A High Performance Sparse Cholesky Factorization Algorithm For Scalable
Parallel Computers*

GEORGE KARYPIS AND VIPIN KUMAR
DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MN 55455

Abstract

This paper presents a new parallel algorithm for sparse matrix fac-
torization. This algorithm uses subforest-to-subcube mapping instead of
the subtree-to-subcube mapping of another recently introduced scheme by
Gupta and Kumar [10]. Asymptotically, both formulations are equally
scalable on a wide range of architectures and a wide variety of problems.
But the subtree-to-subcube mapping of the earlier formulation causes sig-
nificant load imbalance among processors, limiting overall efficiency and
speedup. The new mapping largely eliminates the load imbalance among
processors. Furthermore, the algorithm has a number of enhancements
to improve the overall performance substantially. This new algorithm
achieves up to 20GFlops on a 1024-processor Cray T3D for moderately
large problems. To our knowledge, this is the highest performance ever
obtained on an MPP for sparse Cholesky factorization.

1 Introduction

Direct methods for solving sparse linear systems are impor-
tant because of their generality and robustness. For linear
systems arising in certain applications, such as linear pro-
gramming and some structural engineering applications,
they are the only feasible methods for numerical factoriza-
tion. It is well known that dense matrix factorization can
be implemented efficiently on distributed-memory parallel
computers [4, 17, 20]. However, despite inherent paral-
lelism in sparse direct methods, not much success has been
achieved to date in developing their scalable parallel for-
mulations [12, 28], and for several years, it has been a chal-
lenge to implement efficient sparse linear system solvers
using direct methods on even moderately parallel comput-
ers. In [28], Schreiber concludes that it is not yet clear
whether sparse direct solvers can be made competitive at
all for highly (p > 256) and massively (p > 4096) parallel
computers.

A parallel formulation for sparse matrix factorization
can be easily obtained by simply distributing rows to dif-
ferent processors [6]. Due to the sparsity of the matrix,
communication overhead is a large fraction of the com-
putation for this method, resulting in poor scalability. In
particular, for sparse matrices arising out of planar finite
element graphs, the isoefficiency of such a formulation is
O(p* log’® p), that is, the problem size (in terms of total
amount of computation) should grow as O(p* log® p) to
maintain a fixed efficiency. In a smarter parallel formu-
lation [8], the rows of the matrix are allocated to proces-
sors using the subtree-to-subcube mapping. This localizes
the communication among groups of processors, and thus

*This work was supported by Army Research Office under contract #
DA/DAAHO04-93-G-0080 and by the University of Minnesota Army High Perfor-
mance Computing Research Center under contract # DAAL03-89-C-0038

"Related papers are available on World Wide Web accessible via Mosaic URL:
http:/ftp.cs.umn.edu/users/kumar/papers.html

0-8186-6965-9/95 $04.00 © 1995 IEEE

140

improves the isoefficiency of the scheme to O(7). Roth-
berg and Gupta [26, 27] used a different method to reduce
the communication overhead. In their method, the en-
tire sparse matrix is partitioned among processors using a
two-dimensional block cyclic mapping. This reduces the
communication overhead and improves the isoefficiency to
0(p'’log’ p).

Gupta and Kumar [10] recently developed a parallel
formulation of sparse Cholesky factorization based on the
multifrontal method. The multifrontal method [2, 18] is
a form of submatrix Cholesky, in which single elimina-
tion steps are performed on a sequence of small, dense
frontal matrices. One of the advantages of multifrontal
methods is that the frontal matrices are dense, and there-
fore the elimination steps can be implemented efficiently
using level three BLAS primitives. This algorithm has
two key features. It uses the subtree-to-subcube mapping
to localize communication among processors, and it uses
the highly scalable two-dimensional grid partitioning for
dense matrix factorization for each supernodal computa-
tion in the multifrontal algorithm. As a result, the com-
munication overhead of this scheme is the lowest of all
other known parallel formulations for sparse matrix fac-
torization [1, 3, 6, 9, 12, 14, 24, 25, 26, 27, 28, 19, 29].
In fact, asymptotically, the isoefficiency of this scheme is
O (p'd) for sparse matrices arising out of two- and three-
dimensional finite element problems on a wide variety of
architectures such as hypercube, mesh, fat tree, and three-
dimensional torus. Note that the isoefficiency of the best
known parallel formulation of dense matrix factorization is
also 0(p"5) [17]. On a variety of problems, Gupta and
Kumar report speedup of up to 364 on a 1024-processor
nCUBE 2, which is a major improvement over the previ-
ously existing algorithms.

However, the subtree-to-subcube mapping results in
gross imbalance of load among different processors, as
elimination trees for most practical problems tend to be un-
balanced. This load imbalance is responsible for a major
portion of the efficiency loss of their scheme. Furthermore,
the overall computation rate of their single processor mul-
tifrontal code on nCUBE 2 was only 0.7MFlops. This was
partly due to the slow processors of nCUBE 2 (3.5 MFlops
peak), and partly due to inadequacies in the implementa-
tion.

This paper presents a new parallel algorithm for sparse
matrix factorization that uses a new mapping called
subforest-to-subcube. This mapping largely eliminates the
load imbalance among processors. Furthermore, the algo-
rithm has a number of enhancements to improve the overall
performance substantially. This new algorithm achieves
up to 20GFlops on a 1024-processor Cray T3D for mod-
erately large problems (even the biggest problem we tried

took less than two seconds on a 1024-node T3D. For larger
problems, even higher performance can be achieved). To
our knowledge, this is the highest performance ever ob-
tained on an MPP for sparse Cholesky factorization. Our
new scheme, like the scheme of Gupta and Kumar [10], has

an asymptotic isoefficiency of O (p'-3) for matrices arising
out of two- and three-dimensional finite element problems
on a wide variety of architectures such as hypercube, mesh,
fat tree, and three-dimensional torus.

2 Cholesky Factorization

Consider a system of linear equations Ax = b where A isan
n X n symmetric positive definite matrix, b is a known vec-
tor, and x is the unknown solution vector to be computed.
One way to solve the linear system is first to compute the
Cholesky factorization A = LLT, where the Cholesky fac-
tor L is alower triangular matrix. The solution vector x can
be computed by successive forward and back substitutions
to solve the triangular systems Ly = b, LTx =y.

If A is sparse, then during the course of the factorization,
some entries that are initially zero in the upper triangle of
A may become nonzero entries in L. These newly created
nonzero entries of L are known as fill-in. The amount of
fill-in generated can be decreased by carefully reordering
the rows and columns of A prior to factorization. More pre-
cisely, we can choose a permutation matrix P such that the
Cholesky factors of PAPT have minimal fill-in. The prob-
lem of finding the best ordering for M that minimizes the
amount of fill-in is NP-complete [30], therefore a number
of heuristic algorithms for ordering have been developed.
In particular, the minimum degree ordering [7, 11] is found
to have low fill-in.

For a given ordering of a matrix, there exists a corre-
sponding elimination tree. Each node in this tree is a col-
umn of the matrix. Node j is the parent of node i (j > i)
if I; ; is the first nonzero entry below the main diagonal in
column i. Elimination of rows in different subtrees can pro-
ceed concurrently. For a given matrix, elimination trees of
smaller height usually have greater concurrency than trees
of larger height. A desirable ordering for parallel com-
puters must increase the amount of concurrency without
increasing fill-in substantially. Spectral nested dissection
[22, 23] has been found to generate orderings that have
both low fill-in and good parallelism. For the experiments
presented in this paper we used spectral nested dissection.
For a more extensive discussion on the effect of orderings
on the performance of our algorithm refer to [16].

In the multifrontal method for Cholesky factorization, a
frontal matrix F and an update matrix Uy is associated with
each node k of the elimination tree. The rows and columns
of F corresponds to t+1 indices of L in increasing order. In
the beginning Fy is initialized to an (s + 1) x (s + 1) matrix,
where s+1 is the number of nonzeros in the lower triangular
part of column k of A. The first row and column of this
initial Fy is simply the upper triangular part of row k and
the lower triangular part of column k of A. The remainder
of Fy is initialized to all zeros. The tree is traversed in a
postorder sequence. When the subtree rooted at a node k
has been traversed, then Fy becomes adense (1 +1) x (t+1)
matrix, where ¢ is the number of off-diagonal nonzeros in
Ly.
If k is a leaf in the elimination tree of A, then the final

141

F, is the same as the initial F;. Otherwise, the final F;
for eliminating node k is obtained by merging the initial
Fy with the update matrices obtained from all the subtrees
rooted at k via an extend-add operation. The extend-add
is an associative and commutative operator on two update
matrices such the index set of the result is the union of the
index sets of the original update matrices. Each entry in the
original update matrix is mapped onto some location in the
accumulated matrix. If entries from both matrices overlap
on a location, they are added. Empty entries are assigned
a value of zero. After F; has been assembled, a single step
of the standard dense Cholesky factorization is performed
with node k as the pivot. At the end of the elimination step,
the column with index k is removed from Fj, and forms the
column k of L. The remaining ¢ X ¢ matrix is called the
update matrix Uy and is passed on to the parent of & in the
elimination tree. Since matrices are symmetric, only the
upper triangular part is stored. For further details on the
multifrontal method, the reader should refer to [16], and to
the excellent tutorial by Liu [18].

If some consecutively numbered nodes form a chain
in the elimination tree, and the corresponding rows of L
have identical nonzero structure, then this chain is called
a supernode. The supernodal elimination tree is similar
to the elimination tree, but nodes forming a supernode are
collapsed together. In the rest of this paper we use the
supernodal multifrontal algorithm. Any reference to the
elimination tree or a node of the elimination tree actually
refers to a supernode and the supernodal elimination tree.

3 Earlier Work

In this section we provide a brief description of the algo-
rithm by Gupta and Kumar. For a more detailed description
the reader should refer to [10].

Consider a p-processor hypercube-connected computer.
Let A be the n x n matrix to be factored, and let T be
its supernodal elimination tree. The algorithm requires
the elimination tree to be binary for the first log p levels.
Any elimination tree of arbitrary shape can be converted
to a binary tree using a simple tree restructuring algorithm
described in [10].

In this scheme, portions of the elimination tree are as-
signed to processors using the standard subtree-to-subcube
assignment strategy [8, 11] illustrated in Figure 1. With
subtree-to-subcube assignment, all p processors in the sys-
tem cooperate to factor the frontal matrix associated with
the root node of the elimination tree. The two subtrees
of the root node are assigned to subcubes of p/2 proces-
sors each. Each subtree is further partitioned recursively
using the same strategy. Thus, the p subtrees at a depth
of log p levels are each assigned to individual processors.
Each processor can process this part of the tree completely
independently without any communication overhead.

Assume that the levels of the binary supernodal elimina-
tion tree are labeled from top starting with 0. In general, at
level I of the elimination tree, 21087~/ processors work on
a single frontal or update matrix. These processors form
a logical 210ogr=D/21 5 plloer=D/2} grid. All update and
frontal matrices at this level are distributed on this grid of
processors. To ensure load balance during factorization,
the rows and columns of these matrices are distributed in a
cyclic fashion.

Between two successive extend-add operations, the par-

o [x X x[x

1 X | X X | X

2 [x]x|x X

3 x X X X

4 x[x[x X

5 xix[x[x[x}x X

6 x|O Xpx|x[x

7 [x]x[x X x[x]|x

8 [x Oolx x|O|x[x

9 X X x[x

10 X|x X|x

i1 x[x[x X

12 X X X|x

13 XX | X X

14 X IXIX[X|X|X|X

15 X|O XixIx|x

16 x|xjix X|x|x[x

17 X ol x x|O[xix

18 x[x|x[O|OfOC x|x|x]|O|OJO|x
01 2 3 4 5 6 7 8 9 101112131415161718

Rizad567

Level 1

B R

Figure 1: The elimination tree associated with a sparse matrix, and the subtree-to-subcube mapping of the tree onto eight processors.

allel multifrontal algorithm performs a dense Cholesky fac-
torization of the frontal matrix corresponding to the root of
the subtree. Since the tree is supernodal, this step usually
requires the factorization of several nodes. The communi-
cation taking place in this phase is the standard communi-
cation in grid-based dense Cholesky factorization.

Each processor participates in log p distributed extend-
add operations, in which the update matrices from the fac-
torization at level [are redistributed to perform the extend-
add operation at level — 1 prior to factoring the frontal
matrix. In the algorithm proposed in [10], each processor
exchanges data with only one other processor during each
one of these log p distributed extend-adds. The above is
achieved by a careful embedding of the processor grids on
the hypercube, and by carefully mapping rows and columns
of each frontal matrix onto this grid. This mapping is de-
scribed in [16].

4 The New Algorithm

As mentioned in the introduction, the subtree-to-subcube
mapping scheme used in [10] does not distribute the work
equally among the processors. This load imbalance puts
an upper bound on the achievable efficiency. For example,
consider the supernodal elimination tree shown in Figure 2.
This elimination tree is partitioned among 8 processors us-
ing the subtree-to-subcube allocation scheme. All eight
processors factor the top node, processors zero through
three are responsible for the subtree rooted at 24-27, and
processors four through seven are responsible for the sub-
tree rooted at 52-55. The subtree-to-subcube allocation
proceeds recursively in each subcube resulting in the map-
ping shown in the figure. Note that the subtrees of the root
node do not have the same amount of work. Thus, during
the parallel multifrontal algorithm, processors zero through
three will have to wait for processors four through seven
to finish their work, before they can perform an extend-add
operation and proceed to factor the top node. This idling
puts an upper bound on the efficiency of this algorithm.
We can compute this upper bound on the achievable effi-
ciency due to load imbalance in the following way. The
time required to factor a subtree of the elimination tree is
equal to the time to factor the root plus the maximum of
the time required to factor each of the two subtrees rooted
at this root. By applying the above rule recursively we can
compute the time required to perform the Cholesky factor-
ization. Assume that the communication overhead is zero,

142

and that each processor can perform an operation in a time
unit, the time to factor each subtree of the elimination tree
in Figure 2 is shown on the right of each node. For instance,
node 911 requires 773 — 254 — 217 = 302 operations, and
since the computation is distributed over processors zero
and one, it takes 151 time units. Now its subtree rooted at
node 4-5 requires 254 time units, while its subtree rooted
at node 8 requires 217 time units. Thus, this particular sub-
tree is factored in 151 4+ max{254, 217} = 405 time units.
The overall efficiency achievable by the above subtree-to-
subcube mapping is 4302/(8 x 812) = 0.66 which is sig-
nificantly less than one. Furthermore, the final efficiency is
even lower due to communication overheads.

This example illustrates another difficulty associated
with direct factorization. Even though both subtrees rooted
at node 56—62 have 28 nodes, they require different amount
of computation. Thus, balancing the computation cannot
be done during the ordering phase by simply carefully se-
lecting separators that split the graph into two roughly equal
parts. The amount of load imbalance among different parts
of the elimination tree can be significantly worse for gen-
eral sparse matrices, for which it is not even possible to find
good separators that can split the graph into two roughly
equal parts. Table 1 shows the load imbalance at the top
level of the elimination tree for some matrices from the
Boeing-Harwell matrix set. These matrices were ordered
using the spectral nested dissection {22, 23]. Note that for
all matrices the load imbalance in terms of operation count
is substantially higher than the relative difference in the
number of nodes in the left and right subtrees. Also, the
upper bound on the efficiency shown in this table is due
only to the the top level subtrees. Since subtree-to-subcube
mapping is recursively applied in each subcube, the overall
load imbalance will be higher, because it adds up as we go
down in the tree.

For elimination trees of general sparse matrices, the load
imbalance can be usually decreased by performing some
simple elimination tree reorderings described in {10]. How-
ever, these techniques have two serious limitations. First,
they increase the fill-in as they try to balance the elimina-
tion tree by adding extra dependencies. Thus, the total time
required to perform the factorization increases. Second,
these techniques are local heuristics that try to minimize
the load imbalance at a given level of the tree. However,
very often such local improvements do not result in im-
proving the overall load imbalance. For example, for a
wide variety of problems from the Boeing-Harwell matrix

Figure 2: The supernodal elimination tree of a factorization problem and its mapping to eight processors via subtree-to-subcube mapping. Each node
(i.e., supernode) is labeled by the range of nodes belonging to it. The number on the left of each node is the number of operations required to factor the
tree rooted at this node, the numbers above each node denotes the set of processors that this subtree is assigned to using subtree-to-subcube allocation,
and the number on the right of each node is the time-units required to factor the subtree in paratlel.

Left Subtree Right Subtree Eff.
Name Separator Nodes Work Nodes Work Bound
t——
BCSSTK?29 180 6912 45% 6695 55% 0.90
BCSSTK30 222 14946 59% 13745 41% 0.85
BCSSTK31 492 16728 40% 18332 60% 0.83
BCSSTK32 513 21713 45% 22364 55% 0.90

Table 1: Ordering and load imbalance statistics for some matrices from
the Boeing-Harwell set. The matrices have been reordered using spectral
nested dissection.

set and linear programming (LP) matrices from NETLIB
[51, even after applying the tree balancing heuristics, the ef-
ficiency bound due to load imbalance is still around 80% to
60% [10, 15]. If the increased fill-in is taken into account,
then the maximum achievable efficiency is even lower than
that.

In the rest of this section we present a modification to
the algorithm presented in Section 3 that uses a different
scheme for mapping the elimination tree onto the proces-
sors. This modified mapping scheme significantly reduces
the load imbalance.

4.1 Subforest-To-Subcube Mapping

In our new elimination tree mapping scheme, we assign
many subtrees (a subforest) of the elimination tree to each
processor subcube. These trees are chosen in such a way
that the total amount of work assigned to each subcube is as
equal as possible. The best way to describe this partitioning
scheme is via an example. Consider the elimination tree
shown in Figure 3. Assume that it takes a total of 100
time-units to factor the entire sparse matrix. Each node in
the tree is marked with the number of time-units required to
factor the subtree rooted at this particular node (including
the time required to factor the node itself). For instance, the
subtree rooted at node B requires 65 units of time, while
the subtree rooted at node F requires only 18.

As shown in Figure 3(b), the subtree-to-subcube map-
ping scheme will assign the computation associated with the
top supernode A to all the processors, the subtree rooted
at B to half the processors, and the subtree rooted at C to
the remaining half of the processors. Since, these subtrees
require different amount of computation, this particular par-
tition will lead to load imbalances. Since 7 time-units of
work (corresponding to the node A) is distributed among
all the processors, this factorization takes at least 7/ p units
of time. Now each subcube of p/2 processors indepen-

143

dently works on each subtree. The time required for these
subcubes to finish is lower bounded by the time to perform
the computation for the larger subtree (the one rooted at
node B). Even if we assume that all subtrees of B are
perfectly balanced, computation of the subtree rooted at B
by p/2 processors will take at least 65/(p/2) time-units.
Thus an upper bound on the efficiency of this mapping is
only 100/(p(7/p + 65/(p/2))) = .73. Now consider the
following mapping scheme: The computation associated
with supernodes A and B is assigned to all the processors.
The subtrees rooted at E and C are assigned to half of the
processors, while the subtree rooted at D is assigned to the
remaining processors. In this mapping scheme, the first
half of the processors are assigned 43 time-units of work,
while the other half is assigned 45 time-units. The upper
bound on the efficiency due to load imbalance of this new
assignment is 100/(p(12/p + 45/(p/2)))) ~ 0.98, which
is a significant improvement over the earlier bound of .73.

The above example illustrates the basic ideas behind the
new mapping scheme. Since it assigns subforests of the
elimination tree to processor subcubes, we will refer to
it as subforest-to-subcube mapping scheme. The general
mapping algorithm is outlined in Program 4.1.

Partition(T, p) /* Partition the tree 7', among p processors. */
o={}
Add root(T) into Q
Elpart(Q, T, p)

End Partition

[N

Elpart(Q, T, p)
if (p == 1) return
done = false
while (done = false)
halfsplit(Q, L, R)
11. if (acceptable(L, R))
12. Elpart(L, T, p/2)

Al

13. Elpar(R, T', p/2)
14. done = true

15. else

16. node = select(Q)

17. delete(Q, node)

18. node => p [* Assign node o all p processors */
19. Insert into Q the children of node in T

20. end while

21. End Elpart

Program 4.1: The subforest-to-subcube partitioning algorithm.

The tree partitioningalgorithm uses a set Q that contains
the unassigned nodes of the elimination tree. The algorithm

(8) Top 2 levels of a partial elimination trea

Distributed to all the processors | B

(b) Efimination tree of (a) partitioned
using subtree-to-subcube

Distributed to one half of processors

(c) Elimination tree of (b) partitioned
using subforest-to-subcube

Distributed to the other half of processors

Figure 3. The top two levels of an elimination tree is shown in (a). The subtree-to-subcube mapping is shown in (b), the subforest-to-subcube mapping

is shown in (c).

inserts the root of the elimination tree into Q, and then
it calls the routine Elpart that recursively partitions the
elimination tree. Elpart partitions Q into two parts, L
and R and checks if this partitioning is acceptable. If yes,
then it assigns L to half of the processors, and R to the
remaining half, and recursively calls Elpart to perform the
partitioning in each of these halves. If the partitioning is
not acceptable, then one node of Q (i.e., node = select(Q))
is assigned to all the p processors, node is deleted from
Q, and the children of node are inserted into the Q. The
algorithm then continues by repeating the whole process.
The above description provides a high level overview of
the subforest-to-subcube partitioning scheme. However, a
number of details need to be clarified. In particular, we
need to specify how the select, halfsplit, and acceptable
procedures work.

Selection of a node from Q There are two different
ways' of defining the procedure select(Q).

e One way is to select a node whose subtree requires the
largest number of operations to be factored.

e The second way is to select a node that requires the
largest number of operations to factor it.

The first method favors nodes whose subtrees require
significant amount of computation. Thus, by selecting such
a node and inserting its children in Q we may get a good
partitioning of Q into two halves. However, this approach
can assign nodes with relatively small computation to all
the processors, causing poor efficiency in the factorization
of these nodes. The second method guarantees that the
selected node has more work, and thus its factorization can
achieve higher efficiency when it is factored by all p pro-
cessors. However, if the subtrees attached to this node are
not large, then this may not lead to a good partitioning of
Q in later steps. In particular, if the root of the subtree hav-
ing most of the remaining work, requires little computation
(e.g., single node supernode), then the root of this subtree
will not be selected for expansion until very late, leading to
too many nodes being assigned at all the processors.

Another possibility is to combine the above two schemes
and apply each one in alternate steps. This combined
approach eliminates most of the limitations of the above
schemes while retaining their advantages. This is the
scheme we used in the experiments described in Section 6.

INote, that the information required by these methods (the amount of computation
to eliminate a node, or the total amount of computation associated with a subtree),
can be easily obtained during the symbolic factorization phase.

144

So far we considered only the floating point operations
when we were referring to the number of operations re-
quired to factor a subtree. On systems where the cost of
each memory access relative to a floating point operation is
relatively high, a more accurate cost model will also take
the cost of each extend-add operation into account. The
total number of memory accesses required for extend-add
can be easily computed from the symbolic factorization of
the matrix.

Splitting The Set 0 In each step, the partitioning algo-
rithm checks to see if it can split the set Q into two roughly
equal halves. The ability of the halfsplit procedure to find
a partition of the nodes (and consequently create two sub-
forests) is crucial to the overall ability of this partitioning
algorithm to balance the computation. Fortunately, thisis a
typical bin-packing problem, and even though, bin-packing
is NP complete, a number of good approximate algorithms
exist [21]. The use of bin-packing makes it possible to bal-
ance the computation and to significantly reduce the load
imbalance.

Acceptable Partitions A partition is acceptable if the
percentage difference in the amount of work in the two
parts is less than a small constant €. If € is chosen to be
high (e.g., € > 0.2), then the subforest-to-subcube map-
ping becomes similar to the subtree-to-subcube mapping
scheme. If € is chosen to be too small, then most of the
nodes of the elimination tree will be processed by all the
processors, and the communication overhead during the
dense Cholesky factorization will become too high. For
example, consider the task of factoring two n x n matrices
A and B on p-processor square mesh or a hypercube using
a standard algorithm that uses two-dimensional partitioning
and pipelining. If each of the matrices is factored by all the
processors, then the total communication time for factoring
the two matrices is n2/./p [17]. If A and B are factored
concurrently by p/2 processors each, then the communica-
tion time is n%/(2/p/2) which is smaller. Thus the value
of ¢ has to be chosen to strike a good balance between
these two conflicting goals of minimizing load imbalance
and the communication overhead in individual factorization
steps. For the experiments reported in Section 6, we used
€ = 0.05.

5 Improving Performance

We have added a number of modifications to the algorithm
described in Section 4 that greatly improve its performance.

In the rest of this section we briefly describe some modifi-
cations. For a more detailed description of these and other
enhancements the reader should refer to [16].

For the factorization of a supernode, we use the pipelined
variant of the grid-based dense Cholesky algorithm [17].
In this algorithm, successive rows of the frontal matrix are
factored one after the other, and the communication and
computation proceeds in a pipelined fashion.

Even though this scheme is simple, it has two major
limitations. Since the rows and columns of a frontal matrix
are distributed among the processor grid in a cyclic fashion,
information for only one row is transmitted at any given
time. Hence, on architectures in which the message startup
time is relatively high compared to the transfer time, the
communication overhead is dominated by the startup time.
For example, consider a /g x /g processor grid, and a
k-node supernode that has a frontal matrix of size m x m.
While performing k elimination steps on an m x m frontal
matrix, on average, a message of size (2m — k)/(2,/q)
needs to be sent in each step along each direction of the
grid. If the message startup time is 100 times higher than
the per word transfer time, then for ¢ = 256, as long as
2m — k < 3200 the startup time will dominate the data
transfer time. Note, that the above translates to m > 1600.
For most sparse matrices, the size of the frontal matrices
tends to be much less than 1600.

The second limitation of the cyclic mapping has to
do with the implementation efficiency of the computation
phase of the factorization. Since, at each step, only one
row is eliminated, the factorization algorithm must perform
a rank-one update. On systems with BLAS level routines,
this can be done using either level one BLAS (DAXPY),
or level two BLAS (DGER, DGEMYV). On most micropro-
cessors, including high performance RISC processors such
as the Dec Alpha AXP, the peak performance achievable
by these primitives is usually significantly less than that
achieved by level three BLAS primitives, such as matrix-
matrix multiply (DGEMM). The reason is that for level one
and level two BLAS routines, the amount of computation is
of the same order as the amount of data movement between
CPU and memory. In contrast, for level three BLAS oper-
ations, the amount of computation is much higher than the
amount of data required from memory. Hence, level three
BLAS operations can better exploit the multiple functional
units, and deep pipelines available in these processors.

However, by distributing the frontal matrices using a
block cyclic mapping [17], we are able to eliminate both of
the above limitations and greatly improve the performance
of our algorithm. In the block cyclic mapping, the rows and
columns of the matrix are divided into groups, each of size
b, and these groups are assigned to the processors in a cyclic
fashion. As a result, diagonal processors now store blocks
of b consecutive pivots. Instead of performing a single
elimination step, they now perform b elimination steps,
and send data corresponding to b rows in a single message.
Note that the overall volume of data transferred remains the
same. For sufficiently large values of b, the startup time
becomes a small fraction of the data transmission time.
This result is a significant improvements on architectures
with high startup time. In each phase now, each processor
receives b rows and columns and has to perform a rank-
b update on the unfactored part of its frontal matrix. The
rank-b update can now be implemented using matrix-matrix
multiply, leading to a higher computational rate.

145

A number of design issues involved in using block cyclic
mapping and ways to further improve the performance are
described in [16].

6 Experimental Results

We implemented our new parallel sparse multifrontal al-
gorithm on a 1024-processor Cray T3D parallel computer.
Each processor on the T3D is a 150Mhz Dec Alpha chip,
with peak performance of 150MFlops for 64-bit opera-
tions (double precision). However, the peak perfomance
of most level three BLAS routines is around 50 MFlops.
The processors are interconnected via a three dimensional
torus network that has a peak unidirectional bandwidth of
150Bytes per second, and a very small latency. Even though
the memory on T3D is physically distributed, it can be ad-
dressed globally. That is, processors can directly access
(read and/or write) other processor’s memory. T3D pro-
vides a library interface to this capability called SHMEM.
We used SHMEM to develop a lightweight message pass-
ing system. Using this system we were able to achieve
unidirectional data transfer rates up to 70Mbytes per sec-
ond. Thisis significantly higher than the 35MBytes channel
bandwidth usually obtained when using T3D’s PVM.

For the computation performed during the dense
Cholesky factorization, we used single-processor imple-
mentation of BLAS primitives. These routines are part of
the standard scientific library on T3D, and they have been
fine tuned for the Alpha chip. The new algorithm was
tested on matrices from a variety of sources. Four matrices
(BCSSTK30, BCSSTK31, BCSSTK32, and BCSSTK33)
come from the Boeing-Harwell matrix set. MAROS-R7 is
from a linear programming problem taken from NETLIB.
COPTER2 comes from a model of a helicopter rotor.
CUBES35 is a 35 x 35 x 35 regular three-dimensional grid.
NUGI15 is from alinear programming problem derived from
a quadratic assignment problem obtained from AT&T. In
all of our experiments, we used spectral nested dissection
[22, 23] to order the matrices.

The performance obtained by our multifrontal algorithm
in some of these matrices is shown in Table 2. The operation
count shows only the number of operations required to
factor the nodes of the elimination tree.

Figure 4 graphically represents the data shown in Ta-
ble 2. Figure 4(a) shows the overall performance obtained
versus the number of processors, and is similar in nature
to a speedup curve. Figure 4(b) shows the per processor
performance versus the number of processors, and reflects
reduction in efficiency as p increases. Since all these prob-
lems run out of memory on one processor, the standard
speedup and efficiency could not be computed experimen-
tally.

The highest performance of 19.9GFlops was obtained
for NUG135, which is a fairly dense problem. Among the
sparse probelms, a performance of 15.7GFlops was ob-
tained for CUBE35, which is a regular three-dimensional
problem. Nearly as high performance (14.78GFlops) was
also obtained for COPTER2 which is irregular. Since both
problems have similar operation count, this shows that our
algorithm performs equally well in factoring matrices aris-
ing in irregular problems. Focusing our attention on the
other problems shown in Table 2, we see that even on
smaller problems, our algorithm performs quite well. For
BCSSTK33, it was able to achieve 2.90GFlops on 256 pro-

Number of Processors

Problem n 4] 1L oPC 8 16 32 64 128 256 512 1024
PILOTS7 3030 122550 504060 240M 020 032 044 073 105

MAROS-R7 3136 330472 1345241 720M 026 048 083 141 214 302 407 448
FLAP 51537 479620 4192304 940M 024 048 075 127 185 287 383 425
BCSSTK33 8738 291583 2295377 1000M 049 076 130 194 290 436 602
BCSSTK30 28924 1007284 5796797 2400M 148 242 359 556 754
BCSSTK31 35588 572914 6415883 3100M 080 145 248 397 626 193
BCSSTK32 44609 985046 8582414 4200M 151 263 416 691 890
COPTER? 55476 352238 12681357 9200M 033 064 110 194 331 576 955 1478
CUBE35 42875 124950 11427033 10300M 036 067 127 226 392 646 1033 1570
NUG15 6330 186075 10771554 29670M 432 754 1253 1992

Table 2: The performance of sparse direct factorization on Cray T3D. For each problem the table contains the number of equations n of the matrix A,
the original number of nonzeros in A, the nonzeros in the Cholesky factor L, the number of operations required to factor the nodes, and the performance

in gigaflops for different number of processors.

20 v T T T
PILOT87
MAROS/ s

BCSSTK30
BCSSTK31 -

GigaFlops

3264 128 256

512
Processors

PILOTB7 —

MAROS-R7 ~+-
FLAP 8- |

MElops/Processor

Lt " L L

3264 128 256 512

Processors

Figure 4. Plot of the performance of the parallel sparse multifrontal algorithm for various problems on Cray T3D. (a) Total Gigaflops obtained; (b)

Megaflops per processor.

cessors, while for BCSSTK30, it achieved 3.59GFlops.

To further illustrate how various components of our al-
gorithm work, we have included a breakdown of the various
phases for BCSSTK31 and CUBE35 in Table 3. This ta-
ble shows the average time spent by all the processors in
the local computation and in the distributed computation.
Furthermore, we break down the time taken by distributed
computation into two major phases, (a) dense Cholesky
factorization, (b) extend-add overhead. The latter includes
the cost of performing the extend-add operation, splitting
the stacks, transferring the stacks, and idling due to load
imbalances in the subforest-to-subcube partitioning. Note
that the figures in this table are averages over all processors,
and they should be used only as an approximate indication
of the time required for each phase.

A number of interesting observations can be made from
this table. First, as the number of processors increases,
the time spent processing the local tree in each proces-
sor decreases substantially because the subforest assigned
to each processor becomes smaller. This trend is more
pronounced for three-dimensional problems, because they
tend to have fairly shallow trees. The cost of the distributed
extend-add phase decreases almost linearly as the number
of processors increases. This is consistent with the analysis
presented in [16], since the overhead of distributed extend-
add is O((n log p)/p). Since the figure for the time spent
during the extend-add steps also includes the idling due to
load imbalance, the almost linear decrease also shows that

146

the load imbalance is quite small.

The time spent in distributed dense Cholesky factoriza-
tion decreases as the number of processors increases. This
reduction is not linear with respect to the number of pro-
cessors for two reasons: (a) the ratio of communication to
computation during the dense Cholesky factorization steps
increases, and (b) for a fixed size problem load imbalances
due to the block cyclic mapping becomes worse as p in-
creases.

For reasons discussed in Section 5, we distributed the
frontal matrices in a block-cyclic fashion. To get good
performance on Cray T3D out of level three BLAS routines,
we used a block size of sixteen (block sizes of less than
sixteen result in degradation of level 3 BLAS performance
on Cray T3D) However, such a large block size results in
a significant load imbalance within the dense factorization
phase. This load imbalance becomes worse as the number
of processors increases.

However, as the size of the problem increases, both the
communication overhead during dense Cholesky and the
load imbalance due to the block cyclic mapping becomes
less significant. The reason is that larger problems usually
have larger frontal matrices at the top levels of the elimi-
nation tree, so even large processor grids can be effectively
utilized to factor them. This is illustrated by comparing
how the various overheads decrease for BCSSTK31 and
CUBE35. For example, for BCSSTK31, the factoriza-
tion on 128 processors is only 48% faster compared to 64

processors, while for CUBE35, the factorization on 128
processors is 66% faster compared to 64 processors.

Distributed Computation
p Local Comp. Factorization Extend-Add
———
BCSSTK31 64 0.17 134 0.58
128 0.06 0.90 032
256 0.02 0.61 0.18
CUBE3S 64 0.1s 3.74 071
128 0.06 225 043
256 0.01 1.44 0.24

Table 3: A break-down of the various phases of the sparse multifrontal
algorithm for BCSSTK31 and CUBE35. Each number represents time in
seconds.

To see the effect of the choice of € in the overall per-
formance of the sparse factorization algorithm we fac-
tored BCSSTK31 on 128 processors using € = 0.4 and
€ = 0.0001. Using these values for ¢ we obtained a perfor-
mance of 1.18GFlops when € = 0.4, and 1.37GFlops when
€ = 0.0001. In either case, the performance is worse than
the 2.48GFlops obtained for € = 0.05. When € = 0.4, the
mapping of the elimination tree to the processors resem-
bles that of the subtree-to-subcube allocation. Thus, the
performance degradation is due to the elimination tree load
imbalance. When € = 0.0001, the elimination tree map-
ping assigns a large number of nodes to all the processors,
leading to poor performance during the dense Cholesky
factorization.

7 Conclusion

Experimental results clearly show that our new scheme is
capable of using a large number of processors efficiently.
On a single processor of a state of the art vector supercom-
puter such as Cray C90, sparse Cholesky factorization can
be done at the rate of roughly S00MFlops for the larger
problems studied in Section 6. Even a 16-processor Cray
T3D outperforms a single node C-90 for these problems.
With highly parallel formulation available, the factoriza-
tion step is no longer the most time consuming step in the
solution of sparse systems of equations. Another step that
is quite time consuming, and thus needs to be parallelized
effectively is that of ordering [13]. In our current research
we are investigating ordering algorithms that are of high
quality and can be implemented fast on parallel computers.

References

{1] Cleve Ashcraft, S. C. Eisenstat, J. W.-H. Liu, and A. H. Sherman. A comparison
of three column based distributed sparse factorization schemes. In Proceedings
of the Fifth SIAM Conference on Parallel Processing for Scientific Computing,
1991.

1. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmet-
ric linear equations. ACM Transactions on Mathematical Software, (9):302—-
325,1983.

Kalluri Eswar, Ponnuswamy Sadayappan, and V. Visvanathan. Supernodal
Sparse Cholesky factorization on distributed-memory multiprocessors. In In-
ternational Conference on Parallel Processing, pages 18-22 (vol. 3), 1993.

[2

3]

[4] K. A. Gallivan, R. J. Plemmons, and A. H. Sameh. Parallel algorithms for

dense linear algebra computations. SIAM Review, 32(1):54-135, March 1990.
D.M. Gay Electronic Mail Dumbuuon of Linear Programming Test Problems.
< ical Prog g Society COAL Newsletter, December 1985.

A. George, M. T. Heath, J. W.-H. Liu, and E. G.-Y. Ng. Sparse Cholesky
Factorization on a local memory multiprocessor. SIAM Journal on Scientific
and Statistical Computing, 9:327-340, 1988.

5

[6

147

71

(8

]

(10}

(1]
[12]

[13]

[14]

{15}

116]

[17]

(18}

[19]

200
[21]
[22]

(23)

24]

[25]

[26]

{271

[28)

(29]

(30]

A. George and J. W.-H. Liu. The evolution of the minimum degree ordering
algorithm. SIAM Review, 31(1):1-19, March 1989.

A. George, J. W.-H. Liu, and E. G.-Y. Ng. Communication Results for Par-
allel Sparse Cholesky Factorization on a Hypercube. Parallel Computing,
10(3):287-298, May 1989.

JohnR. Gilbert and Robert Schreiber. Highly Parallel Sparse Cholesky Factor-
ization. SIAM Journal on Scientific and Siatistical Computing, 13:1151-1172,
1992,

Anshul Gupta and Vipin Kumar. A scalable paralle! algorithm for sparse
matrix factorization. TR 94-19, Department of Computer Science, University
of Minnesota, Minneapolis, MN, 1994. A shorter version appears in Super-
computing '94. TR available in users/kumar/sparse-cholesky.ps at anonymous
FTP site fip.cs.umn.edu.

M. T. Heath, E. Ng, and B. W. Payton. Parallel Algorithms for Sparse Linear
Systems. SIAM Review, 33(3):420-460, 1991.

M. T. Heath, E. G.-Y. Ng, and Barry W. Peyton. Parallel Algorithms for Sparse
Linear Systems. SIAM Review, 33:420-460,1991.

M. T. Heath and P. Raghavan. A Cartesian nested dissection algorithm. TR
UIUCDCS-R-92-1772, Department of Computer Science, University of Illi-
nois, Urbana, IL 61801, October 1992. to appear in SIMAX.

M. T. Heath and P. Raghavan. Distributed solution of sparse linear systems.
TR 93-1793, Department of Computer Science, University of llinois, Urbana,
IL, 1993.

George Karypis, Anshul Gupta, and Vipin Kumar. A Parallel Formulation
of Interior Point Algorithms. In Supercomputing 94, 1994. TR available in
users/kumar/interior-point.ps at anonymous FTP site fip.cs.umn.edu.

George Karypis and Vipin Kumar. A High Performance Sparse Cholesky
Factorization Algorithm For Scalabale Parallel Computers. TR 94-41, De-
partment of Computer Science, University of Minnesota, Minneapolis, MN,
1994. TR available in users/kumar/cholesky-forest.ps at anonymous FTP site
fip.cs.umn.edu.

Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Intro-
duction to Parallel Computing: Design and Analysis of Algorithms. Ben-
jamin/Cummings Publishing Company, Redwood City, CA, 1994,

Joseph W. H. Liu. The Multifrontal Method for Sparse Matrix Solution: Theory
and Practice. SIAM Review, 34(1):82-109, 1992,

Robert F. Lucas, Tom Blank, and Jerome J. Tiemann. A parallel solution method
for large sparse systems of equations. IEEE Transactions on Computer Aided
Design, CAD-6(6):981-991, November 1987.

Dianne P. O’Leary and G. W. Stewart. Assignment and Scheduling in Parallel
Matrix Factorization. Linear Algebra and its Applications,77:275-299,1986.
Christos H. Papadimitriouand Kenneth Steiglitz. Combinatorial Optimization,
Algorithms and Complexity. Prentice Hall, 1982.

A. Pothen and C-J. Fan. Computing the block triangular form of a sparse
matrix. ACM Transactions on Mathematical Software, 1990.

Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning Sparse Matrices
With Eigenvectors of Graphs. SIAM J. on Matrix Analysis and Applications,
11(3):430-452,1990.

Alex Pothen and Chunguang Sun. Distributed multifrontal factorization us-
ing clique trees. In Proceedings of the Fifth SIAM Conference on Parallel
Processing for Scientific Computing, pages 34—40 1991.

P. Raghavan. Distributed sparse G ion and orthogonal factor-
ization. TR 93-1818, Department of Computer Science, University of Illinois,
Urbana, IL, 1993.

Edward Rothberg. Performance of Panel and Block Approaches to Sparse
Cholesky Factorization on the iPSC/860 and Paragon Multicomputers. In
Proceedings of the 1994 Scalable High Performance Computing Conference,
May 1994,

Edward Rothberg and Anoop Gupta. An efficient block-oriented approach to
parallel sparse Cholesky factorization. In Supercomputing '93 Proceedings,
1993,

Robert Schreiber. Scalability of sparse ducct solvers. TR RIACS TR 92.13,
NASA Ames Research Center, Moffet Field, CA, May 1992. Also appears in
A. George, John R. Gilbert, and J. W.-H. Liu, editors, Sparse Matrix Compu-
tations: Graph Theory Issues and Algorithms (An IMA Workshop Volume).
Springer-Verlag, New York, NY, 1993.

Sesh Venugopal and Vijay K. Naik. Ejfects of partitioning and scheduling

sparse matrix factorization on ¢ and load bal . In Super-
computing '91 Proceedings, pages 866-875,1991.
M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J.

Algebraic Discrete Methods, 2:77-79,1981.

