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Abstract

This paper presents a new parallel algorithm for sparse matrix factorization. This algorithm uses
subforest-to-subcube mapping instead of the subtree-to-subcube mapping of another recently introduced
scheme by Gupta and Kumar [13]. Asymptotically, both formulations are equally scalable on a wide
range of architectures and a wide variety of problems. But the subtree-to-subcube mapping of the earlier
formulation causes significant load imbalance among processors, limiting overall efficiency and speedup.
The new mapping largely eliminates the load imbalance among processors. Furthermore, the algorithm
has a number of enhancements to improve the overall performance substantially. This new algorithm
achieves up to 6GFlops on a 256-processor Cray T3D for moderately large problems. To our knowledge,
this is the highest performance ever obtained on an MPP for sparse Cholesky factorization.

1 Introduction

Direct methods for solving sparse linear systems are important because of their generality and robustness. For
linear systems arising in certain applications, such as linear programming and some structural engineering
applications, they are the only feasible methods for numerical factorization. It is well known that dense
matrix factorization can be implemented efficiently on distributed-memory parallel computers [4, 27, 7, 22].
However, despite inherent parallelism in sparse sparse direct methods, not much success has been achieved to
date in developing their scalable parallel formulations [15, 38], and for several years, it has been a challenge to
implement efficient sparse linear system solvers using direct methods on even moderately parallel computers.
In [38], Schreiber concludes that it is not yet clear whether sparse direct solvers can be made competitive at
all for highly (p > 256) and massively (p > 4096) parallel computers.

A parallel formulation for sparse matrix factorization can be easily obtained by simply distributing rows
to different processors [8]. Due to the sparsity of the matrix, communication overhead is a large fraction of
the computation for this method, resulting in poor scalability. In particular, for sparse matrices arising out
of planar finite element graphs, the isoefficiency of such a formulation is O(p3 log® p), that is the problem
size (in terms of total number of computation) should grow as O(p® log® p) to maintain a fixed efficiency.
In a smarter parallel formulation [11], the rows of the matrix are allocated to processors using the subtree-
to-subcube mapping. This localizes the communication among groups of processors, and thus improves
the isoefficiency of the scheme to O(p®). Rothberg and Gupta [36, 35] used a different method to reduce
the communication overhead. In their method, the entire sparse matrix is partitioned among processors
using a two-dimensional block cyclic mapping. This reduces the communication overhead and improves the
isoefficiency to O(p!-3 log® p).

Gupta and Kumar [13] recently developed a parallel formulation of sparse Cholesky factorization based
on the multifrontal method. The multifrontal method [2, 23] is a form of submatrix Cholesky, in which
single elimination steps are performed on a sequence of small, dense frontal matrices. One of the advantages
of multifrontal methods 1s that the frontal matrices are dense, and therefore the elimination steps can be



implemented efficiently using level three BLAS primitives. This algorithm has two key features. It uses the
subtree-to-subcube mapping to localize communication among processors, and it uses the highly scalable
two-dimensional grid partitioning for dense matrix factorization for each supernodal computation in the
multifrontal algorithm. As a result, the communication overhead of this scheme is the lowest of all other
known parallel formulations for sparse matrix factorization [24, 25, 1, 31, 32, 39, 8, 38, 17, 33, 37, 3, 6, 18,
15, 40, 26, 12, 36, 35]. In fact, asymptotically, the isoefficiency of this scheme is O(p!-®) for sparse matrices
arising out of two- and three-dimensional finite element problems on a wide variety of architectures such
as hypercube, mesh, fat tree, and three-dimensional torus. Note that the isoefficiency of the best known
parallel formulation of dense matrix factorization is also O(p!-5) [22]. On a variety of problems, Gupta and
Kumar report speedup of up to 364 on a 1024-processor nCUBE 2, which is a major improvement over the
previously existing algorithms.

However, the subtree-to-subcube mapping results in gross imbalance of load among different processors,
as elimination trees for most practical problems tend to be unbalanced. This load imbalance is responsible
for a major portion of the efficiency loss of their scheme. Furthermore, the overall computation rate of their
single processor multifrontal code on nCUBE 2 was only 0.7MFlops and the maximum overall performance
on a 1028-processor nCUBE 2 was only 300MFlops. This was partly due to the slow processors of nCUBE 2
(3.5 MFlops peak), and partly due to inadequacies in the implementation.

This paper presents a new parallel algorithm for sparse matrix factorization. This algorithm uses
subforest-to-subcube mapping instead of the subtree-to-subcube mapping of the old scheme. The new map-
ping largely eliminates the load imbalance among processors. Furthermore, the algorithm has a number of
enhancements to improve the overall performance substantially. This new algorithm achieves up to 6GFlops
on a 256-processor Cray T3D for moderately large problems (even the biggest problem we tried took less
than two seconds on a 256-node T3D. For larger problems, even higher performance can be achieved). To
our knowledge, this is the highest performance ever obtained on an MPP for sparse Cholesky factorization.
Our new scheme, like the scheme of Gupta and Kumar [13], has an asymptotic isoefficiency of O(p!-®) for
matrices arising out of two- and three-dimensional finite element problems on a wide variety of architectures
such as hypercube, mesh, fat tree, and three-dimensional torus.

The rest of the paper i1s organized as follows. Section 2 presents a general overview of the Cholesky
factorization process and multifrontal methods. Section 3 provides a brief description of the algorithm in
[13]. Section 4 describes our new algorithm. Section 5 describes some further enhancements of the algorithm
that significantly improve the performance. Section 6 provides the experimental evaluation of our new
algorithms on a Cray T3D. Section 7 contains concluding remarks.

Due to space limitations, many important topics, including the theoretical performance analysis of our
algorithm have been moved to the appendices.

2 Cholesky Factorization

Consider a system of linear equations

Ax =10

where A is an n X n symmetric positive definite matrix, b is a known vector, and x 1s the unknown solution
vector to be computed. One way to solve the linear system is first to compute the Cholesky factorization

A=LLT,

where the Cholesky factor L is a lower triangular matrix. The solution vector & can be computed by
successive forward and back substitutions to solve the triangular systems

Ly=b, LTz=y.

If A is sparse, then during the course of the factorization, some entries that are initially zero in the upper
triangle of A may become nonzero entries in L. These newly created nonzero entries of L are known as
fill-in. The amount of fill-in generated can be decreased by carefully reordering the rows and columns of A
prior to factorization. More precisely, we can choose a permutation matrix P such that the Cholesky factors



of PAPT have minimal fill-in. The problem of finding the best ordering for M that minimizes the amount
of fill-in is NP-complete [41], therefore a number of heuristic algorithms for ordering have been developed.
In particular, minimum degree ordering [9, 14, 10] is found to have low fill-in.

For a given ordering of a matrix, there exists a corresponding elimination tree. FEach node in this tree
is a column of the matrix. Node j is the parent of node ¢ (j > i) if ; ; is the first nonzero entry in column
¢. Elimination of rows in different subtrees can proceed concurrently. For a given matrix, elimination trees
of smaller height usually have greater concurrency than trees of larger height. A desirable ordering for
parallel computers must increase the amount of concurrency without increasing fill-in substantially. Spectral
nested dissection [29, 30, 19] has been found to generate orderings that have both low fill-in and good
parallelism. For the experiments presented in this paper we used spectral nested dissection. For a more
extensive discussion on the effect of orderings to the performance of our algorithm refer to [21].

In the multifrontal method for Cholesky factorization, a frontal matrix Fj and an update matrix Uy is
assoclated with each node k of the elimination tree. The rows and columns of F} corresponds to ¢+ 1 indices
of L in increasing order. In the beginning F} is initialized to an (s + 1) x (s 4+ 1) matrix, where s + 1 is the
number of nonzeros in the lower triangular part of column & of A. The first row and column of this initial F}
is simply the upper triangular part of row & and the lower triangular part of column k of A. The remainder
of F} is initialized to all zeros. The tree is traversed in a postorder sequence. When the subtree rooted at a
node k has been traversed, then Fj becomes a dense (¢ 4+ 1) x (¢ + 1) matrix, where ¢ is the number of off
diagonal nonzeros in L.

If £ 1s a leaf in the elimination tree of A, then the final Fj is the same as the initial Fy. Otherwise, the
final F} for eliminating node k 1s obtained by merging the initial /3 with the update matrices obtained from
all the subtrees rooted at k via an extend-add operation. The extend-add is an associative and commutative
operator on two update matrices such the index set of the result is the union of the index sets of the original
update matrices. Fach entry in the original update matrix is mapped onto some location in the accumulated
matrix. If entries from both matrices overlap on a location, they are added. Empty entries are assigned a
value of zero. After Fj has been assembled, a single step of the standard dense Cholesky factorization is
performed with node & as the pivot. At the end of the elimination step, the column with index k is removed
from Fj and forms the column & of L. The remaining ¢ x ¢ matrix is called the update matrix Uy and is
passed on to the parent of k£ in the elimination tree. Since matrices are symmetric, only the upper triangular
part is stored. For further details on the multifrontal method, the reader should refer to Appendix A, and
to the excellent tutorial by Liu [23].

If some consecutively numbered nodes form a chain in the elimination tree, and the corresponding rows
of L have identical nonzero structure, then this chain is called a supernode. The supernodal elimination tree
is similar to the elimination tree, but nodes forming a supernode are collapsed together. In the rest of this
paper we use the supernodal multifrontal algorithm. Any reference to the elimination tree or a node of the
elimination tree actually refers to a supernode and the supernodal elimination tree.

3 Earlier Work on Parallel Multifrontal Cholesky Factorization

In this section we provide a brief description of the algorithm by Gupta and Kumar. For a more detailed
description the reader should refer to [13].

Consider a p-processors hypercube-connected computer. Let A be the n x n matrix to be factored, and
let T" be its supernodal elimination tree. The algorithm requires the elimination tree to be binary for the
first log p levels. Any elimination tree of arbitrary shape can be converted to a binary tree using a simple
tree restructuring algorithm described in [19].

In this scheme, portions of the elimination tree are assigned to processors using the standard subtree-
to-subcube assignment strategy [11, 14] illustrated in Figure 1. With subtree-to-subcube assignment, all
p processors in the system cooperate to factor the frontal matrix associated with the root node of the
elimination tree. The two subtrees of the root node are assigned to subcubes of p/2 processors each. Each
subtree is further partitioned recursively using the same strategy. Thus, the p subtrees at a depth of logp
levels are each assigned to individual processors. Each processor can process this part of the tree completely
independently without any communication overhead.
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Figure 1: The elimination tree associated with a sparse matrix, and the subtree-to-subcube mapping of the
tree onto eight processors.

Assume that the levels of the binary supernodal elimination tree are labeled from top starting with 0. In
general, at level [ of the elimination tree, 2!°62~! processors work on a single frontal or update matrix. These
processors form a logical 2[108P=/21 5 ol(ogr=0/2] orid. All update and frontal matrices at this level are
distributed on this grid of processors. To ensure load balance during factorization, the rows and columns of
these matrices are distributed in a cyclic fashion.

Between two successive extend-add operations, the parallel multifrontal algorithm performs a dense
Cholesky factorization of the frontal matrix corresponding to the root of the subtree. Since the tree is
supernodal, this step usually requires the factorization of several nodes. The communication taking place in
this phase is the standard communication in grid-based dense Cholesky factorization.

Each processor participates in logp distributed extend-add operations, in which the update matrices
from the factorization at level [ are redistributed to perform the extend-add operation at level [ — 1 prior to
factoring the frontal matrix. In the algorithm proposed in [13], each processor exchanges data with only one
other processor during each one of these logp distributed extend-adds. The above is achieved by a careful
embedding of the processor grids on the hypercube, and by carefully mapping rows and columns of each
frontal matrix onto this grid. This mapping is described in [21], and is also given in Appendix B.

4 The New Algorithm

As mentioned in the introduction, the subtree-to-subcube mapping scheme used in [13] does not distribute
the work equally among the processors. This load imbalance puts an upper bound on the achievable efficiency.
For example, consider the supernodal elimination tree shown in Figure 2. This elimination tree is partitioned
among 8 processors using the subtree-to-subcube allocation scheme. All eight processors factor the top node,
processors zero through three are responsible for the subtree rooted at 24-27, and processors four through
seven are responsible for the subtree rooted at 52-55. The subtree-to-subcube allocation proceeds recursively
in each subcube resulting in the mapping shown in the figure. Note that the subtrees of the root node do not
have the same amount of work. Thus, during the parallel multifrontal algorithm, processors zero through
three will have to wait for processors four through seven to finish their work, before they can perform an
extend-add operation and proceed to factor the top node. This idling puts an upper bound on the efficiency
of this algorithm. We can compute this upper bound on the achievable efficiency due to load imbalance
in the following way. The time required to factor a subtree of the elimination tree is equal to the time to
factor the root plus the maximum of the time required to factor each of the two subtrees rooted at this



root. By applying the above rule recursively we can compute the time required to perform the Cholesky
factorization. Assume that the communication overhead is zero, and that each processor can perform an
operation in a time unit, the time to factor each subtree of the elimination tree in Figure 2 is shown on
the right of each node. For instance, node 9-11 requires 773 — 254 — 217 = 302 operations, and since the
computation 1s distributed over processors zero and one, it takes 151 time units. Now its subtree rooted
at node 4-5 requires 254 time units, while its subtree rooted at node 8 requires 217 time units. Thus, this
particular subtree is factored in 151 + max{254, 217} = 405 time units. The overall efficiency achievable by
the above subtree-to-subcube mapping is

4302
8 x 812

which is significantly less than one. Furthermore, the final efficiency is even lower due to communication
overheads.

= (.66

{o-7}

4302 | 56-62 812

254

Figure 2: The supernodal elimination tree of a factorization problem and its mapping to eight processors
via subtree-to-subcube mapping. Each node (i.e., supernode) is labeled by the range of nodes belonging to
it. The number on the left of each node is the number of operations required to factor the tree rooted at
this node, the numbers above each node denotes the set of processors that this subtree 1s assigned to using
subtree-to-subcube allocation, and the number on the right of each node is the time-units required to factor
the subtree in parallel.

This example illustrates another difficulty associated with direct factorization. Even though both subtrees
rooted at node 5662 have 28 nodes, they require different amount of computation. Thus, balancing the
computation cannot be done during the ordering phase by simply carefully selecting separators that split the
graph into two roughly equal parts. The amount of load imbalance among different parts of the elimination
tree can be significantly worse for general sparse matrices, for which it is not even possible to find good
separators that can split the graph into two roughly equal parts. Table 1 shows the load imbalance at the
top level of the elimination tree for some matrices from the Boeing-Harwell matrix set. These matrices were
ordered using the spectral nested dissection [29, 30, 19]. Note that for all matrices the load imbalance in
terms of operation count is substantially higher than the relative difference in the number of nodes in the
left and right subtrees. Also, the upper bound on the efficiency shown in this table is due only to the the
top level subtrees. Since subtree-to-subcube mapping is recursively applied in each subcube, the overall load
imbalance will be higher, because it adds up as we go down in the tree.

For elimination trees of general sparse matrices, the load imbalance can be usually decreased by perform-
ing some simple elimination tree reorderings described in [19]. However, these techniques have two serious
limitations. First, they increase the fill-in as they try to balance the elimination tree by adding extra depen-
dencies. Thus, the total time required to perform the factorization increases. Second, these techniques are
local heuristics that try to minimize the load imbalance at a given level of the tree. However, very often such



Left Subtree Right Subtree
Name Separator Size | Nodes | Remaining Work | Nodes | Remaining Work | Efficiency Bound
BCSSTK29 180 6912 45% 6695 55% 0.90
BCSSTK30 222 14946 59% 13745 41% 0.85
BCSSTK31 492 16728 40% 18332 60% 0.83
BCSSTK32 513 21713 45% 22364 55% 0.90

Table 1: Ordering and load imbalance statistics for some matrices from the Boeing-Harwell set. The matrices
have been reordered using spectral nested dissection. For each matrix, the size of the top separator is shown,
and for each subtree the number of nodes, and the percent of the remaining work is shown. Also, the
last column shows the maximum achievable efficiency, if any subsequent levels of the elimination tree were
perfectly balanced, or if only two processors were used for the factorization.

local improvements do not result in improving the overall load imbalance. For example, for a wide variety
of problems from the Boeing-Harwell matrix set and linear programming (LP) matrices from NETLIB [5],
even after applying the tree balancing heuristics, the efficiency bound due to load imbalance is still around
80% to 60% [13, 20, 19]. If the increased fill-in is taken into account, then the maximum achievable efficiency
is even lower than that.

In the rest of this section we present a modification to the algorithm presented in Section 3 that uses
a different scheme for mapping the elimination tree onto the processors. This modified mapping scheme
significantly reduces the load imbalance.

4.1 Subforest-To-Subcube Mapping Scheme

In our new elimination tree mapping scheme, we assign many subtrees (subforest) of the elimination tree to
each processor subcube. These trees are chosen in such a way that the total amount of work assigned to
each subcube is as equal as possible. The best way to describe this partitioning scheme is via an example.
Consider the elimination tree shown in Figure 3. Assume that it takes a total of 100 time-units to factor the
entire sparse matrix. Each node in the tree is marked with the number of time-units required to factor the
subtree rooted at this particular node (including the time required to factor the node itself). For instance,
the subtree rooted at node B requires 65 units of time, while the subtree rooted at node F' requires only 18.

As shown in Figure 3(b), the subtree-to-subcube mapping scheme will assign the computation associated
with the top supernode A to all the processors, the subtree rooted at B to half the processors, and the
subtree rooted at C' to the remaining half of the processors. Since, these subtrees require different amount of
computation, this particular partition will lead to load imbalances. Since 7 time-units of work (corresponding
to the node A) is distributed among all the processors, this factorization takes at least 7/p units of time. Now
each subcube of p/2 processors independently works on each subtree. The time required for these subcubes
to finish is lower bounded by the time to perform the computation for the larger subtree (the one rooted
at node B). Even if we assume that all subtrees of B are perfectly balanced, computation of the subtree
rooted at B by p/2 processors will take at least 65/(p/2) time-units. Thus an upper bound on the efficiency
of this mapping is only 100/(p(7/p + 65/(p/2))) = .73. Now consider the following mapping scheme: The
computation associated with supernodes A and B is assigned to all the processors. The subtrees rooted at
E and C' are assigned to half of the processors, while the subtree rooted at D is assigned to the remaining
processors. In this mapping scheme, the first half of the processors are assigned 43 time-units of work, while
the other half is assigned 45 time-units. The upper bound on the efficiency due to load imbalance of this new
assignment is 100/(p(12/p + 45/(p/2)))) =~ 0.98, which is a significant improvement over the earlier bound
of .73.

The above example illustrates the basic ideas behind the new mapping scheme. Since it assigns subforests
of the elimination tree to processor subcubes, we will refer to it as subforest-to-subcube mapping scheme.
The general mapping algorithm is outlined in Program 4.1.

The tree partitioning algorithm uses a set ) that contains the unassigned nodes of the elimination tree.
The algorithm inserts the root of the elimination tree into ¢, and then it calls the routine FElpart that
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Figure 3: The top two levels of an elimination tree is shown in (a). The subtree-to-subcube mapping is
shown in (b), the subforest-to-subcube mapping is shown in (c).

recursively partitions the elimination tree. FElpart partitions @ into two parts, L and R and checks if this
partitioning is acceptable. If yes, then it assigns L to half of the processors, and R to the remaining half,
and recursively calls Flpart to perform the partitioning in each of these halves. If the partitioning is not
acceptable, then one node of Q (i.e., node = select(Q))) is assigned to all the p processors, node is deleted
from @, and the children of node are inserted into the . The algorithm then continues by repeating the
whole process. The above description provides a high level overview of the subforest-to-subcube partitioning
scheme. However, a number of details need to be clarified. In particular, we need to specify how the select,
halfsplit, and acceptable procedures work.

Selection of a node from ) There are two different ways® of defining the procedure select(Q).
e One way is to select a node whose subtree requires the largest number of operations to be factored.
e The second way is to select a node that requires the largest number of operations to factor it.

The first method favors nodes whose subtrees require significant amount of computation. Thus, by
selecting such a node and inserting its children in ) we may get a good partitioning of ¢ into two halves.
However, this approach can assign nodes with relatively small computation to all the processors, causing
poor efficiency in the factorization of these nodes. The second method guarantees that the selected node has
more work, and thus its factorization can achieve higher efficiency when it is factored by all p processors.

INote, that the information required by these methods (the amount of computation to eliminate a node, or the total amount
of computation associated with a subtree), can be easily obtained during the symbolic factorization phase.



1. Partition(T, p) /* Partition the elimination tree T, among p processors */
2 Q=1

3. Add root(T) into @

4. Elpart(@, T, p)

5. End Partition

6. Elpart(Q, T, p)

7. if (p == 1) return

8. done = false

9. while (done == false)

10. halfsplit(@, L, R)

11. if (acceptable(L, R))

12. Elpart(L, T, p/2)

13. Elpart(R, T, p/2)

14. done = true

15. else

16. node = select(Q)

17. delete(Q, node)

18. node => p /* Assign node to all p processors */
19. Insert into @ the children of node in T

20. end while

21. End Elpart

Program 4.1: The subforest-to-subcube partitioning algorithm.

However, if the subtrees attached to this node are not large, then this may not lead to a good partitioning
of () in later steps. In particular, if the root of the subtree having most of the remaining work, requires little
computation (e.g., single node supernode), then the root of this subtree will not be selected for expansion
until very late, leading to too many nodes being assigned at all the processors.

Another possibility is to combine the above two schemes and apply each one in alternate steps. This
combined approach eliminates most of the limitations of the above schemes while retaining their advantages.
This is the scheme we used in the experiments described in Section 6.

So far we considered only the floating point operations when we were referring to the number of operations
required to factor a subtree. On systems where the cost of each memory access relative to a floating point
operation is relatively high, a more accurate cost model will also take the cost of each extend-add operation
into account. The total number of memory accesses required for extend-add can be easily computed from
the symbolic factorization of the matrix.

Splitting The Set () 1In each step, the partitioning algorithm checks to see if it can split the set @
into two roughly equal halves. The ability of the halfsplit procedure to find a partition of the nodes (and
consequently create two subforests) is crucial to the overall ability of this partitioning algorithm to balance
the computation. Fortunately, this is a typical bin-packing problem, and even though, bin-packing is NP
complete, a number of good approximate algorithms exist [28]. The use of bin-packing makes it possible to
balance the computation and to significantly reduce the load imbalance.

Acceptable Partitions A partition is acceptable if the percentage difference in the amount of work in the
two parts is less that a small constant e. If € is chosen to be high (e.g., € > 0.2), then the subforest-to-subcube
mapping becomes similar to the subtree-to-subcube mapping scheme. If € is chosen to be too small, then most
of the nodes of the elimination tree will be processed by all the processors, and the communication overhead
during the dense Cholesky factorization will become too high. For example, consider the task of factoring



two n x n matrices A and B on p-processor square mesh or a hypercube using a standard algorithm that
uses two-dimensional partitioning and pipelining. If each of the matrices is factored by all the processors,
then the total communication time for factoring the two matrices is n?/,/p [22]. If A and B are factored
concurrently by p/2 processors each, then the communication time is n?/(2 M) which is smaller. Thus the
value of € has to be chosen to strike a good balance between these two conflicting goals of minimizing load
imbalance and the communication overhead in individual factorization steps. For the experiments reported
in Section 6, we used € = 0.05.

4.2 Other Modifications

In this section we describe the necessary modifications of the algorithm presented in Section 3 to accommo-
date this new mapping scheme.

Initially each processor factors the subtrees of the elimination tree assigned to itself. This represents
local computation and requires no communication just like the earlier algorithm.

However, since each processor is assigned more than one subtree of the elimination tree, at the end of
this local computation, its stack will contain one update matrix for each tree assigned to it. At this point,
it needs to perform a distributed extend-add operation with its neighbor processor at the first level of the
virtual binary tree. During this step, each processor splits the update matrices, and sends the part that
is not local, to the other processor. This is similar to the parallel extend-add operation required by the
algorithm described in Section 3, except that more than one update matrix i1s split and sent. Note, that
these pieces from different update matrices can all be packed in a single message, as the communication
happens with only one other processor. Furthermore, as shown in Appendix D, the amount of data being
transmitted in each parallel extend-add step is no more than it is in the earlier algorithm [13]. The reason is
that even though more update matrices are being transmitted, these update matrices correspond to nodes
that are deeper in the elimination tree and the size of these matrices is much smaller.

Now, after pairs of processors have performed the extend-add operation, they cooperate to factor the
nodes of the elimination tree assigned to them. The nodes are eliminated in a postorder order. Next, groups
of four processors exchange the update matrices that are stored in their stack to perform the extend-add
operation for the next level. This process continues until all the nodes have been factored. The new parallel
multifrontal algorithm is outlined in Appendix C.

5 Improving Performance

We have added a number of modifications to the algorithm described in Section 4 that greatly improve
its performance. In the following sections we briefly describe these modifications. For a more detailed
description of these enhancements the reader should refer to [21].

5.1 Block Cyclic Mapping

As discussed in Appendix D, for the factorization of a supernode, we use the pipelined variant of the grid-
based dense Cholesky algorithm [22]. In this algorithm, successive rows of the frontal matrix are factored
one after the other, and the communication and computation proceeds in a pipelined fashion.

Even though this scheme is simple, it has two major limitations. Since the rows and columns of a
frontal matrix among the processor grid in a cyclic fashion, information for only one row is transmitted at
any given time. Hence, on architectures in which the message startup time is relatively high compared to
the transfer time, the communication overhead is dominated by the startup time. For example, consider a
V4 X +/q processor grid, and a k-node supernode that has a frontal matrix of size m x m. While performing
k elimination steps on an m x m frontal matrix, on average, a message of size (2m — k)/(2,/q)) needs to be
send in each step along each direction of the grid. If the message startup time is 100 times higher than the
per word transfer time, then for ¢ = 256, as long as 2m — k < 3200 the startup time will dominate the data
transfer time. Note, that the above translates to m > 1600. For most sparse matrices, the size of the frontal
matrices tends to be much less than 1600.



The second limitation of the cyclic mapping has to do with the implementation efficiency of the compu-
tation phase of the factorization. Since, at each step, only one row is eliminated, the factorization algorithm
must perform a rank-one update. On systems with BLAS level routines, this can be done using either level
one BLAS (DAXPY), or level two BLAS (DGER, DGEMYV). On most microprocessors, including high per-
formance RISC processors such as the Dec Alpha AXP, the peak performance achievable by these primitives
is usually significantly less than that achieved by level three BLAS primitives, such as matrix-matrix multi-
ply (DGEMM). The reason is that for level one and level two BLAS routines, the amount of computation
is of the same order as the amount of data movement between CPU and memory. In contrast, for level
three BLAS operations, the amount of computation is much higher than the amount of data required from
memory. Hence, level three BLAS operations can better exploit the multiple functional units, and deep
pipelines available in these processors.

However, by distributing the frontal matrices using a block cyclic mapping [22], we are able to eliminate
both of the above limitations and greatly improve the performance of our algorithm. In the block cyclic
mapping, the rows and columns of the matrix are divided into groups, each of size b, and these groups
are assigned to the processors in a cyclic fashion. As a result, diagonal processors now store blocks of b
consecutive pivots. Instead of performing a single elimination step, they now perform b elimination steps,
and send data corresponding to b rows in a single message. Note that the overall volume of data transferred
remains the same. For sufficiently large values of b, the startup time becomes a small fraction of the data
transmission time. This result in a significant improvements on architectures with high startup time. In
each phase now, each processor receives b rows and columns and has to perform a rank-b update on the not
vet factored part of its frontal matrix. The rank-b update can now be implemented using matrix-matrix
multiply, leading to higher computational rate.

There are a number of design issues in selecting the proper value for b. Clearly, the block size should
be large enough so that the rank-b update achieves high performance and the startup time becomes a small
fraction of the data transfer time. On the other hand a very large value of b leads to a number of problems.
First, processors storing the current set of b rows to be eliminated, have to construct the rank-b update by
performing b rank-1 updates. If b is large, performing these rank-1 updates takes considerable amount of
time, and stalls the pipeline. Also, a large value of b leads to load imbalances on the number of elements of
the frontal matrix assigned to each processor, because there are fewer blocks to distribute in a cyclic fashion.
Note that this load imbalance within the dense factorization phase 1s different from the load imbalance
associated with distributing the elimination tree among the processors described in Section 4.

A number of other design issues involved in using block cyclic mapping and ways to further improve the
performance are described in [21].

5.2 Pipelined Cholesky Factorization

In the parallel portion of our multifrontal algorithm, each frontal matrix is factored using a grid based
pipelined Cholesky factorization algorithm. This pipelined algorithms works as follows [22]. Assume that
the processor grid stores the upper triangular part of the frontal matrix, and that the processor grid is
square. The diagonal processor that stores the current pivot, divides the elements of the pivot row it stores
by the pivot and sends the pivot to its neighbor on the right, and the scaled pivot row to its neighbor down.
Each processor upon receiving the pivot, scales its part of the pivot row and sends the pivot to the right and
its scaled pivot row down. When a diagonal processor receives a scaled pivot row from its up processor, it
forwards this down along its column, and also to its right neighbor. Every other processor, upon receiving a
scaled pivot row either from the left or from the top, stores it locally and then forwards it to the processor
at the opposite end. For simplicity, assume that data is taken out from the pipeline by the processor who
initiated the transmission. Each processor performs a rank-1 update of its local part of the frontal matrix
as soon as it receives the necessary elements from the top and the left. The processor storing the next pivot
element starts eliminating the next row as soon as it has finished computation for the previous iteration.
The process continues until all the rows have been eliminated.

Even though this algorithm is correct, and its asymptotic performance is as described in Appendix D, it
requires buffers for storing messages that have arrived and cannot yet be processed. This is because certain
processors receive the two sets of data they need to perform a rank-1 update at different times. Consider for
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example a 4 x 4 processor grid, and assume that processor (0,0) has the first pivot. Even though processor
(1,0) receives data from the top almost right away, the data from the left must come from processor (0, 1)
via (1,1),(1,2),and, (1,3). Now if the processor (0,0), also had the second pivot (due to a greater than
one block size), then the message buffer on processor (1,0) might contain the message from processor (0, 0)
corresponding to the second pivot, before the message from (0, 1) corresponding to the first pivot had arrived.
The source of this problem is that the processors along the row act as the sources for both type of messages
(those circulating along the rows and those circulating along the columns). When a similar algorithm is
used for Gaussian elimination, the problem doesn’t arise because data start from a column and a row of
processors, and messages from these rows and columns arrive at each processor at roughly the same time
[22].

On machines with very high bandwidth, the overhead involved in managing buffers significantly reduces
the percentage of the obtainable bandwidth. This effect is even more pronounced for small messages. For
this reason, we decided to implement our algorithm with only a single message buffer per neighbor. As
mentioned in Section 6, this communication protocol enable us to utilize most of the theoretical bandwidth
on a Cray T3D.

However, under the restrictions of limited message buffer space, the above Cholesky algorithm spends a
significant amount of time idling. This is due to the following requirement imposed by the single communica-
tion buffer requirement. Consider processors Py i, and Pyyq 5. Before processor Py can start the (i 4 1)th
iteration, it must wait until processor P41 ; has started performing the rank-1 update for the ith iteration
(so that processor Py j can go ahead and reuse the buffers for iteration (i 4 1)). However, since processor
P 41,5 receives data from the left much later than it does from the top, processor P ; must wait until this
latter data transmission has taken place. Essentially during this time processor P ; sits idle. Because, it sits
idle, the ¢ +1 iteration will start late, and data will arrive at processor P41 1 even later. Thus, at each step,
certain processors spend certain amount of time being idle. This time i1s proportional to the time it takes
for a message to travel along an entire row of processors, which increases substantially with the number of
processors.

To solve this problem, we slightly modified the communication pattern of the pipelined Cholesky algo-
rithm as follows. As soon as a processor that contains elements of the pivot row has finished scaling it,
it sends i1t both down and also to the transposed processor along the main diagonal. This latter processor
upon receiving the scaled row, starts moving it along the rows. Now the diagonal processors do not anymore
forward the data they receive from the top to the right. The reason for this modification is to mimic the be-
havior of the algorithm that performs Gaussian elimination. On architectures with cut-through routing, the
overhead of this communication step is comparable to that of a nearest neighbor transmission for sufficiently
large messages. Furthermore, because these transposed messages are initiated at different times cause little
or no contention. As a result, each diagonal processor now will have to sit idle for a very small amount of
time [21].

6 Experimental Results

We implemented our new parallel sparse multifrontal algorithm on a 256-processors Cray T3D parallel
computer. Fach processor on the T3D is a 150Mhz Dec Alpha chip, with peak performance of 150MFlops
for 64-bit operations (double precision). The processors are interconnected via a three dimensional torus
network that has a peak unidirectional bandwidth of 150Bytes per second, and a very small latency. Even
though the memory on T3D is physically distributed, it can be addressed globally. That is, processors
can directly access (read and/or write) other processor’s memory. T3D provides a library interface to this
capability called SHMEM. We used SHMEM to develop a lightweight message passing system. Using this
system we were able to achieve unidirectional data transfer rates up to 70Mbytes per second. This is
significantly higher than the 35MBytes channel bandwidth usually obtained when using T3D’s PVM.

For the computation performed during the dense Cholesky factorization, we used single-processor im-
plementation of BLAS primitives. These routines are part of the standard scientific library on T3D, and
they have been fine tuned for the Alpha chip. The new algorithm was tested on matrices from a variety
of sources. Four matrices (BCSSTK40, BCSSTK31, BCSSTK32, and BCSSTK33) come from the Boeing-
Harwell matrix set. MAROS-RT is from a linear programming problem taken from NETLIB. COPTER2

11



comes from a model of a helicopter rotor. CUBE35 is a 35 x 35 x 35 regular three-dimensional grid. In all
of our experiments; we used spectral nested dissection [29, 30] to order the matrices.

The performance obtained by our multifrontal algorithm in some of these matrices is shown in Table 2.
The operation count shows only the number of operations required to factor the nodes of the elimination
tree (it does not include the operations involved in extend-add). Some of these problems could not be run
on 32 processors due to memory constraints (in our T3D, each processor had only 2Mwords of memory).

Figure 4 graphically represents the data shown in Table 2. Figure 4(a) shows the overall performance
obtained versus the number of processors, and is similar in nature to a speedup curve. Figure 4(b) shows the
per processor performance versus the number of processors, and reflects reduction in efficiency as p increases.
Since all these problems run out of memory on one processor, the standard speedup and efficiency could not
be computed experimentally.

Number of Processors
Problem n |A| | L] Operation Count 32 64 128 | 256
MAROS-R7 3136 330472 1345241 720M 0.83 | 1.41 | 2.18 | 3.08
BCSSTK30 28924 | 1007284 5796797 2400M 1.48 | 2.45 | 3.59
BCSSTK31 35588 572914 6415883 3100M 1.47 | 2.42 | 3.87
BCSSTK32 44609 985046 8582414 4200M 1.51 | 2.63 | 4.12
BCSSTK33 8738 291583 2295377 1000M 0.78 | 1.23 | 1.92 | 2.86
COPTER2 55476 352238 12681357 9200M 1.92 | 3.17 | 5.51
CUBES35 42875 124950 11427033 10300M 2.23 | 3.75 | 6.06

Table 2: The performance of sparse direct factorization on Cray T3D. For each problem the table contains
the number of equations n of the matrix A, the original number of nonzeros in A, the nonzeros in the
Cholesky factor L, number of operations required to factor the nodes, and the performance in gigaflops for
different number of processors.

—> CUBES35

_—> COPTER2
BCSSTK32
BCSSTK31

4l % BCSSTK30
— MAROS-R7
3] BCSSTK33
_— CUBES35
4 COPTER2
21 w04 BCSSTK32
BCSSTK31
0+

& BCSSTK30
20+ % MAROS-R7
104 Z— BessTkas
Processors Processors

1 1 1 1 1
» 64 128 " 256 » 64 128 256
@ o)

MFlops/Processor

N

Figure 4: Plot of the performance of the parallel sparse multifrontal algorithm for various problems on Cray
T3D. (a) Total Gigaflops obtained; (b) Megaflops per processor.

The highest performance of 6GFlops was obtained for CUBE3b5, which is a regular three-dimensional
problem. Nearly as high performance (5.51GFlops) was also obtained for COPTER2 which is irregular.
Since both problems have similar operation count, this shows that our algorithm performs equally well in
factoring matrices arising in irregular problems. Focusing our attention to the other problems shown in
Table 2, we see that even on smaller problems, our algorithm performs quite well. For BCSSTK33, it was
able to achieve 2.86GFlops on 256 processors, while for BCSSTK30, it achieved 3.59GFlops.
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To further illustrate how various components of our algorithm work, we have included a breakdown of
the various phases for BCSSTK31 and CUBE35 in Table 3. This table shows the average time spent by
all the processors in the local computation and in the distributed computation. Furthermore, we break
down the time taken by distributed computation into two major phases, (a) dense Cholesky factorization,
(b) extend-add overhead. The latter includes the cost of performing the extend-add operation, splitting the
stacks, transferring the stacks, and idling due to load imbalances in the subforest-to-subcube partitioning.
Note that the figures in this table are averages over all processors, and they should be used only as an
approximate indication of the time required for each phase.

A number of interesting observations can be made from this table. First, as the number of processors
increases, the time spent processing the local tree in each processor decreases substantially because the
subforest assigned to each processor becomes smaller. This trend is more pronounced for three-dimensional
problems, because they tend to have fairly shallow trees. The cost of the distributed extend-add phase
decreases almost linearly as the number of processors increases. This is consistent with the analysis presented
in Appendix D, since the overhead of distributed extend-add is O((nlogp)/p). Since the figure for the time
spent during the extend-add steps also includes the idling due to load imbalance, the almost linear decrease
also shows that the load imbalance is quite small.

The time spent in distributed dense Cholesky factorization decreases as the number of processors in-
creases. This reduction is not linear with respect to the number of processors for two reasons: (a) the ratio
of communication to computation during the dense Cholesky factorization steps increases, and (b) for a fixed
size problem load imbalances due to the block cyclic mapping becomes worse as p increases.

For reasons discussed in Section 5.1, we distributed the frontal matrices in a block-cyclic fashion. To get
good performance on Cray T3D out of level three BLAS routines, we used a block size of sixteen (block sizes
of less than sixteen result in degradation of level 3 BLAS performance on Cray T3D) However, such a large
block size results in a significant load imbalance within the dense factorization phase. This load imbalance
becomes worse as the number of processors increases.

However, as the size of the problem increases, both the communication overhead during dense Cholesky
and the load imbalance due to the block cyclic mapping becomes less significant. The reason is that larger
problems usually have larger frontal matrices at the top levels of the elimination tree, so even large processor
grids can be effectively utilized to factor them. This is illustrated by comparing how the various overheads
decrease for BCSSTK31 and CUBE35. For example, for BCSSTK31, the factorization on 128 processors is
only 48% faster compared to 64 processors, while for CUBE35, the factorization on 128 processors is 66%
faster compared to 64 processors.

| BCSSTK31 CUBE35
Distributed Computation Distributed Computation
P Local Computation | Factorization | Extend-Add || Local Computation | Factorization | Extend-Add
64 0.17 1.34 0.58 0.15 3.74 0.71
128 0.06 0.90 0.32 0.06 2.25 0.43
256 0.02 0.61 0.18 0.01 1.44 0.24

Table 3: A break-down of the various phases of the sparse multifrontal algorithm for BCSSTK31 and
CUBE35. Each number represents time in seconds.

To see the effect of the choice of € in the overall performance of the sparse factorization algorithm we
factored BCSSTK31 on 128 processors using € = 0.4 and € = 0.0001. Using these values for € we obtained a
performance of 1.18GFlops when € = 0.4, and 1.37GFlops when ¢ = 0.0001. In either case, the performance
is worse than the 2.42GFlops obtained for € = 0.05. When € = 0.4, the mapping of the elimination tree to
the processors resembles that of the subtree-to-subcube allocation. Thus, the performance degradation is
due to the elimination tree load imbalance. When e = 0.0001, the elimination tree mapping assigns a large
number of nodes to all the processors, leading to poor performance during the dense Cholesky factorization.
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7 Conclusion

Experimental results clearly show that our new scheme is capable of using a large number of processor
efficiently. On a single processor of a state of the art vector supercomputer such as Cray C90, sparse
Cholesky factorization can be done at the rate of roughly 500MFlops for the larger problems studied in
Section 6. Even a 32-processor Cray T3D clearly outperforms a single node C-90 for these problems.

Our algorithm as presented (and implemented) works for Cholesky factorization of symmetric positive
definite matrices. With little modifications, it is also applicable to LU factorization of other sparse matrices,
as long as no pivoting is required (e.g., sparse matrices arising out of structural engineering problems).

With highly parallel formulation available, the factorization step is no longer the most time consuming
step in the solution of sparse systems of equations. Another step that is quite time consuming, and has
not been parallelized effectively is that of ordering. In our current research we are investigating ordering
algorithms that can be implemented fast on parallel computers [16, 34].
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Appendix A Multifrontal Method

Let A be an n x n symmetric positive definite matrix and L be its Cholesky factor. Let 7" be its elimination
tree and define T[] to represent the set of descendants of the node ¢ in the elimination tree 7'. Consider the
jth column of L. Let 4,41, ...,4, be the row subscripts of the nonzeros in L, ; with iy = j (i.e., column j
has r off-diagonal nonzeros).

The subtree update matriz at column j, W; for A is defined as

lj,k
iy x
IZEEY A U AN ) (1)
keT[j]-{j}
irk

Note that IW; contains outer product contributions from those previously eliminated columns that are de-
scendants of j in the elimination tree. The jth frontal matriz F; is defined to be

Aj5  Qjay 0 Gh,
gy, j
F=| " 1 2)

@i,.5

Thus, the first row/column of F; is formed from A, ; and the subtree update matrix at column j. Having
formed the frontal matrix F}, the algorithm proceeds to perform one step of elimination on F} that gives
the nonzero entries of the factor of L, ;. In particular, this elimination can be written in matrix notation as

ll.j’j. ’ 1 0 i i i, j
21,]
F, = . . 3
) : , (3)
li, 0 Ui 0 !

where I, ; are the nonzero elements of the Cholesky factor of column j. The matrix U; is called update
matriz for column j and is formed as part of the elimination step.
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In practice, W; is never computed using Equation 1, but is constructed from the update matrices as

follows. Let ¢q,...,cs be the children of j in the elimination tree, then
Qi3 Qi 0 Gy,
4y ,5
r=|" 0 bUL 4 b T, (1)
4,5

where < is called the extend-add operator, and is a generalized matrix addition. The extend-add operation
is 1llustrated in the following example. Consider the following two update matrices of A:

rp q r

R:(ab),sttx
¢ d

Yy ozow

where {2,5} is the index set of R (i.e., the first row/column of R corresponds to the second row/column of
M, and the second row/column of R corresponds to the fifth row/column of M), and {1,3,5} is the index
set of S. Then

0 0 0 0 p 0 g r p 0 ¢ 7

0 a 0 b 00 0 0 0O a 0 b
BES=lg o000t so0od |50t =

0 ¢ 0 d y 0 2z w y ¢ z d+w

Note that the submatrix U., 4+ --- <4 U, may have fewer rows/columns than Wj, but if it is properly
extended by the index set of F}, it becomes the subtree update matrix W;.

The process of forming F; from the nonzero structure elements of column j of 4 and the updates matrices
is called frontal matriz assembly operation. Thus, in the multifrontal method, the elimination of each column
of M involves the assembly of a frontal matrix and one step of elimination.

The supernodal multifrontal algorithm proceeds similarly to the multifrontal algorithm, but when a
supernode of the elimination tree gets eliminated, this corresponds to multiple elimination steps on the same
frontal matrix. The number of elimination steps is equal to the number of nodes in the supernode.

Appendix B Data Distribution

Figure b(a) shows a 4 x 4 grid of processors embedded in the hypercube. This embedding uses the shuffle
mapping. In particular grid position with coordinate (y, #) is mapped onto processor whose address is made
by interleaving the bits in the binary representation of x and y. For instance, the grid position with binary
coordinates (ab, cd) is mapped onto processor whose address in binary is cadb, for example grid (10, 11) is
mapped onto 1110. Note that when we split this 4 x 4 processor grid into two 4 x 2 subgrids, these subgrids
correspond to distinct subcubes of the original hypercube. This property is maintained in subsequent splits,
for instance each 2 x 2 grid of a 4 x 2 grid is again a subcube. This is important, because the algorithm uses
subtree-to-subcube partitioning scheme, and by using shuffling mapping, each subcube is simply half of the
processor grid.

Consider next, the elimination tree shown in Figure 5(b). In this figure only the top two levels are shown,
and at each node ¢, the nonzero elements of L; for this particular node is also shown. Using the subtree-to-
subcube partitioning scheme, the elimination tree is partitioned among the 16-processors as follows. Node
A is assigned to all the 16 processors, node B 1s assigned to half the processors, while node ' is assigned to
the other half of the processors.

In Figure 5(c), we show how the frontal matrices corresponding to nodes B, C', and A will be distributed
among the processors. Consider node B. The frontal matrix Fig 1s a 7 x 7 triangular matrix, that corresponds
to Lp. The distribution of the rows and columns of this frontal matrix on the 4 x 2 processor grid is shown
in part (c¢). Row ¢ of Fig is mapped on row i & 2? of the processor grid, while column j of Fpg is mapped on
column j @ 2' of the processor grid. In this paper @ is used to denote bitwise exclusive-or.
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00 01 10 11

00 | 0000 | 0010 | 1000 | 1010

{4,5,7,8,9,10,12, 13, 14, 15, 16, 19}
o1 | ooo1 | oo11 | 1001 | 1011 (A)

10 | 0100 | 0110 | 1100 | 1110 {2,5,7,8, 12, 14, 15} e G {3,4,7,10, 13, 14, 19}

11 | 0101 | 0111 | 1101 | 1111

(a) Processor Grid (b) An Elimination Tree

5,7,15 3,7,13,19 5,9,13 7,15,19
2,8,12,14 4,10, 14 4,8,16 10, 14
8,12 | 0000 | 0010 4 | 1000 | 1010 4,8,16 | 0000 | 0010 | 1000 | 1010
5 | 0001 | OO11 13 | 1001 | 1011 5,9,13 | 0001 | 0011 | 1001 | 1011
2,14 | 0100 | 0110 10, 14 | 1100 | 1110 10,14 | 0100 | 0110 | 1100 | 1110
7,15 | 0101 | 0111 3,7,19 | 1101 | 1111 7,15,19 | 0101 | 0111 | 1101 | 1111
Factoring node B Factoring node C Factoring node A

(c) Distributed Factorization and Extend-Add

Figure 5: Mapping frontal matrices to the processor grid.

An alternate way of describing this mapping is to consider the coordinates of the processors in each
processor grid. Each processor in the 4 x 2 grid has an (y,#) coordinate such that 0 < y < 4, and
0 < = < 2. Note that this coordinate is local with respect to the current grid, and is not the same with
the grid coordinates of the processor in the entire 4 x 4 grid. For the rest of the paper, when we discuss
grid coordinates we will always assume that they are local, unless specified otherwise. Row ¢ of Fig will be
mapped on the processors (y, #) such that the two least significant bits of 7 is equal to y. Similarly, column
J of Fp will be mapped on the processors (#, ), such that the one least significant bit of j is equal to «.

In general, in a 2% x 2! processor grid, fi; is mapped onto the processor with grid coordinates (i@2*, jo2h).
Or looking it from the processor’s point of view, processor (y, ) will get all elements f; ; such that the &
least significant bits of ¢ are equal to y, and the [ least significant bits of j are equal to z. (i ® y = y, and
J®x =z, where ® is used to denote bitwise logical and).

The frontal matrix for node C' is mapped on the other 4 x 2 grid in a similar fashion. Note that the rows
of both Fp and F¢ are mapped on processors along the same row of the 4 x 4 grid. This is because, both
grids have the same number of rows. Also, because the final grid also has 4 rows, the rows of F)y that are
similar to either rows of Fp and F¢, are mapped on the same row of processors. For example row 7 of both
Fa, Fpg, and F¢ is mapped on the fourth row of the three grids in question. This is important, because
when the processors need to perform the extend-add operation Ug 4+ Uc, no data movement between rows
of the grid is required.

However, data needs to be communicated along the columns of the grid. This is because, the grids that
are storing the update matrices have fewer columns than the grid of processors that is going to factor Fu.
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Data needs to be communicated so that the columns of the update matrices Ug and Ug matches that of
the frontal matrix F4. Each processor can easily determine which columns of the update matrix it already
stores needs to keep and which needs to send away. It keeps the columns whose 2 least significant bits match
its z coordinate in the 4 x 4 grid, and it sends the other away. Let u; ; be a rejected element. This element
needs to be send to processor along the same row in the processor grid, but whose x coordinate is j @ 22.
However, since element u; ; resides in this processor during the factorization involving the 4 x 2 grid, then
j @ 2% must be the 2 coordinate of this processor. Therefore, the rejected columns need to be send to the
processor along the same row whose x grid coordinate differs in the most significant bit. Thus, during this
extend-add operation, processors that are neighbors in the hypercube need to exchange data.

Appendix C New Parallel Multifrontal Algorithm

porder[1..k] /* The nodes of the elimination tree at each processor numbered in a level-postorder */

1. Ivl = log p
2. for (j=1; j< k; j+4) {
3. i = porder(j]
4. if (level[i] = 1v1) {
5. Split_Stacks(1vl, level[i])
6. Ivl = levelli]
7.
Let F; be the frontal matrix for node 2
Let ¢1,¢2,...,c¢s be the children of ¢ in the elimination tree
8. FiZFi{%UCI%UCQ%H~{—>UCS
9. factor(F;) /* Dense factorization using 2los P=ivl hrocessors */
10. push(U;)
11. }

The parallel multifrontal algorithm using the subforest-to-subcube partitioning scheme. The function
Split_Stacks, performs lvl — level[i] parallel extend-add operations. In each of these extend-adds each pro-
cessor splits its local stack and sends data to the corresponding processors of the other group of processors.
Note that when [vl = log p, the function factor performs the factorization of F; locally.

Appendix D Analysis

In this section we analyze the performance of the parallel multifrontal algorithm described in Section 4. In
our new parallel multifrontal algorithm and that of Gupta and Kumar [13], there are two types of overheads
due to the parallelization: (a) load imbalances due to the work partitioning; (b) communication overhead
due to the parallel extend-add operation and due to the factorization of the frontal matrices.

As our experiments show in Section 6, the subforest-to-subcube mapping used in our new scheme es-
sentially eliminates the load imbalance. In contrast, for the subtree-to-subcube scheme used in [13], the
overhead due to load imbalance is quite high.

Now the question i1s whether the subforest-to-subcube mapping used in our new scheme results in higher
communication overhead during the extend-add and the dense factorization phase. This analysis is difficult
due to the heuristic nature of our new mapping scheme. To keep the analysis simple, we present analysis
for regular two-dimensional grids, in which the number of subtrees mapped onto each subcube is four. The
analysis also holds for any small constant number of subtrees. Our experiments have shown that the number
of subtrees mapped onto each subcube is indeed small.

D.1 Communication Overhead

Consider a \/n x v/n regular finite difference grid, and a p-processor hypercube-connected parallel computer.
To simplify the analysis, we assume that the grid has been ordered using a nested dissection algorithm,
that selects cross-shaped separators [11]. For an n node square grid, this scheme selects a separator of size
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2\/n—1 =2 2\/n that partitions the grid into four subgrids each of size (/n—1)/2x(\/n—1)/2 = \/n/2x\/n/2.
Each of these subgrids is recursively dissected in a similar fashion. The resulting supernodal elimination
tree, is a quadtree. If the root of the elimination tree is at level zero, then a node at level [ corresponds to a
grid of size \/n/2' x \/n/2', and the separator of such a grid is of size 2,/n/4!. Also, it is proven in [11, 13],
that the size of the update matrix of a node at level [ is bounded by 2kn/4', where k = 341/2.

We assume that the subforest-to-subcube partitioning scheme partitions the elimination tree in the fol-
lowing way. Tt assigns all the nodes in the first two levels (the zeroth and first level) to all the processors. Tt
then, splits the nodes at the second level into four equal parts and assigns each a quarter of the processors.
The children of the nodes of each of these four groups are split into four equal parts and each is assigned
to a quarter of the processors of each quarter. This processes continues, until the nodes at level log p have
been assigned to individual processors. Figure 6 shows this type of subforest-to-subcube partitioning scheme.
This scheme assigns to each subcube of processors, four nodes of the same level of the elimination tree. In
particular, for 2 > 0, a subcube of size \/5/22 X \/5/22 is assigned four nodes of level i + 1 of the tree. Thus,
each subcube is assigned a forest consisting of four different trees.

DN

(a) Top 4 levels of a quad tree

DN

(b) The subforest assigned to a fourth of the processors

(c) The subforest assigned to a sixteenth of the processors

Figure 6: A quadtree and the subforest-to-subcube allocation scheme. (a) Shows the top four levels of a
quadtree. (b) Shows the subforest assigned to a quarter of the processors. (c) Shows the subforest assigned
to a quarter of a processors of the quarter of part (b).

Consider a subcube of size \/5/22 X \/]_)/QZ After it has finished factoring the nodes at level ¢ 4+ 1 of the
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elimination tree assigned to it, it needs to perform an extend-add with its corresponding subcube, so the
new formed subcube of size \/E/Qi_1 X \/E/Qi_l, can go ahead and factor the nodes of the ¢th level of the
elimination tree. During this extend-add operation, each subcube needs to split the roots of each one of the
subtrees being assigned to it. Since, each subcube is assigned four subtrees; each subcube needs to split and
send elements from four update matrices. Since each node at level i+1 has an update matrix of size 2kn /411
distributed over \/5/22 X \/5/22 processors, each processor needs to exchange with the corresponding processor
of the other subcube kn/4p elements. Since, each processor has data from four update matrices, the total
amount of data being exchanged is kn/p. The are a total of logp extend-add phases; thus, the total number
of data that need to be exchanged is O(nlogp/p). Note that this communication overhead is identical to
that required by the subtree-to-subcube partitioning scheme [13].

For the dense Cholesky factorization we use the pipeline implementation of the algorithm on a two-
dimensional processor grid using checkerboard partitioning. It can be shown [27, 22] that the communication
overhead to perform d factorization steps of an m x m matrix, in a pipelined implementation on a /¢ x /¢
mesh of processors, is O(dm/q). Since, each node of level i+ 1 of the elimination tree is assigned to a grid of
V/P/2" x /p/2", and the frontal matrix of each node is bounded by v2kn/2*! x \/2kn/2i+1 and we perform

/n /211 factorization steps, the communication overhead is

n V2kn 2¢ 2kn
n X n = - .
9i+1 9i+1 \/]—) 422\/]—)

Since, each such grid of processor has four such nodes, the communication overhead of each level is 2kn/(22\/ﬁ)
Thus, the communication overhead over the log p levels is

n &r 1 n
0 (_) Lo (_) |

D VP
Therefore, the communication overhead summed over all the processor due to the parallel extend-add
and the dense Cholesky factorization is O(n,/p), which is of the same order as the scheme presented in
[13]. Since the overall communication overhead of our new subforest-to-subcube mapping scheme is of the
same order as that for the subtree-to-subcube, the isoefficiency function for both schemes is the same. The
analysis just presented can be extended similarly to three-dimensional grid problems and to architectures

other than hypercube. In particular, the analysis applies directly to architectures such as CM-5, and Cray
T3D.
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