pruned a priori. The key idea of our ap-
proach is to decouple the sub-structure discovery process
from the classification model construction step, and use
frequent subgraph discovery algorithms to find all chem-
ical sub-structures that occur a sufficiently large number
of times. Once the complete set of such sub-structures
has been identified, our algorithm then proceeds to build
a classification model based on them. To a large ex-
tent, this approach is similar in spirit to the recently de-
veloped frequent-itemset-based classification algorithms
[32, 31, 9] that have been shown to outperform traditional
classifiers that rely on heuristic search methods to discover
the classification rules.

The overall outline of our classification methodology
is shown in Figure 2. It consists of three distinct steps:
(i) feature generation, (ii) feature selection, and (iii) clas-
sification model construction. During the feature genera-
tion step, the chemical compounds are mined to discover
the frequently occurring sub-structures that correspond to
either topological or geometric subgraphs. These sub-

4



Chemical
Compounds

Feature
Vectors

Feature
Selection

Model
Learning

Support
Vectors

Model
Paramaters

Feature Selection
Strategy

Geometric
Frequent

Subgraphs

Topological
Frequent

Subgraphs

Feature Generation

Figure 2: Frequent Subgraph Based Classification Frame-
work

structures are then used as the features by which the com-
pounds are represented in the subsequent steps. During the
second step, a small set of features is selected such that the
selected features can correctly discriminate between the
difference classes found in the dataset. Finally, in the last
step each chemical compound is represented using these
set of features and a classification model is learnt. The rest
of this section describes these three steps in detail.

4.1 Feature Generation

Our classification algorithm finds sub-structures in a
chemical compound database using two different methods.
The first method uses the topological graph representation
of each compound whereas the second method is based
on the corresponding geometric graph representation (dis-
cussed in Section 2). In both of these methods, our algo-
rithm uses the topological or geometric connect subgraphs
that occur in at least σ% of the compounds to define the
sub-structures.

There are two important restrictions on the type of the
sub-structures that are discovered by our approach. The
first has to do with the fact that we are only interested in
sub-structures that are connected and is motivated by the
fact that connectivity is a natural property of such patterns.
The second has to do with the fact that we are only in-
terested in frequent sub-structures (as determined by the
value of σ ) as this ensures that we do not discover spuri-
ous sub-structures that will in general not be statistically
significant. Furthermore, this minimum support constraint
also helps in making the problem of frequent subgraph dis-
covery computationally tractable.

4.1.1 Frequent Topological Subgraphs
Developing frequent subgraph discovery algorithms is
particularly challenging and computationally intensive as
graph and/or subgraph isomorphisms play a key role
throughout the computations. Despite that, in recent years,
four different algorithms have been developed capable of
finding all frequently occurring subgraphs with reasonable
computational efficiency. These are the AGM algorithm
developed by Inokuchi et al [19], the FSG algorithm de-
veloped by members of our group [25], the chemical sub-
structure discovery algorithm developed by Borgelt and

Berthold [3], and the gSpan algorithm developed by Yan
and Han [46]. The enabling factors to the computational
efficiency of these schemes have been (i) the development
of efficient candidate subgraph generation schemes that re-
duce the number of times the same candidate subgraph is
being generated, (ii) the use of efficient canonical labeling
schemes to represent the various subgraphs; and (iii) the
use of various techniques developed by the data-mining
community to reduce the number of times subgraph iso-
morphism computations need to be performed.

In our classification algorithm we find the frequently
occurring subgraphs using the FSG algorithm. FSG takes
as input a database D of graphs and a minimum support
σ , and finds all connected subgraphs that occur in at least
σ% of the transactions. FSG, initially presented in [25],
with subsequent improvements presented in [27], uses a
breadth-first approach to discover the lattice of frequent
subgraphs. It starts by enumerating small frequent graphs
consisting of one and two edges and then proceeds to find
larger subgraphs by joining previously discovered smaller
frequent subgraphs. The size of these subgraphs is grown
by adding one-edge-at-a-time. The lattice of frequent pat-
terns is used to prune the set of candidate patterns and
it only explicitly computes the frequency of the patterns
which survived this downward closure pruning. Despite
the inherent complexity of the problem, FSG employs a
number of sophisticated techniques to achieve high com-
putational performance. It uses a canonical labeling al-
gorithm that fully makes use of edge and vertex labels
for fast processing, and various vertex invariants to re-
duce the complexity of determining the canonical label of
a graph. These canonical labels are then used to establish
the identity and total order of the frequent and candidate
subgraphs, a critical step of redundant candidate elimina-
tion and downward closure testing. It uses a sophisticated
scheme for candidate generation [27] that minimizes the
number of times each candidate subgraph gets generated
and also dramatically reduces the generation of subgraphs
that fail the downward closure test. Finally, for determin-
ing the actual frequency of each subgraph, FSG reduces
the number of subgraph isomorphism operations by using
TID-lists [11, 41, 48, 47] to keep track of the set of trans-
actions that supported the frequent patterns discovered at
the previous level of the lattice. For every candidate, FSG
takes the intersection of TID-lists of its parents, and per-
forms the subgraph isomorphism only on the transactions
contained in the resulting TID-list. As the experiments
presented in Section 5 show, FSG is able to scale to large
datasets and low support values.

4.1.2 Frequent Geometric Subgraphs
Topological sub-structures capture the connectivity of
atoms in the chemical compound but they ignore the 3D
shape (3D arrangement of atoms) of the sub-structures.
For certain classification problems the 3D shape of the
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sub-structure might be essential for determining the chem-
ical activity of a compound. For instance, the geomet-
ric configuration of atoms in a sub-structure is crucial for
its ability to bind to a particular target [29]. For this
reason we developed an algorithm that find all frequent
sub-structures whose topology as well as geometry is con-
served.

There are two important aspects specific to the geomet-
ric subgraphs that need to be considered. First, since the
coordinates of the vertices depend on a particular reference
coordinate axes, we would like the discovered geometric
subgraphs to be independent of these coordinate axes, i.e.,
we are interested in geometric subgraphs whose occur-
rences are translation, and rotation invariant. This dramat-
ically increases the overall complexity of the geometric
subgraph discovery process, because we may need to con-
sider all possible geometric configurations of a single pat-
tern. Second, while determining if a geometric subgraph
is contained in a bigger geometric graph we would like to
allow some tolerance when we establish a match between
coordinates, ensuring that slight deviations in coordinates
between two identical topological subgraphs do not lead to
a creation two geometric subgraphs. The amount of toler-
ance (r) should be a user specified parameter. The task of
discovering such r-tolerant frequent geometric subgraphs
dramatically changes the nature of the problem. In tradi-
tional pattern discovery problems such as finding frequent
itemsets, sequential patterns, and/or frequent topological
graphs there is a clear definition of what a pattern is, given
its set of supporting transactions. On the other hand, in
the case of r-tolerant geometric subgraphs, there are many
different geometric representations of the same pattern (all
of which will be r-tolerant isomorphic to each other). The
problem becomes not only that of finding a pattern and its
support, but also finding the right representative for this
pattern. The selection of the right representative can have
a serious impact on correctly computing the support of the
pattern. For example, given a set of subgraphs that are r-
tolerant isomorphic to each other, the one that corresponds
to an outlier will tend to have a lower support than the
one corresponding to the center. These two aspects of ge-
ometric subgraphs makes the task of discovering the full
fledged geometric subgraphs extremely hard [26].

To overcome this problem we developed a simpler, al-
beit less discriminatory, representation for geometric sub-
graphs. We use a property of a geometric graph called
the average inter-atomic distance that is defined as the
average Euclidean distance between all pairs of atoms in
the molecule. Note that the average inter-atomic distance
is computed between all pairs of atoms irrespective of
whether a bonds connects the atoms or not. The average
inter-atomic distance can be thought of as a geometric sig-
nature of a topological subgraph. The geometric subgraph
consists of two components, a topological subgraph and an
interval of average inter-atomic distance associated with it.

A geometric graph contains this geometric subgraph if it
contains the topological subgraph and the average inter-
atomic distance of the embedding (of the topological sub-
graph) is within the interval associated with the geometric
subgraph. Note that this geometric representation is also
translation and rotation invariant, and the width of the in-
terval determines the tolerance displayed by the geometric
subgraph. We are interested in discovering such geometric
subgraphs that occur above σ% of the transactions and the
interval of average inter-atomic distance is bound by r .

Since a geometric subgraph contains a topological sub-
graph, for the geometric subgraph to be frequent the corre-
sponding topological subgraph has to be frequent, as well.
This allows us to take advantage of the existing approach
to discover topological subgraphs. We modify the fre-
quency counting stage of the FSG algorithm as follows.
If a subgraph g is contained in a transaction t then all pos-
sible embeddings of g in t are found and the average inter-
atomic distance for each of these embeddings is computed.
This list of average inter-atomic distances is added to the
g.aiadList such that at the end of the frequent subgraph
discovery each topological subgraph has a list of average
inter-atomic distances associated with it. Each one of the
average inter-atomic distances corresponds to one of the
embeddings i.e., a geometric configuration of the topolog-
ical subgraph. This algorithm can be easily extended to
cases in which there are multiple 3D conformations asso-
ciated with each chemical compound (as discussed in Sec-
tion 2), by simply treating each distinct conformation as a
different chemical compound.

The task of discovering geometric subgraphs now re-
duces to identifying those geometric configurations that
are frequent enough, i.e., to identify intervals of average
inter-atomic distance such that each interval contains the
minimum number geometric configurations (σ ) and the
width of the interval is less than the tolerance threshold (r).
This task can be thought of as 1D clustering on the vec-
tor of average inter-atomic distances such that each cluster
contains items above the minimum support and the spread
of each cluster is bounded by the tolerance r . Note that
not all items will belong to a valid cluster as some of them
will be infrequent. In our experiments we set the value of
r to be equal to half of the minimum distance between any
two pairs of atoms in the compounds.

To find such clusters we perform agglomerative cluster-
ing on the vector of average inter-atomic distance values.
The distance between any two average inter-atomic dis-
tance values is defined as the difference in their numeric
values. To ensure that we get the largest possible clusters
we use the maximum-link criterion function for deciding
which two clusters should be merged [21]. The process
of agglomeration is continued until the interval containing
all the items in the cluster is below the tolerance threshold
(r). When we reach a stage where further agglomeration
would increase the spread of the cluster beyond the toler-
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ance threshold, we check the number of items contained
in the cluster. If the number of items is above the sup-
port threshold, then the interval associated with this clus-
ter is considered as a geometric feature. Since we are clus-
tering one-dimensional datasets, the clustering complexity
is low. Some examples of the distribution of the average
inter-atomic distance values and the associated clusters are
shown in Figure 3. Note that the average inter-atomic dis-
tance values of the third example are uniformly spread and
lead to no geometric subgraph.

Note that this algorithm for computing geometric sub-
graphs is approximate in nature for two reasons. First, the
average inter-atomic distance may map two different ge-
ometric subgraphs to the same average inter-atomic dis-
tance value. Second, the clustering algorithm may not find
the complete set of geometric subgraphs that satisfy the
r tolerance. Nevertheless, as our experiments in Section 5
show the geometric subgraphs discovered by this approach
improve the classification accuracy of the algorithm.

4.1.3 Additional Considerations
Even though FSG provides the general functionality re-
quired to find all frequently occurring sub-structures in
chemical datasets, there are a number of issues that need
to be addressed before it can be applied as a black-box tool
for feature discovery in the context of classification. One
issue deals with the selecting the right value for the σ ,
the support constraint used for discovering frequent sub-
structures. The value of σ controls the number of sub-
graphs discovered by FSG. Choosing a good value of σ is
especially important for the dataset containing classes of
significantly different sizes. In such cases, in order to en-
sure that FSG is able to find features that are meaningful
for all the classes, it must use a support that depends on
the size of the smaller class.

For this reason we first partition the complete dataset,
using the class label of the examples, into specific class
specific datasets. We then run FSG on each of these class
datasets. This partitioning of the dataset ensures that suffi-
cient subgraphs are discovered for those class labels which
occur rarely in the dataset. Next, we combine subgraphs
discovered from each of the class dataset. After this step
each subgraph has a vector that contains the frequency
with which it occurs in each class.

4.2 Feature Selection

The frequent subgraph discovery algorithms described in
Section 4.1 discovers all the sub-structures (topological or
geometric) that occur above a certain support constraint
(σ ) in the dataset. Though the discovery algorithm is com-
putationally efficient, the algorithm can generate a large
number of features. A large number of features is detri-
mental for two reasons. First, it could increase the time
required to build the model. But more importantly, a
large number of features can increase the time required

to classify a chemical compound, as we need to first iden-
tify which of the discovered features it contains before we
can apply the classification model. Determining whether a
compound contains a particular feature or not can be com-
putationally expensive as it may require a subgraph iso-
morphism operation. This problem is especially critical in
the drug discovery process where the classification model
is learnt on a small set of chemical compounds and it is
then applied on large chemical compound libraries con-
taining millions of compounds.

One way of solving this problem is to follow a heuris-
tic subgraph discovery approach (similar in spirit to pre-
viously developed methods [4, 15]) in which during the
subgraph discovery phase itself, the discriminatory ability
of a particular subgraph is determined, and the discovery
process is terminated as soon as a subgraph is generated
that is less discriminatory than any of its subgraphs. By
following this approach, then the total number of features
will be substantially reduced, achieving the desired objec-
tive. However, the limitation with such an approach is that
it may fail to discover and use highly discriminatory sub-
graphs. This is because the discriminatory ability of a sub-
graph does not (in general) consistently increase as a func-
tion of its size, and subgraphs that appear to be poor dis-
criminators may become very discriminatory by growing
their size. For this reason, in order to develop an effec-
tive feature selection method, we use a scheme that first
finds all frequent subgraphs and then selects among them
a small set of discriminatory features. The advantage of
this approach is that during feature selection all frequent
subgraphs are considered irrespective of when they were
generated and whether or not they contain less or more
discriminatory subgraphs.

The feature selection scheme is based on the sequen-
tial covering paradigm used to learn rule sets [33]. To
apply this algorithm we assume that each discovered sub-
structure corresponds to a rule, with the class label of the
sub-structure as the target attribute, such rules are referred
as class-rules in [32]. The sequential covering algorithm
takes as input a set of examples and the features discov-
ered from these examples, and iteratively applies the fea-
ture selection step. In this step the algorithm selects the
feature that has the highest estimated accuracy. After se-
lecting this feature all the examples containing this feature
are eliminated and the feature is marked as selected. In the
next iteration of the algorithm the same step is applied, but
on a smaller set of examples. The algorithm continues in
an iterative fashion until either all the features are selected
or all the examples are eliminated.

In this paper we use a computationally efficient im-
plementation of sequential covering algorithm known as
CBA [32], this algorithm proceeds by first sorting the fea-
tures based on confidence and then applying the sequential
covering algorithm on this sorted set of features. One of
the advantages of this approach is that it requires mini-
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Figure 3: Some examples of the one-dimensional clustering of average inter-atomic distance values.

mal number of passes on the dataset, hence is very scal-
able. To obtain a better control over the number of se-
lected features we use an extension of the sequential cov-
ering scheme known as Classification based on Multiple
Rules (CMAR) [31]. In this scheme instead of removing
the example after it is covered by the selected feature, the
example is removed only if that example is covered by δ

selected features. The number of selected rules increases
as the value of δ increases, an increase in the number of
features usually translates into an improvement in the ac-
curacy as more features are used to classify a particular
example. The value of δ is specified by the user and pro-
vides a means to the user to control the number of features
used for classification.

4.3 Classification Model Construction

Given the frequent subgraphs discovered in the previous
step, our algorithm treats each of these subgraphs as a
feature and represents the chemical compound as a fre-
quency vector. The i th entry of this vector is equal to
the number of times (frequency) that feature occurs in the
compound’s graph. This mapping into the feature space
of frequent subgraphs is performed both for the training
and the test dataset. Note that the frequent subgraphs
were identified by mining only the graphs of the chemi-
cal compounds in the training set. However, the mapping
of the test set requires that we check each frequent sub-
graph against the graph of the test compound using sub-
graph isomorphism. Fortunately, the overall process can
be substantially speeded up by taking into account the fre-
quent subgraph lattice that is also generated by FSG. In
this case, we traverse the lattice from top to bottom and
only visit the child nodes of a subgraph if that subgraph is
isomorphic to the chemical compound.

Once the feature vectors for each chemical compound
have been built, any one of the existing classification al-
gorithms can potentially be used for classification. How-
ever, the characteristics of the transformed dataset and the
nature of the classification problem itself tends to limit the
applicability of certain classes of classification algorithms.
In particular, the transformed dataset will most likely be
high dimensional, and second, it will be sparse, in the
sense that each compound will have only a few of these
features, and each feature will be present in only a few of
the compounds. Moreover, in most cases the positive class
will be much smaller than the negative class, making it un-
suitable for classifiers that primarily focus on optimizing
the overall classification accuracy.

In our study we built the classification models using
support vector machines (SVM) [44], as they are well-
suited for operating in such sparse and high-dimensional
datasets. Furthermore, an additional advantage of SVM
is that it allows us to directly control the cost associated
with the miss-classification of examples from the different
classes [34]. This allow us to associate a higher cost for
the miss-classification of positive instances; thus, biasing
the classifier to learn a model that tries to increase the true-
positive rate, at the expense of increasing the false positive
rate.

5 Experimental Evaluation

We experimentally evaluated the performance of our clas-
sification algorithm and compared it against that achieved
by earlier approaches on a variety of chemical compound
datasets. The datasets, experimental methodology, and re-
sults are described in subsequent sections.

5.1 Datasets

We used three different publicly available datasets to de-
rive a total of eight different classification problems. The
first dataset was initially used as a part of the Predictive
Toxicology Evaluation Challenge [42] which was orga-
nized as a part of PKDD/ECML 2001 Conference2. It
contains data published by the U.S. National Institute for
Environmental Health Sciences, the data consists of bio-
assays of different chemical compounds on rodents to
study the carcinogenicity (cancer inducing) properties of
the compounds [42]. The goal being to estimate the car-
cinogenicity of different compounds on humans. Each
compound is evaluated on four kinds of laboratory animals
(male Mice, female Mice, male Rats, female Rats), and is
assigned four class labels each indicating the toxicity of
the compound for that animal. There are four classifica-
tion problems one corresponding to each of the rodents
and will be referred as P1, P2, P3, and P4.

The second dataset is obtained from the National Can-
cer Institute’s DTP AIDS Anti-viral Screen program [10,
24] 3. Each compound in the dataset is evaluated for ev-
idence of anti-HIV activity. The screen utilizes a solu-
ble formazan assay to measure protection of human CEM
cells from HIV-1 infection [45]. Compounds able to pro-
vide at least 50% protection to the CEM cells were re-
tested. Compounds that provided at least 50% protec-

2http://www.informatik.uni-freiburg.de/˜ml/ptc/.
3http://dtp.nci.nih.gov/docs/aids/aids data.html.
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tion on retest were listed as moderately active (CM, con-
firmed moderately active). Compounds that reproducibly
provided 100% protection were listed as confirmed ac-
tive (CA). Compounds neither active nor moderately ac-
tive were listed as confirmed inactive (CI). We have for-
mulated three classification problems on this dataset, in the
first problem we consider only confirmed active (CA) and
moderately active (CM) compounds and then build a clas-
sifier to separate these two compounds; this problem is re-
ferred as H1. For the second problem we combine moder-
ately active (CM) and confirmed active (CA) compounds
to form one set of active compounds, we then build a clas-
sifier to separate these active and confirmed inactive com-
pounds; this problem is referred as H2. In the last problem
we only use confirmed active (CA) and confirmed inactive
compounds and build a classifier to categorize these two
compounds; this problem is referred as H3.

The third dataset was obtained from the Center of Com-
putational Drug Discovery’s anthrax project at the Uni-
versity of Oxford [40]. The goal of this project was to
discover small molecules that would bind with the hep-
tameric protective antigen component of the anthrax toxin,
and prevent it from spreading its toxic effects. A library of
small sized chemical compounds was screened to identify
a set of chemical compounds that could bind with the an-
thrax toxin. The screening was done by computing the
binding free energy for each compound using numerical
simulations. The screen identified a set of 12,376 com-
pounds that could potentially bind to the anthrax toxin and
a set of 22,460 compounds that were unlikely to bind to
the chemical compound. The average number of vertices
in this dataset is 25 and the average number of edges is
also 25. The classification problem for this dataset was
given a chemical compounds classify it in to one of these
two classes, i.e, will the compound bind the anthrax toxin
or not. This classification problem is referred as A1.

Toxic. Aids Anthrax Class Dist. (% +ve class)
N 417 42,687 34,836 Toxicology
N̄A 25 46 25 P1: Male Mice 38.3%
N̄B 26 48 25 P2: Female Mice 40.9%
L̄ A 40 82 25 P3: Male Rats 44.2%
L̄ B 4 4 4 P4: Female Rats 34.4%
max NA 106 438 41 AIDS
min NA 2 2 12 H1: CA/CM 28.1%
max NB 1 276 44 H2: (CA+CM)/CI 3.5%
min NB 85 1 12 H3: CA/CI 1.0%

Anthrax
A1: active/inactive 35%

Table 1: The characteristics of the various datasets. N
is the number of compounds in the database. N̄A and
N̄B are the average number of atoms and bonds in each
compound. L̄ A and L̄ B are the average number of atom-
and bond-types in each dataset. max NA/min NA and
max NB /min NB are the maximum/minimum number of
atoms and bonds over all the compounds in each dataset.

Some important characteristics of these datasets are
summarized in Table 1. The right hand side of the table

displays the class distribution for different classification
problems, for each problem the table displays the percent-
age of positive class found in the dataset for that classifica-
tion problem. Note that both the DTP-AIDS and the An-
thrax datasets are quite large containing 42,687 and 34,836
compounds, respectively. Moreover, in the case of DTP-
AIDS, each compound is also quite large having on an av-
erage 46 atoms and 48 bonds.

5.2 Experimental Methodology & Metrics

The classifications results were obtained by performing
5-way cross validation on the dataset, ensuring that the
class distribution in each fold is identical to the origi-
nal dataset. For the SVM classifier we used SVMLight
library [20]. All the experiments were conducted on a
1500MHz Athlon MP processors having a 2GB of mem-
ory.

Since the size of the positive class is significantly
smaller than the negative class, using accuracy to judge
a classifier would be incorrect. To get a better understand-
ing of the classifier performance for different cost settings
we obtain the ROC curve [38] for each classifier. ROC
curve plots the false positive rate (X -axis) versus the true
positive rate (Y -axis) of a classier; it displays the perfor-
mance of the classifier without regard to class distribution
or error cost. Two classifiers are compared by comparing
the area under their respective ROC curves, a larger area
under ROC curve indicating better performance. The area
under the ROC curve will be referred by the parameter A.

5.3 Results

Varying Minimum Support The key parameter of
the proposed frequent sub-structure-based classification
algorithm is the choice of the minimum support (σ ) used to
discover the frequent sub-structures (either topological or
geometric). To evaluate the sensitivity of the algorithm on
this parameter we performed a set of experiments in which
we varied σ from 10% to 20% in 5% increments. The re-
sults of these experiments are shown in the left sub-table of
Table 2 for both topological and geometric sub-structures.

From Table 2 we observe that as we increase σ , the
classification performance for most datasets tends to de-
grade. However, in most cases this degradation is gradual
and correlates well with the decrease on the number of
sub-structures that were discovered by the frequent sub-
graph discovery algorithms. The only exception is the H2
problem for which the classification performance (as mea-
sured by ROC) degrades substantially as we increase the
minimum support from 10% to 20%. Specifically, in the
case of topological subgraphs, the performance drops from
70.1 down to 59.0, and in the case of geometric subgraphs
it drops from 76.0 to 58.1.

These results suggest that lower values of support are
in general better as they lead to better classification per-
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Dset. σ=10.0% σ = 15.0% σ = 20.0% Optimized σ

Topo. Geom. Topo. Geom. Topo. Geom. Topo. Geom. Per class T imep
A N f A N f A N f A N f A N f A N f A N f A N f σ (sec)

P1 66.0 1211 65.5 1317 66.0 513 64.1 478 64.4 254 60.2 268 65.5 24510 65.0 23612 3.0, 3.0 211
P2 65.0 967 64.0 1165 65.1 380 63.3 395 64.2 217 63.1 235 67.3 7875 69.9 12673 3.0, 3.0 72
P3 60.5 597 60.7 808 59.4 248 61.3 302 59.9 168 60.9 204 62.6 7504 64.8 10857 3.0, 3.0 66
P4 54.3 275 55.4 394 56.2 173 57.4 240 57.3 84 58.3 104 63.4 25790 63.7 31402 3.0, 3.0 231
H1 81.0 27034 82.1 29554 77.4 13531 79.2 8247 78.4 7479 79.5 7700 81.0 27034 82.1 29554 10.0, 10.0 137
H2 70.1 1797 76.0 3739 63.6 307 62.2 953 59.0 139 58.1 493 76.5 18542 79.1 29024 10.0, 5.0 1016
H3 83.9 27019 89.5 30525 83.6 13557 88.8 11240 84.6 7482 87.7 7494 83.9 27019 89.5 30525 10.0, 10.0 392
A1 78.2 476 79.0 492 78.2 484 77.6 332 77.1 312 76.1 193 81.7 3054 82.6 3186 5.0, 3.0 145

Table 2: Varying minimum support threshold (σ ). “A” denotes the area under the ROC curve and “N f ” denotes the
number of discovered frequent subgraphs.

formance. However, as the support decreases, the num-
ber of discovered sub-structures and the amount of time
required also increases. Thus, depending on the dataset,
some experimentation may be required to select the proper
values of support that balances these conflicting require-
ments (i.e., low support but reasonable number of sub-
structures).

In our study we performed such experimentation. For
each dataset we kept on decreasing the value of support
down to the point after which the number of features that
were generated was too large to be efficiently processed
by the SVM library. The resulting support values, num-
ber of features, and associated classification performance
are shown in the right sub-table of Table 2 under the ta-
ble header “Optimized σ ”. Note that for each problem
two different support values are displayed corresponding
to the supports that were used to mine the positive and
negative class, respectively. Also, the last column shows
the amount of time required by FSG to find the frequent
subgraphs and provides a good indication of the compu-
tational complexity at the feature discovery phase of our
classification algorithm.

Comparing the ROC values obtained in these experi-
ments with those obtained for σ = 10%, we can see that
as before, the lower support values tend to improve the
results, with measurable improvements for problems in
which the number of discovered sub-structures increased
substantially. In the rest of our experimental evaluation we
will be using the frequent subgraphs that were generated
using these values of support.

Varying Misclassification Costs Since for each
classification problem instance the number of positive ex-
amples is in general much smaller than the number of
negative examples, we performed a set of experiments in
which the misclassification cost associated with each pos-
itive example was increased to match the number of neg-
ative examples. That is, if n+ and n− is the number of
positive and negative examples, respectively, the misclas-
sification cost β was set equal to (n−/n+ − 1) (so that
n− = βn+). We refer to this value of β as the “EqCost”
value. The classification performance achieved by our al-
gorithm using either topological or geometric subgraphs
for β = 1.0 and β = EqCost is shown in Table 3. Note
that the β = 1.0 results are the same with those presented

in the right subtable of Table 2.

Dataset Topo Geom
β = 1.0 β = EqCost β = 1.0 β = EqCost

P1 65.5 65.3 65.0 66.7
P2 67.3 66.8 69.9 69.2
P3 62.6 62.6 64.8 64.6
P4 63.4 65.2 63.7 66.1
H1 81.0 79.2 82.1 81.1
H2 76.5 79.4 79.1 81.9
H3 83.9 90.8 89.5 94.0
A1 81.7 82.1 82.6 83.0

Table 3: The area under the ROC curve obtained by vary-
ing the misclassification cost. “β = 1.0” indicates the
experiments in which each positive and negative example
had a weight of one, and “β = EqCost” indicates the ex-
periments in which the misclassification cost of the posi-
tive examples was increased to match the number of nega-
tive examples.

From the results in this table we can see that, in general,
increasing the misclassification cost so that it balances the
size of positive and negative class tends to improve the
classification accuracy. When β = EqCost, the clas-
sification performance improves for four and five prob-
lems for the topological and geometric subgraphs, respec-
tively. Moreover, in the cases in which the performance
decreased, that decrease was quite small, whereas the im-
provements achieved for some problem instances (e.g., P4,
H1, and H2) was significant. In the rest of our experi-
ments we will focus only on the results obtained by setting
β = EqCost.

Feature Selection We evaluated the performance of
the feature selection scheme based on sequential covering
(described in Section 4.2) by performing a set of experi-
ments in which we varied the parameter δ that controls the
number of times an example must be covered by a feature,
before it is removed from the set of yet to be covered ex-
amples. Table 4 displays the results of these experiments.
The results under the column labeled “Original” shows the
performance of the classifier without any feature selection.
These results are identical to those shown in Table 3 for
β = EqCost and are included here to make comparisons
easier.

Two key observations can be made by studying the re-
sults in this table. First, as expected, the feature selec-
tion scheme is able to substantially reduce the number of
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Topological Features
Dataset. Original δ = 1 δ = 5 δ = 10 δ = 15

A N f A N f A N f A N f A N f
P1 65.3 24510 65.4 143 66.4 85 66.5 598 66.7 811
P2 66.8 7875 69.5 160 69.6 436 68.0 718 67.5 927
P3 62.6 7504 68.0 171 65.2 455 64.2 730 64.5 948
P4 65.2 25790 66.3 156 66.0 379 64.5 580 64.1 775
H1 79.2 27034 78.4 108 79.2 345 79.1 571 79.5 796
H2 79.4 18542 77.1 370 78.0 1197 78.5 1904 78.5 2460
H3 90.8 27019 88.4 111 89.6 377 90.0 638 90.5 869
A1 82.1 3054 80.6 620 81.4 1395 81.5 1798 81.8 2065

Geometric Features
Dataset. Original δ = 1 δ = 5 δ = 10 δ = 15

A N f A N f A N f A N f A N f
P1 66.7 23612 68.3 161 68.1 381 67.4 613 68.7 267
P2 69.2 12673 72.2 169 73.9 398 73.1 646 73.0 265
P3 64.6 10857 71.1 175 70.0 456 71.0 241 66.7 951
P4 66.1 31402 68.8 164 69.7 220 67.4 609 66.2 819
H1 81.1 29554 80.8 128 81.6 396 81.9 650 82.1 885
H2 81.9 29024 80.0 525 80.4 1523 80.6 2467 81.2 3249
H3 94.0 30525 91.3 177 92.2 496 93.1 831 93.2 1119
A1 83.0 3186 81.0 631 82.0 1411 82.4 1827 82.7 2106

Table 4: Results obtained using feature selection based on sequential rule covering. “δ” specifies the number of times
each example needs to be covered before it is removed, “A” denotes the area under the ROC curve and “N f ” denotes the
number of features that were used for classification.

features. In some cases the number of features that was se-
lected decreased by almost two orders of magnitude. Also,
as δ increases, the number of retained features increases;
however, this increase is gradual. Second, the overall clas-
sification performance achieved by the feature selection
scheme when δ ≥ 5 is quite comparable to that achieved
with no feature selection. The actual performance de-
pends on the problem instance and whether or not we use
topological or geometric subgraphs. In particular, for the
first four problems (P1, P2, P3, and P4) derived from the
PTC dataset, the performance actually improves with fea-
ture selection. Such improvements are possible even in
the context of SVM-based classifiers as models learned on
lower dimensional spaces will tend to have better gener-
alization ability [9]. Also note that for some datasets the
number of features decreases as δ increases. This is be-
cause the features that were selected have higher average
support.

Topological versus Geometric Subgraphs The
various results shown in Tables 2–4 also provide an in-
dication on the relative performance of topological versus
geometric subgraphs. In almost all cases, the classifier that
is based on geometric subgraphs outperforms that based
on topological subgraphs. For some problems, the perfor-
mance advantage is marginal whereas for other problems,
geometric subgraphs lead to measurable improvements in
the area under the ROC curve. For example, if we consider
the results shown in Table 3 for β = EqCost, we can see
the geometric subgraphs lead to improvements that are at
least 3% or higher for P2, P3, and H3, and the average im-
provement over all eight problems is 2.6%. As discussed
in Section 4.1.2, these performance gains is due to the fact
that conserved geometric structure is a better indicator of
a chemical compounds activity than just its topology.

Property Dim. Property Dim.
Solvent accessible area Å2 Moment of Inertia none
Total accessible area Å2 Total energy kcal/mol
Total accessible volume Å3 Bend energy kcal/mol
Total Van der Waal’s area Å2 Hbond energy kcal/mol
Total Van der Waal’s volume Å3 Stretch energy kcal/mol
Dipole moment Debye Nonbond energy kcal/mol
Dipole moment comp. (X, Y, Z) Debye Estatic energy kcal/mol
Heat of formation Debye Torsion energy kcal/mol
Multiplicity K cal Quantum total charge eV

Table 5: QSAR Properties.

5.4 Comparison with Other Approaches

We compared the performance of our classification algo-
rithm against the performance achieved by the QSAR-
based approach and the approach that uses the SUBDUE
system to discover a set of sub-structures.

Comparison with QSAR As discussed in Section 3
there is a wide variety of QSAR properties each of which
captures certain aspects of a compounds chemical activity.
For our study, we have chosen a set of 18 QSAR proper-
ties that are good descriptors of the chemical activity of
a compound and most of them have been previously used
for classification purposes [1]. A brief description of these
properties are shown in Table 5. We used two programs
to compute these attributes, the geometric attributes like
solvent accessible area, total accessible area/vol, total Van
der Waal’s accessible area/vol were computed using the
programs SASA [28], the remaining attributes were com-
puted using Hyperchem software.

We used two different algorithms to build classifica-
tion models based on these QSAR properties. The first is
the C4.5 decision tree algorithm [39] that has been shown
to produce good models for chemical compound classifi-
cation based on QSAR properties [1], and the second is
the SVM algorithm that was used to build the classifica-
tion models in our frequent sub-structure-based approach.
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Since the range of values of the different QSAR proper-
ties can be significantly different, we first scaled them to
be in the range of [0, 1] prior to building the SVM model.
We found that this scaling resulted in some improvements
in the overall classification results. Note that C4.5 is not
affected by such scaling.

Dataset SVM C4.5 Freq. Sub. Prec.
A Precision Recall Topo Geom

P1 60.2 0.4366 0.1419 0.6972 0.6348
P2 59.3 0.3603 0.0938 0.8913 0.8923
P3 55.0 0.6627 0.1275 0.7420 0.7427
P4 45.4 0.2045 0.0547 0.6750 0.8800
H1 64.5 0.5759 0.1375 0.7347 0.7316
H2 47.3 0.6282 0.4071 0.7960 0.7711
H3 61.7 0.5677 0.2722 0.7827 0.7630
A1 49.4 0.5564 0.3816 0.7676 0.7798

Table 6: Performance of the QSAR-based Classifier.

Table 6 shows the results obtained by the QSAR-based
methods for the different datasets. The values shown for
SVM correspond to the area under the ROC curve and
can be directly compared with the corresponding values
obtained by our approaches (Tables 2–4). Unfortunately,
since C4.5 does not produce a ranking of the training set
based on its likelihood of being in the positive class, it
is quite hard to obtain the ROC curve. For this reason,
the values shown for C4.5 correspond to the precision
and recall of the positive class for the different datasets.
Also, to make the comparisons between C4.5 and our
approach easier, we also computed the precision of our
classifier at the same value of recall as that achieved by
C4.5. These results are shown under the columns labeled
“Freq. Sub. Prec.” for both topological and geometric
features and were obtained from the results shown in Ta-
ble 3 for β = EqCost. Note that the QSAR results for
both SVM and C4.5 were obtained using the same cost-
sensitive learning approach.

Comparing both the SVM-based ROC results and the
precision/recall values of C4.5 we can see that our ap-
proach substantially outperforms the QSAR-based classi-
fier. In particular, our topological subgraph based algo-
rithm does 35% better compared to SVM-based QSAR
and 72% better in terms of the C4.5 precision at the
same recall values. Similar results hold for the geomet-
ric subgraph based algorithm. These results are consis-
tent with those observed by other researchers [43, 22] that
showed that sub-structure based approaches outperform
those based on QSAR properties.

Comparison with SUBDUE & SubdueCL Finally,
to evaluate the advantage of using the complete set of fre-
quent sub-structures over existing schemes that are based
on heuristic sub-structure discovery, we performed a series
of experiments in which we used the SUBDUE system to
find the sub-structures and then used them for classifica-
tion. Specifically, we performed two sets of experiments.
In the first set, we obtain a set of sub-structures using the

Dataset Subdue. SubdueCL.
A N f T imep A N f T imep

P1 61.9 1288 303sec 63.5 2103 301sec
P2 64.2 1374 310sec 63.3 2745 339sec
P3 57.4 1291 310sec 59.6 1772 301sec
P4 58.5 1248 310sec 60.8 2678 324sec
H1 74.2 1450 1,608sec 73.8 960 1002sec
H2 58.5 901 232,006sec 65.2 2999 476,426sec
H3 71.3 905 178,343sec 77.5 2151 440,416sec
A1 75.3 983 56,056sec 75.9 1094 31,177sec

Table 7: Performance of the SUBDUE and SubdueCl-
based approaches.

standard MDL-based heuristic sub-structure discovery ap-
proach of SUBDUE [18]. In the second set, we used the
sub-structures discovered by the more recent SubdueCl al-
gorithm [15] that guides the heuristic beam search using
a scheme that measures how well a subgraph describes
the positive examples in the dataset without describing the
negative examples.

Even though there are a number of parameters control-
ling SUBDUE’s heuristic search algorithm, the most criti-
cal among them are the width of the beam search, the max-
imum size of the discovered subgraph, and the total num-
ber of subgraphs to be discovered. In our experiments, we
spent a considerable amount of time experimenting with
these parameters to ensure that SUBDUE was able to find
a reasonable number of sub-structures. Specifically, we
changed the width of the beam search from 4 to 50 and
set the other two parameters to high numeric values. Note
that in the case of the SubdueCl, in order to ensure that the
subgraphs were discovered that described all the positive
examples, the subgraph discovery process was repeated by
increasing the value of beam-width at each iteration and
removing the positive examples that were covered by sub-
graphs.

Table 7 shows the performance achieved by SUBDUE
and SubdueCl on the eight different classification prob-
lems along with the number of subgraphs that it gener-
ated and the amount of time that it required to find these
subgraphs. These results were obtained by using the sub-
graphs discovered by either SUBDUE or SubdueCl as fea-
tures in an SVM-based classification model. Essentially,
our SUBDUE and SubdueCl classifiers have the same
structure as our frequent subgraph-based classifiers with
the only difference being that the features now correspond
to the subgraphs discovered by SUBDUE and SubdueCl.
Moreover, to make the comparisons as fair as possible we
used β = EqCost as the misclassification cost. We also
performed another set of experiments in which we used
the rule-based classifier produced by SubdueCl. The re-
sults of this scheme was inferior to those produced by the
SVM-based approach and we are not reporting them here.

Comparing SUBDUE against SubdueCl we can see
that the latter achieves better classification performance,
consistent with the observations made by other re-
searchers [15]. Comparing the SUBDUE and SubdueCl-
based results with those obtained by our approach (Ta-
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bles 2–4) we can see that in almost all cases both our topo-
logical and geometric frequent subgraph-based algorithms
lead to substantially better performance. This is true both
in the cases in which we performed no feature selection as
well as in the cases in which we used the sequential cov-
ering based feature selection scheme. In particular, com-
paring the SubdueCl results against the results shown in
Table 4 without any feature selection we can see that on
the average, our topological and geometric subgraph based
algorithms do 9.3% and 12.2% better, respectively. More-
over, even after feature selection with δ = 15 that result
in a scheme that have comparable number of features as
those used by SubdueCl, our algorithms are still better by
9.7% and 13.7%, respectively. Finally, if we compare the
amount of time required by either SUBDUE or SubdueCl
to that required by the FSG algorithm to find all frequent
subgraphs (last column of Table 2 we can see that despite
the fact that we are finding the complete set of frequent
subgraphs our approach requires substantially less time.

6 Conclusions and Directions for Fu-
ture Research

In this paper we presented a highly-effective algorithm for
classifying chemical compounds based on frequent sub-
structure discovery that can scale to large datasets. Our
experimental evaluation showed that our algorithm leads
to substantially better results than those obtained by ex-
isting QSAR- and sub-structure-based methods. More-
over, besides this improved classification performance, the
sub-structure-based nature of this scheme provides to the
chemists valuable information as to which sub-structures
are most critical for the classification problem at hand.
For example, Figure 4 shows the three most discriminat-
ing sub-structures for the PTC, DTP AIDS, and Anthrax
datasets that were obtained by analyzing the decision hy-
perplane produced by the SVM classifier. A chemist can
then use this information to understand the models and po-
tentially use it to design better compounds.

The classification algorithms presented in this paper
can be improved along three different directions. First,
as already discussed in Section 2 our current geometric
graph representation utilizes a single conformation of the
chemical compound and we believe the overall classifi-
cation performance can be improved by using all possi-
ble low-energy conformations. Such conformations can
be obtained from existing 3D coordinate prediction soft-
ware and as discussed in Section 4.1.2 can be easily in-
corporated in our existing framework. Second, our current
feature selection algorithms only focus on whether or not
a particular sub-structure is contained in a compound and
they do not take into account how these fragments are dis-
tributed over different parts of the molecule. Better fea-
ture selection algorithms can be developed by taking this
information into account so that to ensure that the entire
(or most of) molecule is covered by the selected features.
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Figure 4: The three most discriminating sub-structures for
the PTC, AIDS, and Anthrax datasets.

Figure 5: Venn diagrams displaying the relation between
the positive examples that were correctly classified by the
three approaches at different cutoff values for the Anthrax
dataset. The different cutoffs were obtained by looking at
only the top 1%, 5%, and 15% of the ranked predictions.
Each circle in the Venn diagram corresponds to one of the
three classification schemes and the size of the circle indi-
cates the number of positive examples correctly identified.
The overlap between two circles indicates the number of
common correct predictions.

Third, even though the proposed approaches significantly
outperformed that based on QSAR, our analysis showed
that there is a significant difference as to which compounds
are correctly classified by the sub-structure- and QSAR-
based approaches. For example, Figure 5 shows the over-
lap among the different correct predictions produced by
the geometric, topological, and QSAR-based methods at
different cutoff values for the Anthrax dataset. From these
results we can see that there is a great agreement between
the substructure-based approaches but there is a large dif-
ference among the compounds that are correctly predicted
by the QSAR approach, especially at the top 1% and 5%.
These results suggest that better results can be potentially
obtained by combining the substructure- and QSAR-based
approaches.
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