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Abstract—Computational techniques that build models to correctly assign chemical compounds to various classes of interest have
many applications in pharmaceutical research and are used extensively at various phases during the drug development process.
These techniques are used to solve a number of classification problems such as predicting whether or not a chemical compound has
the desired biological activity, is toxic or nontoxic, and filtering out drug-like compounds from large compound libraries. This paper
presents a substructure-based classification algorithm that decouples the substructure discovery process from the classification model
construction and uses frequent subgraph discovery algorithms to find all topological and geometric substructures present in the data
set. The advantage of this approach is that during classification model construction, all relevant substructures are available allowing
the classifier to intelligently select the most discriminating ones. The computational scalability is ensured by the use of highly efficient
frequent subgraph discovery algorithms coupled with aggressive feature selection. Experimental evaluation on eight different
classification problems shows that our approach is computationally scalable and, on average, outperforms existing schemes by

7 percent to 35 percent.

Index Terms—Classification, chemical compounds, virtual screening, graphs, SVM.

1 INTRODUCTION

DISCOVERING new drugs is an expensive and challenging
process. Any new drug should not only produce the
desired response to the disease, but should do so with
minimal side effects and be superior to existing drugs. One
of the key steps in the drug design process is the
identification of the chemical compounds (hit compounds)
that display the desired and reproducible behavior against
the specific biomolecular target [53] and represents a
significant hurdle in the early stages of drug discovery.
The 1990s saw the widespread adoption of high-throughput
screening (HTS) and ultra HTS [13], [35], which use highly
automated techniques to conduct the biological assays and
can be used to screen a large number of compounds.
Although the number of compounds that can be evaluated
by these methods is very large, these numbers are small in
comparison to the millions of drug-like compounds that
exist or can be synthesized by combinatorial chemistry
methods. Moreover, in most cases, it is hard to find all
desirable properties in a single compound and medicinal
chemists are interested in not just identifying the hits, but
studying what part of the chemical compound leads to the
desirable behavior, so that new compounds can be
rationally synthesized (lead development).

Computational techniques that build models to correctly
assign chemical compounds to various classes of interest
can address these limitations, have many applications in
pharmaceutical research, and are used extensively to
replace or supplement HTS-based approaches. These
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techniques are designed to computationally search large
compound databases to select a limited number of
candidate molecules for testing in order to identify novel
chemical entities that have the desired biological activity.
The combination of HTS with these wvirtual screening
methods allows a move away from purely random-based
testing, toward more meaningful and directed iterative
rapid-feedback searches of subsets and focused libraries.
However, the challenge in developing practical virtual
screening methods is to develop chemical compound
classification algorithms that can be applied fast enough
to rapidly evaluate potentially millions of compounds while
achieving sufficient accuracy to successfully identify a
subset of compounds that is significantly enriched in hits.

In recent years, two classes of techniques have been
developed for solving the chemical compound classification
problem. The first class, corresponding to the traditional
quantitative structure-activity relationships (QSAR) ap-
proaches [8], [36], [37], [80], contains methods that represent
the chemical compounds using various descriptors (e.g.,
physicochemical properties, topological and/or geometric
indices, fingerprints, etc.) and then apply various statistical
or machine learning approaches to learn the classification
models. The second class operates directly on the structure
of the chemical compound and try to automatically identify
a small number of chemical substructures that can be used
to discriminate between the different classes [19], [24], [40],
[50], [82]. A number of comparative studies [44], [77] have
shown that techniques based on the automatic discovery of
chemical substructures are superior to those based on
QSAR and require limited user intervention and domain
knowledge. However, despite their success, a key limitation
of these techniques is that they rely on heuristic search
methods to discover these substructures. Even though such
approaches reduce the inherently high computational
complexity associated with these schemes, they may lead
to suboptimal classifiers in cases in which the heuristic
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search failed to uncover substructures that are critical for
the classification task.

In this paper, we present a substructure-based classifier
that overcomes the limitations associated with existing
algorithms. One of the key ideas of this approach is to
decouple the substructure discovery process from the
classification model construction step and use frequent
subgraph discovery algorithms to find all chemical sub-
structures that occur a sufficiently large number of times.
Once the complete set of these substructures has been
identified, the algorithm then proceeds to build a classifica-
tion model based on them. The advantage of such an
approach is that during classification model construction,
all relevant substructures are available allowing the
classifier to intelligently select the most discriminating
ones. To ensure that such an approach is computationally
scalable, we use recently developed [47], [50] highly
efficient frequent subgraph discovery algorithms coupled
with aggressive feature selection to reduce both the amount
of time required to build as well as to apply the
classification model. In addition, we present a substructure
discovery algorithm that finds a set of substructures whose
geometry is conserved, further improving the classification
performance of the algorithm.

We experimentally evaluated the performance of these
algorithms on eight different problems derived from three
publicly available data sets and compared their perfor-
mance against that of traditional QSAR and fingerprint-
based classifiers and existing substructure classifiers based
on SUBDUE [20] and SubdueCL [32]. Our results show that
these algorithms, on the average, outperform QSAR and
fingerprint-based schemes by 7 percent to 35 percent and
SUBDUE-based schemes by 10 percent. Portions of these
results were first published in a short paper that appears in
the International Conference on Data Mining 2003 [26].

The rest of the paper is organized as follows: Section 2
provides some background information related to chemical
compounds, their activity, and their representation. Section 3
providesasurvey on therelated research in this area. Section 4
provides the details of the chemical compound classification
approach. Section 5 experimentally evaluates its performance
and compares it against other approaches. Finally, Section 6
provides outlines directions of future research and provides
some concluding remarks.

2 BACKGROUND

The activity of a compound largely depends on its chemical
structure and the arrangement of different atoms in
3D space. As a result, effective classification algorithms
must be able to directly take into account the structural
nature of these data sets. In this paper, we represent each
compound by its corresponding chemical graph [43]. The
vertices of these graphs correspond to the various atoms
(e.g., carbon, nitrogen, oxygen, etc.), and the edges
correspond to the bonds between the atoms (e.g., single,
double, etc.). Each of the vertices and edges has a label
associated with it. The labels on the vertices correspond to
the type of atoms and the labels on the edges correspond to
the type of bonds. We will refer to this representation as the
topological graph representation of a chemical compound.

To capture the 3D structural information of a chemical
compound, each vertex of the graph has a 3D-coordinate
indicating the position of the corresponding atom in
3D space. However, there are two key issues that need to
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be considered when working with the compound’s
3D structure. First, the number of experimentally deter-
mined molecular geometries is limited (about 270,000 X-ray
structures in the Cambridge Crystallographic Database
compared to 15 millions known compounds). As a result,
the 3D geometry of a compound needs to be computation-
ally determined, which may introduce a certain amount of
error. To address this problem, we use the Corina [31]
software package to compute the 3D coordinates for all the
chemical compounds in our data sets. Corina is a rule and
data-based system that has been experimentally shown to
predict the 3D structure of compounds with high accuracy.
Second, each compound can have multiple low-energy
conformations (i.e., multiple 3D structures) that need to be
taken into account in order to achieve the highest possible
classification performance. In this study, we do not take into
account these multiple conformations but, instead, use the
single low-energy conformation that is returned by Corina’s
default settings. However, as discussed in Section 4.1.2, the
presented approach for extracting geometric substructures
can be easily extended to cases in which multiple con-
formations are considered as well. Nevertheless, despite
this simplification, as our experiments in Section 5 will
show, incorporating 3D structure information leads to
measurable improvements in the overall classification
performance. We will refer to this representation as the
geometric graph representation of a chemical compound.
Finally, for both topological and geometric graphs, we
apply two commonly used structure normalization trans-
formations [53]. First, we label all bonds in aromatic rings as
aromatic (i.e., a different edge-label), and second, we remove
the hydrogen atoms that are connected to carbon atoms (i.e.,
hydrogen-suppressed chemical graphs).

3 RELATED RESEARCH

Many approaches have been developed for building classi-
fication models for chemical compounds. These approaches
can be grouped into two broad categories. The first contains
methods that represent the chemical compounds using
various descriptors and then apply various statistical or
machine learning approaches to learn the classification
models. The second category contains methods that auto-
matically analyze the structure of the chemical compounds
involved in the problem to identify a set of substructure-
based rules, which are then used for classification. A survey of
some of the key methods in both categories and a discussion
on their relative advantages and disadvantages is provided in
the remaining of this section.

3.1 Approaches Based on Descriptors

A number of different types of descriptors have been
developed that are based on frequency, physicochemical
property, topological, and geometric descriptors [8], [80]. In
general, the quality of the representation derived from these
descriptors tends to improve as we move from frequency, to
property, to topology, to geometry-based descriptors.
Specifically, a number of studies have shown that topolo-
gical and geometric descriptors are often superior to those
based on simple physicochemical properties, and geometric
descriptors tend to outperform their topological counter-
parts [7], [12], [75]. However, the relative advantage of one
class of descriptors over another is not universal. For
example, the study in [15] showed that in the context of
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ligand-receptor binding, topological descriptors outperform
their geometric counterparts.

The types of properties that are captured/measured by
these descriptors are identified a priori in a data set
independent fashion and rely on extensive domain knowl-
edge. Frequency descriptors are counts that measure basic
characteristics of the compounds and include the number of
individual atoms, bonds, degrees of connectivity, rings, etc.
Physicochemical descriptors correspond to various molecu-
lar properties that can be computed directly from the
compounds structure. This includes properties such as
molecular weight, number of aromatic bonds, molecular
connectivity index, log P, total energy, dipole moment,
solvent accessible surface area, molar refractivity, ionization
potential, atomic electron densities, van der Waals volume,
etc. [7], [14], [58]. Topological descriptors are used to measure
various aspects of the compounds two-dimensional struc-
ture, i.e., the connectivity pattern of the compound’s atoms,
and include a wide-range of descriptors that are based on
topological indices and 2D fragments. Topological indices are
similar to physicochemical properties in the sense that they
characterize some aspect of molecular data by a single value.
These indices encode information about the shape, size,
bonding, and branching pattern [9], [34]. 2D fragment
descriptors correspond to certain chemical substructures
that are present in the chemical compound. This includes
various atom-centered, bond-centered, ring-centered frag-
ments [3], fragments based on atom-pairs [17], topological
torsions [66], and fragments that are derived by performing a
rule-based compound segmentation [10], [11], [54]. Geo-
metric descriptors measure various aspects of the com-
pounds 3D structure that has been either experimentally or
computationally determined. These descriptors are usually
based on pharmacophores [14]. Pharmacophores are based
on the types of interaction observed to be important in ligand-
protein binding interactions. Pharmacophore descriptors
consist of three or four points separated by well-defined
distance ranges and are derived by considering all combina-
tions of three or four atoms over all conformations of a given
molecule [6], [22], [33], [68], [75]. Note that information about
the 2D fragments and the pharmacophores present in a
compound are usually stored in the form of a fingerprint,
which is fixed-length string of bits each representing the
presence or absence of a particular descriptor.

The actual classification model is learned by transform-
ing each chemical compound into a vector of numerical or
binary values whose dimensions correspond to the various
descriptors that are used. Within this representation, any
classification technique capable of handling numerical or
binary features can be used for the classification task. Early
research on building these classification models focused
primarily on regression-based techniques [14]. This work
was pioneered by Hansch et al. [36], [37], which demon-
strated that the biological activity of a chemical compound
is a function of its physicochemical properties. This led to
the development of the quantitative structure-activity
relationship (QSAR) methods in which the statistical
techniques (i.e., classification model) enable this relation-
ship to be expressed mathematically. However, besides
regression-based approaches, other classification techni-
ques have been used that are, in general, more powerful
and lead to improved accuracies. This includes techniques
based on principle component regression and partial least
squares [81], neural networks [5], [27], [57], [85], recursive
partitioning [4], [18], [72], phylogenetic-like trees [64], [78],
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binary QSAR [30], [51], linear discriminant analysis [67],
and support vector machines [16].

Descriptor-based approaches are very popular in the
pharmaceutical industry and are used extensively to solve
various chemical compound classification problems. How-
ever, their key limitation stems from the fact that, to a large
extent, the classification performance depends on the
successful identification of the relevant descriptors that
capture the structure-activity relationships for the particular
classification problem.

3.2 Approaches Based on Substructure Rules

The pioneering work in this field was done by King et al. in the
early 1990s [44], [45]. They applied an inductive logic
programming (ILP) system [62], Golem [63], to study the
behavior of 44 trimethoprin analogues and their observed
inhibition of Escherichia coli dihydrofolate reductase and
reported a considerable improvement in classification accu-
racy over the traditional QSAR-based models. In this
approach, the chemical compound is expressed using first
orderlogic. Each atom is represented as a predicate consisting
of atomID and the element, and a bond is represented as a
predicate consisting of two atomIDs. Using this representa-
tion, an ILP system discovers rules (i.e.,, conjunction of
predicates) that are good for discriminating the different
classes. Since these rules consist of predicates describing
atoms and bonds, they essentially correspond to substruc-
tures that are present in the chemical compounds. Srinivasan
et al. [77] present a detailed comparison of the features
generated by ILP with the traditional QSAR properties used
for classifying chemical compounds and show that for some
applications features discovered by ILP approaches lead to a
significant lift in the performance.

Though ILP-based approaches are quite powerful, the
high computational complexity of the underlying rule-
induction system limits the size of the data set for which
they can be applied. Furthermore, they tend to produce
rules consisting of relatively small substructures (usually,
three to four atoms [21], [23]), limiting the size of structural
constraints that are being discovered and hence affecting
the classification performance. Another drawback of these
approaches is that in order to reduce their computational
complexity they employ various heuristics to prune the
explored search-space [61], potentially missing substruc-
tures that are important for the classification task. One
exception is the WARMR system [21], [23] that is
specifically developed for chemical compounds and dis-
covers all possible substructures above a certain frequency
threshold. However, WARMR'’s computational complexity
is very high and can only be used to discover substructures
that occur with relatively high frequency.

One of the fundamental reasons limiting the scalability of
ILP-based approaches is the first-order logic-based repre-
sentation that they use. This representation is much more
powerful than what is needed to model chemical com-
pounds and discover substructures. For this reason, a
number of researchers have explored the much simpler
graph-based representation of the chemical compound’s
topology and transformed the problem of finding chemical
substructures to that of finding subgraphs in this graph-
based representation [19], [40], [82]. The best-known
approach is the SUBDUE system [20], [38]. SUBDUE finds
patterns which can effectively compress the original input
data based on the minimum description length (MDL)
principle, by substituting those patterns with a single
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Fig. 1. Frequent subgraph-based classification framework.

vertex. To narrow the search-space and improve its
computational efficiency, SUBDUE uses a heuristic beam
search approach, which quite often results in failing to find
subgraphs that are frequent. The SUBDUE system was also
later extended to classify graphs and was referred as
SubdueCL [32]. In SubdueCL, instead of using minimum
description length as a heuristic, a measure similar to
confidence of a subgraph is used as a heuristic. Finally,
another heuristic-based scheme is MOLFEA [46] that takes
advantage of the compound’s SMILES string representation
and identifies substructures corresponding to frequently
occurring subsequences.

4 CLASSIFICATION BASED ON FREQUENT
SUBGRAPHS

The previous research on classifying chemical compounds
(discussed in Section 3) has shown that techniques based on
the automatic discovery of chemical substructures are in
general superior to traditional descriptor-based approaches
and require limited user intervention and domain knowl-
edge. However, despite their success, a key limitation of
both the ILP and the subgraph-based techniques, is that
they rely on heuristic search methods to discover the
substructures to be used for classification. As discussed in
Section 3, even though such approaches reduce the
inherently high computational complexity associated with
these schemes, they may lead to suboptimal classifiers in
cases in which the heuristic search fails to uncover
substructures that are critical for the classification task.

To overcome this problem, we developed a classification
algorithm for chemical compounds that uses the graph-
based representation and limits the number of substruc-
tures that are pruned a priori. The key idea of our approach
is to decouple the substructure discovery process from the
classification model construction step, and use frequent
subgraph discovery algorithms to find all chemical sub-
structures that occur a sufficiently large number of times.
Once the complete set of such substructures has been
identified, our algorithm then proceeds to build a classifica-
tion model based on them. To a large extent, this approach
is similar in spirit to the recently developed frequent-
itemset-based classification algorithms [25], [55], [56] that
have been shown to outperform traditional classifiers that
rely on heuristic search methods to discover the classifica-
tion rules.

The overall outline of our classification methodology is
shown in Fig. 1. It consists of three distinct steps: 1) feature
generation, 2) feature selection, and 3) classification model
construction. During the feature generation step, the
chemical compounds are mined to discover the frequently
occurring substructures that correspond to either topologi-
cal or geometric subgraphs. These substructures are then
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used as the features by which the compounds are
represented in the subsequent steps. During the second
step, a small set of features is selected such that the selected
features can correctly discriminate between the different
classes present in the data set. Finally, in the last step, each
chemical compound is represented using these set of
features and a classification model is learned.

This methodology, by following the above three-step
framework, is designed to overcome the limitations of
existing approaches. By using computationally efficient
subgraph discovery algorithms to find all chemical sub-
structures (topological or geometric) that occur a suffi-
ciently large number of times in the compounds, they can
discover substructures that are both specific to the
particular classification problem being solved and at the
same time involve arbitrarily complex substructures. By
discovering the complete set of frequent subgraphs and
decoupling the substructure discovery process from the
feature generation step, they can proceed to select and
synthesize the most discriminating descriptors for the
particular classification problem that take into account all
relevant information. Finally, by employing advanced
machine learning techniques, they can account for the
relationships between these features at different levels of
granularity and complexity leading to high classification
accuracy.

4.1 Feature Generation

Our classification algorithm finds substructures in a
chemical compound database using two different methods.
The first method uses the topological graph representation
of each compound, whereas the second method is based on
the corresponding geometric graph representation (dis-
cussed in Section 2). In both of these methods, our
algorithm uses the topological or geometric connected
subgraphs that occur in at least o percent of the compounds
to define the substructures.

There are two important restrictions on the type of the
substructures that are discovered by our approach. The first
has to do with the fact that we are only interested in
substructures that are connected and is motivated by the
fact that connectivity is a natural property of such patterns.
The second has to do with the fact that we are only
interested in frequent substructures (as determined by the
value of 0) as this ensures that we do not discover spurious
substructures that will in general not be statistically
significant. Furthermore, this minimum support constraint
also helps in making the problem of frequent subgraph
discovery computationally tractable.

4.1.1 Frequent Topological Subgraphs

Developing frequent subgraph discovery algorithms is
particularly challenging and computationally intensive as
graph and/or subgraph isomorphisms play a key role
throughout the computations. Despite that, in recent years,
a number of algorithms have been developed capable of
finding all frequently occurring subgraphs with reasonable
computational efficiency. These are the AGM algorithm
developed by Inokuchi et al. [40], the FSG algorithm
developed by members of our group [47], [50], the chemical
substructure discovery algorithm developed by Borgelt and
Berthold [19], the gSpan algorithm developed by Yan and
Han [82], the FFSM by Huan et al. [39], and, more recently,
the algorithm by Nijssen and Kok [65]. The enabling factors
to the computational efficiency of these schemes have been
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1) the development of efficient candidate subgraph genera-
tion schemes that reduce the number of times the same
candidate subgraph is being generated, 2) the use of
efficient canonical labeling schemes to represent the various
subgraphs, and 3) the use of various techniques developed
by the data mining community to reduce the number of
times subgraph isomorphism computations need to be
performed.

In our classification algorithm, we find the frequently
occurring subgraphs using the FSG algorithm. FSG takes as
input a database D of graphs and a minimum support o,
and finds all connected subgraphs that occur in at least
o percent of the transactions. FSG, initially presented in [47],
with subsequent improvements presented in [50], uses a
breadth-first approach to discover the lattice of frequent
subgraphs. It starts by enumerating small frequent graphs
consisting of one and two edges and then proceeds to find
larger subgraphs by joining previously discovered smaller
frequent subgraphs. The size of these subgraphs is grown
by adding one-edge-at-a-time. The lattice of frequent
patterns is used to prune the set of candidate patterns and
it only explicitly computes the frequency of the patterns
which survive this downward closure pruning. Despite the
inherent complexity of the problem, FSG employs a number
of sophisticated techniques to achieve high computational
performance. It uses a canonical labeling algorithm that
fully makes use of edge and vertex labels for fast
processing, and various vertex invariants to reduce the
complexity of determining the canonical label of a graph.
These canonical labels are then used to establish the identity
and total order of the frequent and candidate subgraphs, a
critical step of redundant candidate elimination and down-
ward closure testing. It uses a sophisticated scheme for
candidate generation [50] that minimizes the number of
times each candidate subgraph gets generated and also
dramatically reduces the generation of subgraphs that fail
the downward closure test. Finally, for determining the
actual frequency of each subgraph, FSG reduces the number
of subgraph isomorphism operations by using TID-lists
[29], [74], [83], [84] to keep track of the set of transactions
that supported the frequent patterns discovered at the
previous level of the lattice. For every candidate, FSG takes
the intersection of TID-lists of its parents, and performs the
subgraph isomorphism only on the transactions contained
in the resulting TID-list. The experiments presented in [50]
show that FSG is able to scale to large data sets and low
support values. For example, it can mine a data set
containing 200,000 chemical compounds at 1 percent
minimum support level in about one hour.

4.1.2 Frequent Geometric Subgraphs

Topological substructures capture the connectivity of atoms
in the chemical compound, but they ignore the 3D shape
(38D arrangement of atoms) of the substructures. For certain
classification problems, the 3D shape of the substructure
might be essential for determining the chemical activity of a
compound. For instance, the geometric configuration of
atoms in a substructure is crucial for its ability to bind to a
particular target [53]. For this reason, we developed an
algorithm that find all frequent substructures whose
topology as well as geometry is conserved.

There are two important aspects specific to the geometric
subgraphs that need to be considered. First, since the
coordinates of the vertices depend on a particular reference
coordinate axes, we would like the discovered geometric

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 8, AUGUST 2005

subgraphs to be independent of these coordinate axes, i.e.,
we are interested in geometric subgraphs whose occur-
rences are translation and rotation invariant. This drama-
tically increases the overall complexity of the geometric
subgraph discovery process because we may need to
consider all possible geometric configurations of a single
pattern. Second, while determining if a geometric subgraph
is contained in a bigger geometric graph we would like to
allow some tolerance when we establish a match between
coordinates, ensuring that slight deviations in coordinates
between two identical topological subgraphs do not lead to
the creation of two geometric subgraphs. The amount of
tolerance (r) should be a user-specified parameter. The task
of discovering such r-tolerant frequent geometric subgraphs
dramatically changes the nature of the problem. In
traditional pattern discovery problems such as finding
frequent itemsets, sequential patterns, and/or frequent
topological graphs there is a clear definition of what a
pattern is, given its set of supporting transactions. On the
other hand, in the case of r-tolerant geometric subgraphs,
there are many different geometric representations of the
same pattern (all of which will be r-tolerant isomorphic to
each other). The problem becomes not only that of finding a
pattern and its support, but also finding the right
representative for this pattern. The selection of the right
representative can have a serious impact on correctly
computing the support of the pattern. For example, given
a set of subgraphs that are r-tolerant isomorphic to each
other, the one that corresponds to an outlier will tend to
have a lower support than the one corresponding to the
center. These two aspects of geometric subgraphs makes the
task of discovering the full fledged geometric subgraphs
extremely hard [48], [49].

To overcome this problem we developed a simpler, albeit
less discriminatory, representation for geometric sub-
graphs. We use a property of a geometric graph called the
average interatomic distance that is defined as the average
Euclidean distance between all pairs of atoms in the
molecule. Note that the average interatomic distance is
computed between all pairs of atoms irrespective of
whether a bonds connects the atoms or not. The average
interatomic distance can be thought of as a geometric
signature of a topological subgraph. The geometric sub-
graph consists of two components, a topological subgraph
and an interval of average interatomic distance associated
with it. A geometric graph contains this geometric subgraph
if it contains the topological subgraph and the average
interatomic distance of the embedding (of the topological
subgraph) is within the interval associated with the
geometric subgraph. Note that this geometric representa-
tion is also translation and rotation invariant, and the width
of the interval determines the tolerance displayed by the
geometric subgraph. We are interested in discovering such
geometric subgraphs that occur above o percent of the
transactions and the interval of average interatomic dis-
tance is bound by r.

Since a geometric subgraph contains a topological
subgraph, for the geometric subgraph to be frequent the
corresponding topological subgraph has to be frequent, as
well. This allows us to take advantage of the existing
approach to discover topological subgraphs. We modify the
frequency counting stage of the FSG algorithm as follows: If
a subgraph g is contained in a transaction ¢, then all possible
embeddings of g in ¢ are found and the average interatomic
distance for each of these embeddings is computed. As a
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result, at the end of the frequent subgraph discovery each
topological subgraph has a list of average interatomic
distances associated with it. Each one of the average
interatomic distances corresponds to one of the embed-
dings, i.e., a geometric configuration of the topological
subgraph. This algorithm can be easily extended to cases in
which there are multiple 3D conformations associated with
each chemical compound (as discussed in Section 2), by
simply treating each distinct conformation as a different
chemical compound.

The task of discovering geometric subgraphs now
reduces to identifying those geometric configurations that
are frequent enough, ie., identify intervals of average
interatomic distances such that each interval contains the
minimum number geometric configurations (it occurs in
o percent of the transactions) and the width of the interval is
smaller than the tolerance threshold (r). This task can be
thought of as 1D clustering on the vector of average
interatomic distances such that each cluster contains items
above the minimum support and the spread of each cluster
is bounded by the tolerance r. Note that not all items will
belong to a valid cluster as some of them will be infrequent.
In our experiments, we set the value of r to be equal to half
of the minimum distance between any two pairs of atoms in
the compounds.

To find such clusters, we perform agglomerative cluster-
ing on the vector of average interatomic distance values.
The distance between any two average interatomic distance
values is defined as the difference in their numeric values.
To ensure that we get the largest possible clusters, we use
the maximum-link criterion function for deciding which
two clusters should be merged [42]. The process of
agglomeration is continued until the interval containing
all the items in the cluster is below the tolerance threshold
(r). When we reach a stage where further agglomeration
would increase the spread of the cluster beyond the
tolerance threshold, we check the number of items con-
tained in the cluster. If the number of items is above the
support threshold, then the interval associated with this
cluster is considered as a geometric feature. Since we are
clustering one-dimensional data sets, the clustering com-
plexity is low. Some examples of the distribution of the
average interatomic distance values and the associated
clusters are shown in Fig. 2. Note that the average
interatomic distance values of the third example are
uniformly spread and lead to no geometric subgraph.

Note that this algorithm for computing geometric
subgraphs is approximate in nature for two reasons. First,
the average interatomic distance may map two different
geometric subgraphs to the same average interatomic
distance value. Second, the clustering algorithm may not
find the complete set of geometric subgraphs that satisfy the
r tolerance. Nevertheless, as our experiments in Section 5
show the geometric subgraphs discovered by this approach
improve the classification accuracy of the algorithm.

4.1.3 Additional Considerations

Even though FSG provides the general functionality
required to find all frequently occurring substructures in
chemical data sets, there are a number of issues that need to
be addressed before it can be applied as a black-box tool for
feature discovery in the context of classification. One issue
deals with the selecting the right value for the o, the support
constraint used for discovering frequent substructures. The
value of ¢ controls the number of subgraphs discovered by
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Fig. 2. Some examples of the one-dimensional clustering of average
interatomic distance values.

FSG. Choosing a good value of o is especially important for
the data set containing classes of significantly different
sizes. In such cases, in order to ensure that FSG is able to
find features that are meaningful for all the classes, the
minimum support should be small enough so that the
corresponding absolute frequency can capture the size of
the smaller class.

For this reason, we first partition the complete data set,
using the class label of the examples, into specific class
specific data sets. We then run FSG on each of these class
data sets. This partitioning of the data set ensures that
sufficient subgraphs are discovered for those class labels
which occur rarely in the data set. Next, we combine
subgraphs discovered from each of the class data set. After
this step each subgraph has a vector that contains the
frequency with which it occurs in each class.

4.2 Feature Selection

The frequent subgraph discovery algorithms described in
Section 4.1 discovers all the substructures (topological or
geometric) that occur above a certain support constraint (o)
in the data set. Though the discovery algorithm is
computationally efficient, the algorithm can generate a
large number of features. A large number of features is
detrimental for two reasons. First, it could increase the time
required to build the model. But, more importantly, a large
number of features can increase the time required to classify
a chemical compound, as we need to first identify which of
the discovered features it contains before we can apply the
classification model. Determining whether a compound
contains a particular feature or not can be computationally
expensive as it may require a subgraph isomorphism
operation. This problem is especially critical in the drug
discovery process where the classification model is learned
on a small set of chemical compounds and it is then applied
on large chemical compound libraries containing millions of
compounds.

One way of solving this problem is to follow a heuristic
subgraph discovery approach (similar in spirit to pre-
viously developed methods [20], [32]) in which during the
subgraph discovery phase itself, the discriminatory ability
of a particular subgraph is determined, and the discovery
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process is terminated as soon as a subgraph is generated
that is less discriminatory than any of its subgraphs. By
following this approach, the total number of features will be
substantially reduced, achieving the desired objective.
However, the limitation with such an approach is that it
may fail to discover and use highly discriminatory sub-
graphs. This is because the discriminatory ability of a
subgraph does not (in general) consistently increase as a
function of its size, and subgraphs that appear to be poor
discriminators may become very discriminatory by growing
their size. For this reason, in order to develop an effective
feature selection method, we use a scheme that first finds all
frequent subgraphs and then selects among them a small set
of discriminatory features. The advantage of this approach
is that during feature selection all frequent subgraphs are
considered irrespective of when they were generated and
whether or not they contain less or more discriminatory
subgraphs.

The feature selection scheme is based on the sequential
covering paradigm used to learn rule sets [59]. To apply this
algorithm, we assume that each discovered substructure
corresponds to a rule, with the class label of the
substructure as the target attribute, such rules are referred
to as class-rules in [56]. The sequential covering algorithm
takes as input a set of examples and the features discovered
from these examples, and iteratively applies the feature
selection step. In this step, the algorithm selects the feature
that has the highest estimated accuracy. After selecting this
feature, all the examples containing this feature are
eliminated and the feature is marked as selected. In the
next iteration of the algorithm, the same step is applied, but
on a smaller set of examples. The algorithm continues in an
iterative fashion until either all the features are selected or
all the examples are eliminated.

In this paper, we use a computationally efficient
implementation of sequential covering algorithm known
as CBA [56], this algorithm proceeds by first sorting the
features based on confidence and then applying the
sequential covering algorithm on this sorted set of features.
One of the advantages of this approach is that it requires a
minimal number of passes on the data set, hence is very
scalable. To obtain a better control over the number of
selected features, we use an extension of the sequential
covering scheme known as Classification based on Multiple
Rules (CMAR) [55]. In this scheme, instead of removing the
example after it is covered by the selected feature, the
example is removed only if that example is covered by
6 selected features. The number of selected rules increases
as the value of § increases, an increase in the number of
features usually translates into an improvement in the
accuracy as more features are used to classify a particular
example. The value of ¢ is specified by the user and
provides a means to the user to control the number of
features used for classification.

4.3 Classification Model Construction

Given the frequent subgraphs discovered in the previous
step, our algorithm treats each of these subgraphs as a
feature and represents the chemical compound as a
frequency vector. The ith entry of this vector is equal to
the number of times (frequency) that feature occurs in the
compound’s graph. This mapping into the feature space of
frequent subgraphs is performed both for the training and
the test data set. Note that the frequent subgraphs were
identified by mining only the graphs of the chemical
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compounds in the training set. However, the mapping of
the test set requires that we check each frequent subgraph
against the graph of the test compound using subgraph
isomorphism. Fortunately, the overall process can be
substantially accelerated by taking into account the frequent
subgraph lattice that is also generated by FSG. In this case,
we traverse the lattice from top to bottom and only visit the
child nodes of a subgraph if that subgraph is isomorphic to
the chemical compound.

Once the feature vectors for each chemical compound
have been built, any one of the existing classification
algorithms can potentially be used for classification.
However, the characteristics of the transformed data set
and the nature of the classification problem itself tends to
limit the applicability of certain classes of classification
algorithms. In particular, the transformed data set will most
likely be high-dimensional and, second, it will be sparse, in
the sense that each compound will have only a few of these
features, and each feature will be present in only a few of
the compounds. Moreover, in most cases, the positive class
will be much smaller than the negative class, making it
unsuitable for classifiers that primarily focus on optimizing
the overall classification accuracy.

In our study, we built the classification models using
support vector machines (SVM) [79], as they are well-suited
for operating in such sparse and high-dimensional data
sets. Furthermore, an additional advantage of SVM is that it
allows us to directly control the cost associated with the
misclassification of examples from the different classes [60].
This allows us to associate a higher cost for the misclassi-
fication of positive instances; thus, biasing the classifier to
learn a model that tries to increase the true-positive rate, at
the expense of increasing the false positive rate.

5 EXPERIMENTAL EVALUATION

We experimentally evaluated the performance of our
classification algorithm and compared it against that
achieved by earlier approaches on a variety of chemical
compound data sets. The data sets, experimental methodol-
ogy, and results are described in subsequent sections.

5.1 Data Sets

We evaluated the performance of our classification algo-
rithm on eight classification problems derived from three
different chemical compound data sets. The first data set
that was used as a part of the Predictive Toxicology
Evaluation Challenge [76] contains data published by the
US National Institute for Environmental Health Sciences
and consists of bio-assays of different chemical compounds
on rodents to study the carcinogenicity properties of the
compounds. Each compound is evaluated on male mice,
female mice, male rats, and female rats, and is assigned four
class labels each indicating the toxicity of the compound for
that animal. There are four classification problems one
corresponding to each of the rodents and will be referred as
P1, P2, P3, and P4. The second data set is obtained from the
National Cancer Institute’s DTP AIDS Antiviral Screen
program [28], [46]. Each compound in the data set is
evaluated for evidence of anti-HIV activity. Compounds
that provided at least 50 percent protection were listed as
confirmed moderately active (CM). Compounds that reprodu-
cibly provided 100 percent protection were listed as
confirmed active (CA). Compounds neither active nor
moderately active were listed as confirmed inactive (CI). We
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TABLE 1
The Characteristics of the Various Data Sets

Toxic. Aids Anthrax Class Dist. (% +ve class)
N 417 42,687 34,836 Toxicology
Ny 25 46 25 P1: Male Mice 38.3%
Np 26 48 25 P2: Female Mice = 40.9%
La 40 82 25 P3: Male Rats 44.2%
Ly 4 4 4 P4: Female Rats  34.4%
max N4 106 438 41 AIDS
min Ny 2 2 12 H1: CA/CM 28.1%
max Np 1 276 44 H2: (CA+CM)/CI 3.5%
min Np 85 1 12 H3: CA/CI 1.0%
Anthrax
Al: active/inactive 35%

N is the number of compounds in the database. N4 and Np are the average
number of atoms and bonds in each compound. L 4 and Lp are the average
number of atom- and bond-types in each dataset. max Na/min N4 and
max Ng/min Np are the maximum/minimum number of atoms and bonds
over all the compounds in each dataset.

formulated three classification problems. The first problem
was designed to classify between CA and CM; the second
between CM + CA and CI, and the third between CA and
CI. We will refer to these problems as H1, H2, and H3,
respectively. The third data set was obtained from the
Center of Computational Drug Discovery’s anthrax project
at the University of Oxford [71]. The goal of this project was
to discover small molecules that would bind with the
heptameric protective antigen component of the anthrax
toxin, and prevent it from spreading its toxic effects. The
screen identified a set of 12,376 compounds that could
potentially bind to the anthrax toxin and a set of
22,460 compounds that were unlikely to bind to the toxin.
The classification problem for this data set was given a
chemical compound classify it in to one of these two classes,
i.e, will the compound bind the anthrax toxin or not. This
classification problem is referred as Al.

Some important characteristics of these data sets are
summarized in Table 1. The right-hand side of the table
displays the class distribution for different classification
problems, for each problem the table displays the percen-
tage of positive class found in the data set for that
classification problem. Note that both the DTP-AIDS and
the Anthrax data sets are quite large containing 42,687 and
34,836 compounds, respectively. Moreover, in the case of
DTP-AIDS, each compound is also quite large having on an
average 46 atoms and 48 bonds.

5.2 Experimental Methodology and Metrics

The classifications results were obtained by performing 5-
way cross validation on the data set, ensuring that the class
distribution in each fold is identical to the original data set. In
each one of the cross validation experiments, the test set was
never considered and our algorithm used only the training-
set to find the frequent substructures, perform feature
selection, and build the classification model. For the SVM
classifier, we used SVMLight library [41]. All the experiments
were conducted on a 1500MHz Athlon MP processors having
a 2GB of memory.

Since the size of the positive class is significantly smaller
than the negative class, using accuracy to judge a classifier
would be incorrect. To get a better understanding of the
classifier performance for different cost settings, we obtain
the ROC curve [69] for each classifier. ROC curve plots the
false positive rate (X-axis) versus the true positive rate
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TABLE 2
Varying Minimum Support Threshold (o)
D 0=10.0% o =150% o = 20.0%
Topo. Geom. Topo. Geom. Topo. Geom.
A Ny A Ny A Ny A Ny A Ny A Ny

P1 66.0 1211 65.5 1317 66.0 513 64.1
P2 65.0 967 64.0 1165 65.1 380 63.3
P3 60.5 597 60.7 808 59.4 248 61.3
P4 543 275 554 394 562 173 574
H1 81.027034 82.129554 77.4 13531 79.2 8247 78.4 7479 79.5 7700
H2 70.1 1797 76.0 3739 63.6 307 62.2 953 59.0 139 58.1 493
H3 83.927019 89.530525 83.6 13557 88.8 11240 84.6 7482 87.7 7494
Al 782 476 79.0 492 782 484 77.6 332 77.1 312 76.1 193

“A” denotes the area under the ROC curve and “N;” denotes the number of
discovered frequent subgraphs.

478 64.4 254 60.2 268
395 64.2 217 63.1 235
302 59.9 168 60.9 204
240 57.3 84 583 104

(Y-axis) of a classier; it displays the performance of the
classifier regardless of class distribution or error cost. Two
classifiers are evaluated by comparing the area under their
respective ROC curves, a larger area under ROC curve
indicating better performance. The area under the ROC
curve will be referred by the parameter A.

5.3 Results

5.3.1 Varying Minimum Support

The key parameter of the proposed frequent substructure-
based classification algorithm is the choice of the minimum
support (o) used to discover the frequent substructures
(either topological or geometric). To evaluate the sensitivity
of the algorithm on this parameter. we performed a set of
experiments in which we varied ¢ from 10 percent to
20 percent in 5 percent increments. The results of these
experiments are shown in the left subtable of Table 2 for
both topological and geometric substructures.

From Table 2, we observe that as we increase o, the
classification performance for most data sets tends to
degrade. However, in most cases, this degradation is gradual
and correlates well with the decrease on the number of
substructures that were discovered by the frequent subgraph
discovery algorithms. The only exception is the H2 problem
for which the classification performance (as measured by
ROC) degrades substantially as we increase the minimum
support from 10 percent to 20 percent. Specifically, in the case
of topological subgraphs, the performance drops from 70.1
down to 59.0, and in the case of geometric subgraphs it drops
from 76.0 to 58.1.

These results suggest that lower values of support are in
general better as they lead to better classification perfor-
mance. However, as the support decreases, the number of
discovered substructures and the amount of time required
also increases. Moreover, models derived from an extre-
mely large number of features, some of which have very
small occurrence frequency run the risk of overfitting the
training set (i.e.,, they produce high accuracies on the
training set, but fail to generalize on the test set). Thus,
depending on the data set, some experimentation may be
required to select the proper values of support that balances
these conflicting requirements.

In our study, we performed such experimentation. For
each data set, we kept on decreasing the value of support
down to the point after which the number of features that
were generated was too large to be efficiently processed by
the SVM library. The resulting support values, number of
features, and associated classification performance are
shown in Table 3. Note that for each problem, two different
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TABLE 3
Optimized Minimum Support Threshold (o)
D Topo. Geom. Per class  Timep
A Ny A Ny o (sec)
Pl 655 24510 650 23612 3.0,3.0 211
P2 673 7875 69.9 12673 3.0,3.0 72
P3 626 7504 648 10857 3.0,3.0 66
P4 634 25790 637 31402 3.0,3.0 231
H1 81.0 27034 821 29554 10.0, 10.0 137
H2 765 18542 79.1 29024 10.0, 5.0 1016
H3 839 27019 895 30525 10.0, 10.0 392
Al 817 3054 82.6 3186 5.0,3.0 145

“A” denotes the area under the ROC curve and “N;” denotes the number of
discovered frequent subgraphs.

support values are displayed corresponding to the supports
that were used to mine the positive and negative class,
respectively. The last column shows the amount of time
required by FSG to find the frequent subgraphs and
provides a good indication of the computational complexity
at the feature discovery phase of our classification algo-
rithm. Finally, Fig. 3 shows the distribution of the size of the
features discovered by FSG for the optimal values of o for
the H3 and Al data sets. From these histograms, we can see
that the majority of the subgraphs discovered by FSG are
actually quite large.

Comparing the ROC values obtained in these experi-
ments with those obtained for ¢ = 10 percent, we can see
that as before, the lower support values tend to improve the
results, with measurable improvements for problems in
which the number of discovered substructures increased
substantially. In the rest of our experimental evaluation, we
will be using the frequent subgraphs that were generated
using these values of support.

5.3.2 Varying Misclassification Costs

Since the number of positive examples is in general much
smaller than the number of negative examples, we performed
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Fig. 3. The size distribution of the various discovered subgraphs for H3
and A1 data sets.
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TABLE 4
The Area under the ROC Curve Obtained
by Varying the Misclassification Cost

Dataset Topo Geom

B8=1.0 [=EqCost (=10 [ =EqgCost
P1 65.5 65.3 65.0 66.7
P2 673 66.8 69.9 69.2
P3 62.6 62.6 64.8 64.6
P4 63.4 65.2 63.7 66.1
H1 81.0 79.2 82.1 81.1
H2 76.5 79.4 79.1 81.9
H3 83.9 90.8 89.5 94.0
Al 81.7 82.1 82.6 83.0

“B = 1.0” indicates the experiments in which each positive and negative
example had a weight of one, and “8 = EgCost” indicates the experiments
in which the misclassification cost of the positive examples was increased to
match the number of negative examples.

a set of experiments in which the misclassification cost
associated with each positive example was increased to
match thenumber of negativeexamples. Thatis, ifnt andn™ is
the number of positive and negative examples, respectively,
the misclassification cost 8 was set equal to (n~/n* — 1) (so
that n~ = On*). We refer to this value of 3 as the “EqCost”
value. The classification performance achieved by our
algorithm using either topological or geometric subgraphs
for = 1.0and 8 = EqCost is shown in Table 4. Note that the
B = 1.0 results are the same with those presented in the right
subtable of Table 2.

From the results in this table, we can see that, in general,
increasing the misclassification cost so that it balances the
size of positive and negative class tends to improve the
classification accuracy. When 3 = EqCost, the classification
performance improves for four and five problems for the
topological and geometric subgraphs, respectively. More-
over, in the cases in which the performance decreased, that
decrease was quite small, whereas the improvements
achieved for some problem instances (e.g., P4, H1, and
H2) was significant. In the rest of our experiments, we will
focus only on the results obtained by setting 5 = EqCost.

5.3.3 Feature Selection

We evaluated the performance of the feature selection scheme
based on sequential covering (described in Section 4.2) by
performing a set of experiments in which we varied the
parameter § that controls the number of times an example
mustbe covered by a feature, before itis removed from the set
of yet to be covered examples. Table 5 displays the results of
these experiments. The results under the column labeled
“Original” shows the performance of the classifier without
any feature selection. These results are identical to those
shown in Table 4 for 3 = FqCost and are included here to
make comparisons easier.

Two key observations can be made by studying the
results in this table. First, as expected, the feature selection
scheme is able to substantially reduce the number of
features. In some cases, the number of features that was
selected decreased by almost two orders of magnitude.
Also, as 6 increases, the number of retained features
increases; however, this increase is gradual. Second, the
overall classification performance achieved by the feature
selection scheme when 6 > 5 is quite comparable to that
achieved with no feature selection. The actual performance
depends on the problem instance and whether or not we
use topological or geometric subgraphs. In particular, for
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TABLE 5
Results Obtained Using Feature Selection Based on Sequential Rule Covering

Topological Features

Geometric Features

Original 0=1 0=>5 =10 6 =15 Original 0=1 0=5 6 =10 0 =15
Dataset A Nf A Nf A Nf A Nf A Nf A Nf A Nf A Nf A Nf A Nf
PI1 65.3 24510 654 143 664 85 66.5 598 66.7 8II 66.7 23612 683 161 68.1 381 674 613 687 267
P2 66.8 7875 69.5 160 69.6 436 68.0 718 675 927 69.2 12673 722 169 739 398 731 646 73.0 265
P3 62.6 7504 68.0 171 652 455 642 730 645 948 64.6 10857 71.1 175 70.0 456 71.0 241 66.7 951
P4 652 25790 663 156 66.0 379 645 580 64.1 775 66.1 31402 68.8 164 69.7 220 674 609 662 819
Hl 79.2 27034 784 108 79.2 345 79.1 571 795 796 81.1 29554 80.8 128 81.6 396 819 650 82.1 885
H2 794 18542 77.1 370 78.0 1197 785 1904 785 2460 81.9 29024 80.0 525 804 1523 80.6 2467 81.2 3249
H3 90.8 27019 884 111 89.6 377 90.0 638 90.5 869 94.0 30525 913 177 922 496 93.1 831 932 1119
Al 82.1 3054 80.6 620 81.4 1395 81.5 1798 81.8 2065 83.0 3186 81.0 631 82.0 1411 824 1827 827 2106

“¢” specifies the number of times each example needs to be covered before it is removed, “A” denotes the area under the ROC curve and “/¥” denotes the

number of features that were used for classification.

TABLE 6
Physicochemical Property Descriptors
Property Dim.  Property Dim.  Property Dim.
Solvent accessible area AZ " Moment of Inertia none  Total accessible area AZ
Total energy keal/mol  Total accessible volume A3 Bend energy kecal /mol
Total Van der Waal’s area A% Hbond energy kcal/mol  Total Van der Waal’s volume A3
Stretch energy kcal/mol  Dipole moment Debye  Nonbond energy kcal /mol
Dipole moment comp. (X, Y, Z) Debye  Estatic energy kcal/mol  Heat of formation Debye
Torsion energy kecal/mol  Multiplicity Kcal  Quantum total charge eV

the first four problems (P1, P2, P3, and P4) derived from the
PTC data set, the performance actually improves with
feature selection. Such improvements are possible because
models learned on lower-dimensional spaces will tend to
have better generalization ability [25]. Also note that for
some data sets, the number of features decreases as §
increases. Even though this is counter-intuitive, it can
happen in the cases in which due to a higher value of §, a
feature that would have been skipped is now included into
the set. If this newly included feature has a relatively high
support, it will contribute to the coverage of many other
features. As a result, the desired level of coverage can be
achieved without the inclusion of other lower-support
features. Our analysis of the selected feature sets showed
that for the instances in which the number of features
decreases as § increases, the selected features have indeed
higher average support.

5.3.4 Topological versus Geometric Subgraphs

The various results shown in Tables 2, 3, 4, and 5 also
provide an indication on the relative performance of
topological versus geometric subgraphs. In almost all cases,
the classifier that is based on geometric subgraphs outper-
forms that based on topological subgraphs. For some
problems, the performance advantage is marginal whereas
for other problems, geometric subgraphs lead to measur-
able improvements in the area under the ROC curve. For
example, if we consider the results shown in Table 4 for
B = EqCost, we can see the geometric subgraphs lead to
improvements that are at least 3 percent or higher for P2,
P3, and H3, and the average improvement over all eight
problems is 2.6 percent. As discussed in Section 4.1.2, these
performance gains are due to the fact that a conserved
geometric structure is a better indicator of a chemical
compounds activity than just its topology.

5.4 Comparison with Other Approaches

We compared the performance of our classification algo-
rithm against the performance achieved by three existing

approaches. The first builds a traditional QSAR model
based on physicochemical properties, the second uses a set
of features that were derived by combining the 166 MACCS
keys from MDL Inc. [2] and the Daylight fingerprints [1],
and the third uses a set of substructure features that were
identified by SUBDUE [20] and SubdueCL [32].

5.4.1 Comparison with Physicochemical Property
Descriptors

There is a wide variety of physicochemical properties that
capture certain aspects of a compounds chemical activity.
For our study, we have chosen a set of 18 properties that are
good descriptors of the chemical activity of a compound,
and most of them have been previously used for classifica-
tion purposes [4]. A brief description of these properties is
shown in Table 6. We used two programs to compute these
attributes; the geometric attributes like solvent accessible
area, total accessible area/vol, total Van der Waal’s
accessible area/vol were computed using the programs
SASA [52], the remaining attributes were computed using
Hyperchem software.

We used two different algorithms to build classification
models based on these properties. The first is the C4.5
decision tree algorithm [70] that has been shown to
produce good models for chemical compound classifica-
tion based on physicochemical properties [4], and the
second is the SVM algorithm that was used to build the
classification models in our frequent substructure-based
approach. Since the range of values of the different
physicochemical properties can be significantly different,
we first scaled them to be in the range of [0,1] prior to
building the SVM model. We found that this scaling
resulted in some improvements in the overall classification
results. Note that C4.5 is not affected by such scaling.

Table 7 shows the results obtained by these methods for
the different data sets. The values shown for SVM
correspond to the area under the ROC curve and can be
directly compared with the corresponding values obtained
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TABLE 7
Performance of the Physicochemical
Properties-Based Classifier

Dataset  SVM C4.5 Freq. Sub. Prec.

A Precision  Recall Topo Geom
Pl 60.2 0.4366  0.1419  0.6972  0.6348
P2 59.3 0.3603  0.0938 0.8913  0.8923
P3 55.0 0.6627  0.1275  0.7420  0.7427
P4 454 0.2045 0.0547 0.6750  0.8800
H1 64.5 0.5759  0.1375 0.7347  0.7316
H2 473 0.6282  0.4071  0.7960  0.7711
H3 61.7 0.5677 02722 0.7827  0.7630
Al 49.4 0.5564 0.3816  0.7676  0.7798

by our approaches (Tables 2, 3, 4, and 5). Unfortunately,
since C4.5 does not produce a ranking of the training set
based on its likelihood of being in the positive class, it is
quite hard to obtain the ROC curve. For this reason, the
values shown for C4.5 correspond to the precision and
recall of the positive class for the different data sets. Also, to
make the comparisons between C4.5 and our approach
easier, we also computed the precision of our classifier at
the same value of recall as that achieved by C4.5. These
results are shown under the columns labeled “Freq. Sub.
Prec.” for both topological and geometric features and were
obtained from the results shown in Table 4 for § = EqCost.
Note that the results in Table 7 for both SVM and C4.5 were
obtained using the same cost-sensitive learning approach.

Comparing both the SVM-based ROC results and the
precision/recall values of C4.5 we can see that our
approach substantially outperforms the physicochemical
properties-based classifier. In particular, our topological
subgraph-based algorithm does 35 percent better compared
to the SVM-based approach and 72 percent better in terms
of the C4.5 precision at the same recall values. Similar
results hold for the geometric subgraph based algorithm.
These results are consistent with those observed by other
researchers [77], [44] that showed that substructure based
approaches outperform those based on physicochemical
properties.

5.4.2 Comparison with Descriptor-Based Methods

Among the best-performing methods used by the Pharma-
ceutical industry to classify chemical compound data sets
are those based on various topological and geometric
descriptors (Section 3). To evaluate the effectiveness of
these approaches and compare them against our frequent
subgraph-based features, we represented each chemical
compound as a feature-vector using the set of descriptors
that were derived by combining the 166 MACCS keys from
MDL and the Daylight fingerprints. Due to data format
incompatibilities, we were only able to obtain these
descriptors for the AIDS and Anthrax data sets, and we
are currently investigating how to obtain them for the
toxicology data set as well.

The results obtained by using the SVM classifier on this
descriptor-based representation for the AIDS and Anthrax
data sets are shown in Table 8. These results show the area
under the ROC curve and were obtained using the same
cost-sensitive learning used by our scheme. Comparing
these results against those obtained by our algorithm we
see that our algorithms based on either topological or
geometric substructures outperform the descriptor-based
approach for all four classification problems. Specifically,
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TABLE 8
Performance of the SVM Classifier
Using MACCS Keys and Daylight Fingerprints

Dataset
Hl H2 H3 Al
772 72.1 859 752

our topological and geometric substructure-based algo-
rithms (Table 4 for § = EqCost) achieved ROC values that,
on average, are 7.2 percent and 11.2 percent better than the
descriptor-based approaches, respectively.

5.4.3 Comparison with SUBDUE and SubdueCL

Finally, to evaluate the advantage of using the complete set
of frequent substructures over existing schemes that are
based on heuristic substructure discovery, we performed a
series of experiments in which we used the SUBDUE
system to find the substructures and then used them for
classification. Specifically, we performed two sets of
experiments. In the first set, we obtain a set of substructures
using the standard MDL-based heuristic substructure
discovery approach of SUBDUE [38]. In the second set,
we used the substructures discovered by the more recent
SubdueCL algorithm [32] that guides the heuristic beam
search using a scheme that measures how well a subgraph
describes the positive examples in the data set without
describing the negative examples.

Even though there are a number of parameters control-
ling SUBDUE's heuristic search algorithm, the most critical
among them are the width of the beam search, the
maximum size of the discovered subgraph, and the total
number of subgraphs to be discovered. In our experiments,
we spent a considerable amount of time experimenting with
these parameters to ensure that SUBDUE was able to find a
reasonable number of substructures. Specifically, we chan-
ged the width of the beam search from 4 to 50 and set the
other two parameters to high numeric values. Note that in
the case of the SubdueCL, in order to ensure that the
subgraphs were discovered that described all the positive
examples, the subgraph discovery process was repeated by
increasing the value of beam-width at each iteration and
removing the positive examples that were covered by
subgraphs.

Table 9 shows the performance achieved by SUBDUE
and SubdueCL on the eight different classification problems
along with the number of subgraphs that it generated and
the amount of time that it required to find these subgraphs.
These results were obtained by using the subgraphs
discovered by either SUBDUE or SubdueCL as features in

TABLE 9
Performance of the SUBDUE
and SubdueCL-Based Approaches

Dataset SUBDUE SubdueCL

A Ny Timey A Ny Timep
Pl 619 1288 303sec  63.5 2103 301sec
P2 642 1374 310sec 633 2745 339sec
P3 574 1291 310sec  59.6 1772 301sec
P4 585 1248 310sec  60.8 2678 324sec
H1 742 1450 1,608sec  73.8 960 1002sec
H2 585 901 232,006sec 652 2999  476,426sec
H3 713 905 178,343sec  77.5 2151 440,416sec
Al 753 983 56,056sec 759 1094 31,177sec
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Fig. 4. The three most discriminating substructures for the (a) PTC,
(b) AIDS, and (c) Anthrax data sets.

an SVM-based classification model. Essentially, our SUB-
DUE and SubdueCL classifiers have the same structure as
our frequent subgraph-based classifiers with the only
difference being that the features now correspond to the
subgraphs discovered by SUBDUE and SubdueCL. More-
over, to make the comparisons as fair as possible we used
B = EqCost as the misclassification cost. We also performed
another set of experiments in which we used the rule-based
classifier produced by SubdueCL. The results of this scheme
was inferior to those produced by the SVM-based approach
and we are not reporting them here.

Comparing SUBDUE against SubdueCL, we can see that
the latter achieves better classification performance, consis-
tent with the observations made by other researchers [32].
Comparing the SUBDUE and SubdueCL-based results with
those obtained by our approach (Tables 2, 3,4, and 5), we can
see thatin almost all cases both our topological and geometric
frequent subgraph-based algorithms lead to substantially
better performance. This is true both in the cases in which we
performed no feature selection as well as in the cases in which
we used the sequential covering-based feature selection
scheme. In particular, comparing the SubdueCL results
against the results shown in Table 5 without any feature
selection we can see that on the average, our topological and
geometric subgraph based algorithms do 9.3 percent and
12.2 percent better, respectively. Moreover, even after feature
selection with 6 =15 that result in a scheme that have
comparable number of features as those used by SubdueCL,
our algorithms are still better by 9.7 percent and 13.7 percent,
respectively. Finally, if we compare the amount of time
required by either SUBDUE or SubdueCL to that required by
the FSG algorithm to find all frequent subgraphs (last column
of Table 2), we can see that despite the fact that we are finding
the complete set of frequent subgraphs our approach requires
substantially less time.

6 CONCLUSIONS AND DIRECTIONS FOR FUTURE
RESEARCH

In this paper, we presented a highly effective algorithm for
classifying chemical compounds based on frequent sub-
structure discovery that can scale to large data sets. Our
experimental evaluation showed that our algorithm leads to
substantially better results than those obtained by existing

1047

Top 1% Predictions Top 5% Predictions Top 15% Predictions

Fig. 5. Venn diagrams displaying the relation between the positive
examples that were correctly classified by the three approaches at
different cutoff values for the Anthrax data set. The different cutoffs were
obtained by looking at only the top 1 percent, 5 percent, and 15 percent
of the ranked predictions. Each circle in the Venn diagram corresponds
to one of the three classification schemes and the size of the circle
indicates the number of positive examples correctly identified. The
overlap between two circles indicates the number of common correct
predictions.

descriptor and substructure-based methods. Moreover,
besides this improved classification performance, the
substructure-based nature of this scheme provides to the
chemists valuable information as to which substructures are
most critical for the classification problem at hand. For
example, Fig. 4 shows the three most discriminating
substructures for the PTC, DTP AIDS, and Anthrax data
sets that were obtained by analyzing the decision hyper-
plane produced by the SVM classifier." A chemist can then
use this information to understand the models and
potentially use it to design better compounds.

The classification algorithms presented in this paper can
be improved along three different directions. First, as
already discussed in Section 2, our current geometric graph
representation utilizes a single conformation of the chemical
compound and we believe the overall classification perfor-
mance can be improved by using all possible low-energy
conformations. Such conformations can be obtained from
existing 3D coordinate prediction software and as discussed
in Section 4.1.2 can be easily incorporated in our existing
framework. Second, our current feature selection algo-
rithms only focus on whether or not a particular sub-
structure is contained in a compound and they do not take
into account how these fragments are distributed over
different parts of the molecule. Better feature selection
algorithms can be developed by taking this information into
account so that to ensure that the entire (or most of)
molecule is covered by the selected features. Third, even
though the proposed approaches significantly outper-
formed that based on physicochemical property descrip-
tors, our analysis showed that there is a significant
difference as to which compounds are correctly classified
by these two approaches. For example, Fig. 5 shows the
overlap among the different correct predictions produced
by the geometric, topological, and QSAR-based (using the
various physicochemical property descriptors) methods at
different cutoff values for the Anthrax data set. From these
results, we can see that there is a great agreement between
the substructure-based approaches, but there is a large
difference among the compounds that are correctly pre-
dicted by the QSAR approach, especially at the top 1 percent

1. These features correspond to the highest-weight dimensions of the
decision hyperplane produced by a linear SVM model. Since each
compound is a vector in R, the highest-weight dimensions of the decision
hyperplane correlate well with the dimensions of the underlying data set
that contribute the most to its assignment in the positive class [73].
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and 5 percent. These results suggest that better results can
be potentially obtained by combining the substructure and
QSAR-based approaches.
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