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Abstract

In recent years, we have seen a tremendous growth in the volume of text documents available on the Internet,

digital libraries, news sources, and company-wide intranets. This has led to an increased interest in developing meth-

ods that can efficiently categorize and retrieve relevant information. Retrieval techniques based on dimensionality

reduction, such as Latent Semantic Indexing (LSI), have been shown to improve the quality of the information being

retrieved by capturing the latent meaning of the words present in the documents. Unfortunately, the high computa-

tional requirements of LSI and its inability to compute an effective dimensionality reduction in a supervised setting

limits its applicability. In this paper we present a fast dimensionality reduction algorithm, called concept indexing

(CI) that is equally effective for unsupervised and supervised dimensionality reduction. CI computes a k-dimensional

representation of a collection of documents by first clustering the documents into k groups, and then using the cen-

troid vectors of the clusters to derive the axes of the reduced k-dimensional space. Experimental results show that

the dimensionality reduction computed by CI achieves comparable retrieval performance to that obtained using LSI,

while requiring an order of magnitude less time. Moreover, when CI is used to compute the dimensionality reduction

in a supervised setting, it greatly improves the performance of traditional classification algorithms such as C4.5 and

kNN.

1 Introduction

The emergence of the World-Wide-Web has led to an exponential increase in the amount of documents available

electronically. At the same time, various digital libraries, news sources, and company-wide intranets provide huge

collections of online documents. It has been forecasted that text (with other unstructured data) will become the
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predominant data type stored online [61]. These developments have led to an increased interest in methods that allow

users to quickly and accurately retrieve and organize these types of information.

Traditionally, information has been retrieved by literally matching terms in documents with those present in a user’s

query. Unfortunately, methods that are based only on lexical matching can lead to poor retrieval performance due to

two effects. First, because most terms have multiple meanings, many unrelated documents may be included in the

answer set just because they matched some of the query terms. Second, because the same concept can be described by

multiple terms, relevant documents that do not contain any of the query terms will not be retrieved. These problems

arise from the fact that the ideas in a document are more related to the concepts described in them than the words used

in their description. Thus, effective retrieval methods should match the concept present in the query to the concepts

present in the documents. This will allow retrieval of documents that are part of the desired concept even when they do

not contain any of the query terms, and will prevent documents belonging to unrelated concepts from being retrieved

even if they contain some of the query terms.

This concept-centric nature of documents is also one of the reasons why the problem of document categorization

(i.e., assigning a document into a pre-determined class or topic) is particularly challenging. Over the years a variety

of document categorization algorithms have been developed [12, 22, 50, 33, 42, 3, 69, 45, 25], both from the ma-

chine learning as well as from the Information Retrieval (IR) community. A surprising result of this research has

been that naive Bayesian, a relatively simple classification algorithm, performs well [47, 48, 46, 54, 17] for document

categorization, even when compared against other algorithms that are capable of learning substantially more complex

models. Some of this robust performance can be attributed to the fact that naive Bayesian is able to model the un-

derlying concepts present in the various classes by summarizing the characteristics of each class using a probabilistic

framework, and thus it can exploit the concept-centric nature of the documents.

Recently, techniques based on dimensionality reduction have been explored for capturing the concepts present in

a collection. The main idea behind these techniques is to map each document (and a query or a test document) into

a lower dimensional space that explicitly takes into account the dependencies between the terms. The associations

present in the lower dimensional representation can then be used to improve the retrieval or categorization perfor-

mance. The various dimensionality reduction techniques can be classified as either supervised or unsupervised. Su-

pervised dimensionality reduction refers to the set of techniques that take advantage of class-membership information

while computing the lower dimensional space. These techniques are primarily used for document classification and for

improving the retrieval performance of pre-categorized document collections. Examples of such techniques include

a variety of feature selection schemes [2, 37, 40, 38, 70, 28, 66, 56, 51] that reduce the dimensionality by selecting

a subset of the original features, and techniques that create new features by clustering the terms [3]. On the other

hand, unsupervised dimensionality reduction refers to the set of techniques that compute a lower dimensional space

without using any class-membership information. These techniques are primarily used for improving the retrieval

performance, and to a lesser extent for document categorization. Examples of such techniques include Principal Com-

ponent Analysis (PCA) [30], Latent Semantic Indexing (LSI) [15, 5, 19], Kohonen Self-Organizing Map (SOFM) [39]

and Multi-Dimensional Scaling (MDS) [31]. In the context of document data sets, LSI is probably the most widely

used of these techniques, and experiments have shown that it significantly improves the retrieval performance [5, 19]

for a wide variety of document collections.

In this paper we present a new fast dimensionality reduction algorithm, called concept indexing (CI) that can

be used both for supervised and unsupervised dimensionality reduction. The key idea behind this dimensionality

reduction scheme is to express each document as a function of the various concepts present in the collection. This is

achieved by first finding groups of similar documents, each group potentially representing a different concept in the
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collection, and then using these groups to derive the axes of the reduced dimensional space. In the case of supervised

dimensionality reduction, CI finds these groups from the pre-existing classes of documents, whereas in the case of

unsupervised dimensionality reduction, CI finds these groups by using a document clustering algorithm. These clusters

are found using a near linear time clustering algorithm which contributes to CI’s low computational requirement.

We experimentally evaluate the quality of the lower dimensional space computed by CI on a wide range of data

sets both in an unsupervised and a supervised setting. Our experiments show that for unsupervised dimensionality

reduction, CI achieves comparable retrieval performance to that obtained by LSI, while requiring an order of magnitude

less time. In the case of supervised dimensionality reduction, our experiments show that the lower dimensional spaces

computed by CI significantly improve the performance of traditional classification algorithms such as C4.5 [60] and

k-nearest-neighbor [18, 14, 64]. In fact, the average classification accuracy over 21 data sets obtained by the k-

nearest-neighbor algorithm on the reduced dimensional space is 5% higher than that achieved by a state-of-the-art

implementation of the naive Bayesian algorithm [55].

The reminder of this paper is organized as follows. Section 2 provides a summary of the earlier work on dimen-

sionality reduction. Section 3 describes the vector-space document model used in our algorithm. Section 4 describes

the proposed concept indexing dimensionality reduction algorithm. Section 5 describes the clustering algorithm used

by concept indexing. Section 6 provides the experimental evaluation of the algorithm. Finally, Section 7 offers some

concluding remarks and directions for future research.

2 Previous Work

In this section, we briefly review some of the techniques that have been developed for unsupervised and supervised

dimensionality reduction, which have been applied to document datasets.

Unsupervised Dimensionality Reduction There are several techniques for reducing the dimensionality of

high-dimensional data in an unsupervised setting. Most of these techniques reduce the dimensionality by combining

multiple variables or attributes utilizing the dependencies among the variables. Consequently, these techniques can

capture synonyms in the document data sets. Unfortunately, the majority of these techniques tend to have large

computational and memory requirements.

A widely used technique for dimensionality reduction is the Principal Component Analysis (PCA) [30]. Given an

n × m document-term matrix, PCA uses the k-leading eigenvectors of the m × m covariance matrix as the axes of

the lower k-dimensional space. These leading eigenvectors correspond to linear combinations of the original variables

that account for the largest amount of term variability [30]. One disadvantage of PCA is that it has high memory

and computational requirements. It requires O(m 2) memory for the dense covariance matrix, and �(km 2) for finding

the k leading eigenvectors [30]. These requirements are unacceptably high for document data sets, as the number of

terms (m) is tens of thousands. Latent Semantic Indexing (LSI) [5] is a dimensionality reduction technique extensively

used in the information retrieval domain and is similar in nature to PCA. LSI, instead of finding the truncated singular

value decomposition of the covariance matrix, finds the truncated singular value decomposition of the original n × m

document-term matrix, and uses these singular eigenvectors as the axes of the lower dimensional space. Since LSI

does not require calculation of the covariance matrix, it has smaller memory and CPU requirements when n is less

than m [30]. Experiments have shown that LSI substantially improves the retrieval performance on a wide range of

data sets [19]. However, the reason for LSI’s robust performance is not well understood, and is currently an active

area of research [43, 57, 16, 27]. Other techniques include Kohonen Self-Organizing Feature Map (SOFM) [39] and
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Figure 1: Problem of PCA or LSI in classification data sets.

Multidimensional Scaling (MDS) [31]. SOFM is a scheme based on neural networks that projects high dimensional

input data into a feature map of a smaller dimension such that the proximity relationships among input data are

preserved. MDS transforms the original data into a smaller dimensional space while trying to preserve the rank

ordering of the distances among data points.

Supervised Dimensionality Reduction In principle, all of the techniques developed for unsupervised dimen-

sionality reduction can potentially be used to reduce the dimensionality in a supervised setting as well. However, in

doing so they cannot take advantage of the class or category information available in the data set. The limitations of

these approaches in a supervised setting are illustrated in the classical example shown in Figure 1. In these data sets,

the principle direction computed by LSI or PCA will be the same, as it is the direction that has the most variance. The

projection of the first data set onto this principal direction will lead to the worst possible classification, whereas the

projection of the second data set will lead to a perfect classification. Another limitation of these techniques in super-

vised data is that characteristic variables that describe smaller classes tend to be lost as a result of the dimensionality

reduction. Hence, the classification accuracy on the smaller classes can be bad in the reduced dimensional space.

In general, supervised dimensionality reduction has been performed by using various feature selection techniques

[2, 37, 40, 38, 70, 28, 66, 56, 51]. These techniques can be broadly classified into two groups, commonly referred

to as the filter- [38] and wrapper-based [38, 64] approaches. In the filter-based approaches, the different features

are ranked using a variety of criteria, and then only the highest-ranked features are kept. A variety of techniques

have been developed for ranking the features (i.e., words in the collection) including document frequency (number of

documents in which a word occurs), mutual information [9, 70, 32, 54], and χ 2 statistics [70]. The main disadvantage

of the filter-based approaches is that the features are selected independent of the actual classification algorithm that

will be used [38]. Consequently, even though the criteria used for ranking measure the effectiveness of each feature

in the classification task, these criteria may not be optimal for the classification algorithm used. Another limitation

of this approach is that these criteria measure the effectiveness of a feature independent of other features, and hence

features that are effective in classification in conjunction with other features will not be selected. In contrast to the

filter-based approaches, wrapper-based schemes find a subset of features using a classification algorithm as a black

box [38, 51, 36, 41]. In this approach the features are selected based on how well they improve the classification

accuracy of the algorithm used. The wrapper-based approaches have been shown to be more effective than the filter-

based approaches in many applications [38, 64, 44]. However, the major drawback of these approaches is that their

computational requirements are very high [36, 41, 36, 41]. This is particularly true for document data sets in which
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the features number in the thousands.

Baker and McCallum recently proposed a dimensionality reduction technique based on Distributional Cluster-

ing [58] of words [3]. This technique clusters words into groups based on the distribution of class labels associated

with each word. Words that have similar class distribution, given a particular word, are grouped into a cluster. Condi-

tional probability of classes, given set of words, are computed by the weighted average of the conditional probability

of classes of individual probability of words. By clustering words that have similar class distributions, this technique

can potentially identify words that have synonyms. However, since a word can only belong to one cluster, polysemous

words will not be identified.

3 Vector-Space Modeling of Documents

In the CI dimensionality reduction algorithm, the documents are represented using the vector-space model [62]. In

this model, each document d is considered to be a vector in the term-space. In its simplest form, each document is

represented by the term-frequency (TF) vector �dtf = (tf1, tf2, . . . , tfn), where tfi is the frequency of the i th term in the

document. A widely used refinement to this model is to weight each term based on its inverse document frequency

(IDF) in the document collection. The motivation behind this weighting is that terms appearing frequently in many

documents have limited discrimination power, and for this reason they need to be de-emphasized. This is commonly

done [35, 62] by multiplying the frequency of each term i by log(N/df i ), where N is the total number of documents

in the collection, and dfi is the number of documents that contain the i th term (i.e., document frequency). This leads

to the tf-idf representation of the document, i.e., �dtfidf = (tf1 log(N/df1), tf2 log(N/df2), . . . , tfn log(N/dfn)). Finally,

in order to account for documents of different lengths, the length of each document vector is normalized so that it

is of unit length, i.e., ‖ �dtfidf‖2 = 1. In the rest of the paper, we will assume that the vector representation �d of each

document d has been weighted using tf-idf and it has been normalized so that it is of unit length.

In the vector-space model, the similarity between two documents d i and d j is commonly measured using the cosine

function [62], given by

cos( �di , �d j ) = �di · �d j

‖ �di‖2 ∗ ‖ �d j‖2
, (1)

where “·” denotes the dot-product of the two vectors. Since the document vectors are of unit length, the above formula

is simplified to cos( �di , �d j ) = �di · �d j .

Given a set S of documents and their corresponding vector representations, we define the centroid vector �C to be

�C = 1

|S|
∑
d∈S

�d, (2)

which is the vector obtained by averaging the weights of the various terms in the document set S. We will refer to S

as the supporting set for the centroid �C . Analogously to individual documents, the similarity between a document d

and a centroid vector �C is computed using the cosine measure, as follows:

cos( �d, �C) = �d · �C
‖ �d‖2 ∗ ‖ �C‖2

= �d · �C
‖ �C‖2

. (3)

Note that even though the document vectors are of length one, the centroid vectors will not necessarily be of unit

length.

Intuitively, this document-to-centroid similarity function tries to measure the similarity between a document and the
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documents belonging to the supporting set of the centroid. A careful analysis of Equation 3 reveals that this similarity

captures a number of interesting characteristics. In particular, the similarity between �d and �C is the ratio of the dot-

product between �d and �C , divided by the length of �C . If S is the supporting set for �C , then it can be easily shown

[11, 24] that
�d · �C = 1

|S|
∑
x∈S

cos( �d, �x),

and that

‖ �C‖2 =
√√√√ 1

|S|2
∑
di∈S

∑
d j ∈S

cos( �di , �d j ). (4)

Thus, the dot-product is the average similarity between d and all other documents in S, and the length of the centroid

vector is the square-root of the average pairwise similarity between the documents in S, including self-similarity. Note

that because all the documents have been scaled to be of unit length, ‖ �C‖2 ≤ 1. Hence, Equation 3 measures the

similarity between a document and the centroid of a set S, as the average similarity between the document and all the

documents in S, amplified by a function that depends on the average pairwise similarity between the documents in S.

If the average pairwise similarity is small, then the amplification is high, whereas if the average pairwise similarity is

high, then the amplification is small. One of the important features of this amplification parameter is that it captures

the degree of dependency between the terms in S [24]. In general, if S contains documents whose terms are positively

dependent (e.g., terms frequently co-occurring together), then the average similarity between the documents in S

will tend to be high, leading to a small amplification. On the other hand, as the positive term dependency between

documents in S decreases, the average similarity between documents in S tends to also decrease, leading to a larger

amplification. Thus, Equation 3 computes the similarity between a document and a centroid, by both taking into

account the similarity between the document and the supporting set, as well as the dependencies between the terms in

the supporting set.

4 Concept Indexing

The concept indexing algorithm computes a lower dimensional space by finding groups of similar documents and

using them to derive the axes of the lower dimensional space. In the rest of this section we describe the details of the

CI dimensionality reduction algorithm for both an unsupervised and a supervising setting, and analyze the nature of

its lower dimensional representation.

4.1 Unsupervised Dimensionality Reduction

CI computes the reduced dimensional space in the unsupervised setting as follows. If k is the number of desired

dimensions, CI first computes a k-way clustering of the documents (using the algorithm described in Section 5), and

then uses the centroid vectors of the clusters as the axes of the reduced k-dimensional space. In particular, let D be

an n × m document-term matrix, (where n is the number of documents, and m is the number of distinct terms in the

collection) such that the i th row of D stores the vector-space representation of the i th document (i.e., D[i, ∗] = �di ).

CI uses a clustering algorithm to partition the documents into k disjoint sets, S1, S2, . . . , Sk . Then, for each set Si , it

computes the corresponding centroid vector �Ci (as defined by Equation 2). These centroid vectors are then scaled so

that they have unit length. Let { �C ′
1, �C ′

2, . . . , �C ′
k} be these unit length centroid vectors. Each of these vectors form

one of the axis of the reduced k-dimensional space, and the k-dimensional representation of each document is obtained

by projecting it onto this space. This projection can be written in matrix notation as follows. Let C be the m ×k matrix
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such that the i th column of C corresponds to �C ′
i . Then, the k-dimensional representation of each document �d is given

by �dC , and the k-dimensional representation of the entire collection is given by the matrix D k = DC . Similarly, the

k-dimensional representation of a query �q for a retrieval is given by �qC . Finally, the similarity between two documents

in the reduced dimensional space is computed by calculating the cosine between the reduced dimensional vectors.

4.2 Supervised Dimensionality Reduction

In the case of supervised dimensionality reduction, CI uses the pre-existing clusters of documents (i.e., the classes

or topics in which the documents belong to) in finding the groups of similar documents. In the simplest case, each

one of these groups corresponds to one of the classes in the data set. In this case, the rank of the lower dimensional

space will be identical to the number of classes. A lower dimensional space with a rank k that is greater than the

number of classes, l, is computed as follows. CI initially computes an l-way clustering by creating a cluster for

each one of the document classes, and then uses a clustering algorithm to obtain a k-way clustering by repeatedly

partitioning some of these clusters. Note that in the final k-way clustering, each one of these finer clusters will contain

documents from only one class. The reverse of this approach can be used to compute a lower dimensional space that

has a rank that is smaller than the number of distinct classes, by repeatedly combining some of the initial clusters

using an agglomerative clustering algorithm. However, this lower dimensional space tend to lead to poor classification

performance as it combines together potentially different concepts, and is not recommended. Note that once these

clusters have been identified, then the algorithm proceeds to compute the lower dimensional space in the same fashion

as in the unsupervised setting (Section 4.1).

As discussed in Section 1, supervised dimensionality reduction is particularly useful to improve the retrieval per-

formance in a pre-categorized document collection, or to improve the accuracy of document classification algorithms.

Experiments presented in Section 6.3 show that the performance of traditional classification algorithms, such as C4.5

[60] and k-nearest-neighbor improves dramatically in the reduced space found by CI.

4.3 Analysis & Discussion

In order to understand this dimensionality reduction scheme, it is necessary to understand two things. First, we need

to understand what is encapsulated within the centroid vectors, and second, we need to understand the meaning of the

reduced dimensional representation of each document. For the rest of this discussion we will assume that we have a

clustering algorithm that returns k reasonably good clusters [11, 45, 7], given a set of documents. By that we mean

that each one of the clusters tends to contain similar documents, and documents belonging to different clusters are less

similar than those belonging to the same cluster.

Given a set of documents, the centroid vector provides a mechanism to summarize their content. In particular,

the prominent dimensions of the vector (i.e., terms with the highest weights), correspond to the terms that are most

important within the set. Two examples of such centroid vectors for two different collections of documents are shown

in Table 1 (these collections are described in Section 6.1). For each collection we computed a 20-way clustering, and

for each of the clusters we computed their unit-length scaled centroid vectors. For each of these vectors, Table 1 shows

the ten highest weight terms. The number that precedes each term in this table is the weight of that term in the centroid

vector. Also note that the terms shown in this table are not the actual words, but their stems.

A number of observations can be made by looking at the terms present in the various centroids. First, looking at

the weight of the various terms, we can see that for each centroid, there are relatively few terms that account for a

large fraction of its length. To further illustrate this, we computed the fraction of the centroid length for which these
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1 0.65 corn 0.20 acre 0.19 bushel 0.18 soybean 0.17 usda 0.17 unknown 0.16 ussr 0.16 tonne 0.13 report 0.12 export 67%
2 0.46 ga 0.24 oil 0.22 cubic 0.21 reserv 0.20 barrel 0.20 feet 0.19 natur 0.15 drill 0.15 mln 0.14 lt 54%
3 0.65 coffee 0.28 quota 0.27 ico 0.17 bag 0.16 export 0.16 brazil 0.14 colombia 0.14 meet 0.13 produc 0.12 ibc 72%
4 0.45 tonne 0.35 palm 0.20 import 0.18 oil 0.15 januari 0.14 rapese 0.14 beef 0.14 februari 0.13 mln 0.13 export 51%
5 0.35 copper 0.30 steel 0.20 ct 0.19 aluminium 0.16 cent 0.15 smelter 0.14 pound 0.14 lb 0.14 price 0.14 alcan 42%
6 0.32 crop 0.24 grain 0.20 wheate 0.19 cotton 0.19 mln 0.19 weather 0.16 china 0.16 rain 0.15 plant 0.15 tonne 40%
7 0.45 bble 0.39 crude 0.31 post 0.26 ct 0.22 dlr 0.21 wti 0.20 raise 0.16 distill 0.16 price 0.15 gasolin 72%
8 0.45 dollar 0.28 bank 0.24 portland 0.23 yen 0.17 load 0.16 juice 0.16 ship 0.14 japan 0.13 orang 0.12 dealer 52%
9 0.73 sugar 0.22 tonne 0.22 white 0.15 trader 0.14 intervent 0.14 ec 0.13 tender 0.12 ecu 0.12 rebat 0.11 cargoe 75%

10 0.59 gold 0.35 ounce 0.33 ton 0.30 mine 0.14 ore 0.12 feet 0.12 silver 0.10 assai 0.09 reserv 0.09 coin 74%
11 0.49 ec 0.34 maize 0.24 tax 0.20 tonne 0.17 european 0.17 licenc 0.17 ecu 0.16 commiss 0.16 barlei 0.14 commun 61%
12 0.30 wheate 0.27 soviet 0.22 farm 0.22 lyng 0.21 bill 0.19 offer 0.18 grain 0.15 agricultur 0.14 eep 0.13 loan 43%
13 0.39 cocoa 0.35 buffer 0.26 deleg 0.24 rubber 0.22 stock 0.22 icco 0.17 pact 0.17 consum 0.14 rule 0.13 council 59%
14 0.32 ship 0.24 gulf 0.22 tanker 0.22 iran 0.21 missil 0.18 vessel 0.15 attack 0.14 iranian 0.13 sea 0.13 line 41%
15 0.43 oil 0.29 tax 0.18 herrington 0.17 explor 0.16 energi 0.15 import 0.12 reagan 0.12 studi 0.12 industri 0.11 petroleum 43%
16 0.28 credit 0.28 wheate 0.25 ccc 0.24 depart 0.22 nil 0.19 sale 0.18 commod 0.18 guarante 0.18 bonu 0.17 mln 49%
17 0.43 ecuador 0.27 bpd 0.27 refineri 0.25 crude 0.25 oil 0.21 pipelin 0.20 venezuela 0.13 mln 0.12 barrel 0.12 energi 59%
18 0.43 wheate 0.42 tonne 0.24 tender 0.24 barlei 0.22 taiwan 0.18 shipment 0.15 soft 0.14 export 0.14 home 0.13 deliveri 64%
19 0.48 strike 0.28 seamen 0.28 union 0.25 port 0.22 worker 0.14 employ 0.13 ship 0.12 pai 0.11 spokesman 0.11 talk 57%
20 0.49 opec 0.31 saudi 0.27 oil 0.25 bpd 0.24 barrel 0.18 mln 0.17 price 0.15 arabia 0.14 crude 0.12 al 65%

1 0.25 russian 0.19 russia 0.18 rwanda 0.17 moscow 0.14 soviet 0.14 rebel 0.13 nato 0.13 un 0.13 tass 0.12 militari 26%
2 0.41 vw 0.30 lopez 0.24 iraq 0.23 gm 0.20 matrix 0.19 opel 0.18 inquiri 0.18 churchill 0.16 volkswagen 0.16 scot 56%
3 0.15 econom 0.15 export 0.14 percent 0.12 enterpris 0.12 russian 0.11 reform 0.11 product 0.11 economi 0.10 social 0.10 russia 15%
4 0.26 tunnel 0.19 rail 0.16 argentina 0.15 school 0.14 curriculum 0.14 eurotunnel 0.14 british 0.14 pound 0.14 channel 0.14 labour 27%
5 0.39 hyph 0.29 food 0.22 blank 0.19 label 0.16 fda 0.14 fsi 0.14 speci 0.14 poultri 0.14 cfr 0.12 stag 44%
6 0.71 drug 0.21 patient 0.16 azt 0.14 aid 0.14 fda 0.12 addict 0.10 epo 0.09 treatment 0.08 amgen 0.08 hiv 66%
7 0.46 korea 0.33 north 0.32 nuclear 0.31 iaea 0.28 korean 0.21 dprk 0.18 inspect 0.16 pyongyang 0.15 seoul 0.10 sanction 73%
8 0.52 tax 0.28 bank 0.24 cent 0.23 pound 0.17 incom 0.16 vate 0.15 rate 0.12 taxe 0.11 financ 0.11 imf 57%
9 0.28 japan 0.25 vietnam 0.24 china 0.23 trade 0.22 rice 0.19 japanes 0.17 gat 0.15 tokyo 0.12 vietnames 0.11 import 41%

10 0.59 women 0.47 violenc 0.19 domest 0.15 crime 0.13 speaker 0.12 victim 0.12 abus 0.10 batter 0.10 bill 0.10 sexual 70%
11 0.26 helmslei 0.24 hunter 0.20 tax 0.18 fraud 0.17 evasion 0.16 dominelli 0.15 rose 0.15 sentenc 0.13 guilti 0.13 juri 33%
12 0.38 al 0.24 palestinian 0.23 arab 0.22 israe 0.18 israel 0.17 islam 0.16 lebanon 0.14 kill 0.13 terrorist 0.11 afp 44%
13 0.35 cent 0.24 compani 0.21 dollar 0.18 pound 0.16 pharmaceut 0.16 price 0.14 pulp 0.13 paper 0.12 sale 0.12 market 37%
14 0.43 kong 0.43 hong 0.22 chines 0.21 china 0.20 beij 0.18 journalist 0.16 taiwan 0.15 yang 0.14 mainland 0.13 qiandao 62%
15 0.47 grain 0.34 agricultur 0.23 price 0.19 rural 0.18 product 0.17 percent 0.15 yuan 0.15 farm 0.14 farmer 0.14 peasant 57%
16 0.62 nuclear 0.30 pakistan 0.23 india 0.18 weapon 0.17 ukrain 0.15 plutonium 0.12 treati 0.12 prolifer 0.12 reactor 0.12 japan 67%
17 0.38 nafta 0.33 mexico 0.17 mexican 0.17 speaker 0.16 american 0.16 trade 0.16 gentleman 0.16 job 0.13 rep 0.12 house 44%
18 0.24 polic 0.17 kill 0.16 anc 0.15 murder 0.14 africa 0.11 offic 0.10 death 0.10 journalist 0.10 african 0.10 johannesburg 21%
19 0.47 drug 0.34 traffick 0.25 cocain 0.20 cartel 0.20 colombia 0.17 colombian 0.17 polic 0.13 arrest 0.12 spanish 0.12 narcot 58%
20 0.24 water 0.24 forest 0.22 environment 0.21 river 0.21 project 0.16 pollution 0.16 amazon 0.14 power 0.13 gorge 0.13 energi 36%

re1

new3

Table 1: The ten highest weight terms in the centroids of the clusters of two data sets.

terms are responsible. This is shown in the last column of each table. For example, the highest ten terms for the

first centroid of re1 account for 67% of its length, for the second centroid account for 54% of its length, and so for.

Thus, each centroid can be described by a relative small number of keyword terms. This is a direct consequence of

the fact that the supporting sets for each centroid correspond to clusters of similar documents, and not just random

subsets of documents. Second, these terms are quite effective in providing a summary of the topics discussed within

the documents, and their weights provide an indication of how central they are in these topics. For example, looking at

the centroids for re1, we see that the first cluster contains documents that talk about the export of agricultural products

to USSR, the second cluster contains energy related documents, the third cluster contains documents related to coffee

production, and so on. This feature of centroid vectors has been used successfully in the past to build very accurate

summaries [11, 45], and to improve the performance of clustering algorithms [1]. Third, the prevalent terms of the

various centroids often contain terms that act as synonyms within the context of the topic they describe. This can easily

be seen in some of the clusters for new3. For example, the terms russian and russia are present in the first centroid,

the terms vw and volkswagen are present in the second centroid, and the terms drug and narcot are present in the

nineteenth centroid. Note that these terms may not necessarily be present in a single document; however, such terms

will easily appear in the centroid vectors if they are used interchangeably to describe the underlying topic. Fourth,

looking at the various terms of the centroid vectors, we can see that the same term often appears in multiple centroids.

This can easily happen when the supporting sets of the two centroids are part of the same topic, but it can also happen

because many terms have multiple meanings (polysemy). For example, this happens in the case of the term drug in the

sixth and nineteenth cluster of new3. The meaning of drug in the sixth cluster is that of prescription drugs, whereas

the meaning of drug in the nineteenth cluster is that of narcotics. This polysemy of terms can also be seen for the term

8



fda, that is the abbreviation of the Food & Drug Administration 1 that occurs in the fifth and sixth clusters of new3.

The meaning of fda in the fifth cluster corresponds to the food-regulatory function of FDA (this can be inferred by

looking at the other terms in the centroid such as food, label, poultri), whereas the meaning of fda in the sixth cluster

corresponds to the drug-regulatory function of FDA (this can be inferred by looking at the other terms such as drug,

patient, azt, etc.). To summarize, the centroid vectors provide a very effective mechanism to represent the concepts

present in the supporting set of documents, and these vectors capture actual as well as latent associations between the

terms that describe the concept.

Given a set of k centroid vectors and a document d, the i th coordinate of the reduced dimensional representation

of this document is the similarity between document d and the i th centroid vector as measured by the cosine function

(Equation 3). Note that this is consistent with the earlier definition (Section 4.1), in which the i th coordinate was

defined as the dot-product between �d, and the unit-length normalized centroid vector �C ′
i . Thus, the different dimen-

sions of the document in the reduced space correspond to the degree at which each document matches the concepts

that are encapsulated within the centroid vectors. This interpretation of the low dimensional representation of each

document is the reason that we call our dimensionality reduction scheme concept indexing. Note that documents that

are close in the original space will also tend be close in the reduced space, as they will match the different concepts to

the same degree. Moreover, because the centroids capture latent associations between the terms describing a concept,

documents that are similar but are using somewhat different terms will be close in the reduced space even though they

may not be close in the original space, thus improving the retrieval of relevant information. Similarly, documents that

are close in the original space due to polysemous words, will be further apart in the reduced dimensional space; thus,

eliminating incorrect retrievals. In fact, as our experiments in Section 6.2 show, CI is able to improve the retrieval

performance, compared to that achieved in the original space.

5 Finding the Clusters

Over the years a variety of document clustering algorithms have been developed with varying time-quality trade-offs

[11, 45]. Recently, partitional based document clustering algorithms have gained wide-spread acceptance as they

provide reasonably good clusters and have a near-linear time complexity [11, 45, 1]. For this reason, the clustering

algorithm we used in CI is derived from this general class of partitional algorithms.

Partitional clustering algorithms compute a k-way clustering of a set of documents either directly or via recursive

bisection. A direct k-way clustering is computed as follows. Initially, a set of k documents is selected from the collec-

tion to act as the seeds of the k clusters. Then, for each document, its similarity to these k seeds is computed, and it is

assigned to the cluster corresponding to its most similar seed. This forms the initial k-way clustering. This clustering

is then repeatedly refined using the following procedure. First, the centroid vector for each cluster is computed, and

then each document is assigned to the cluster corresponding to its most similar centroid. This refinement process

terminates either after a predetermined small number of iterations, or after an iteration in which no document moved

between clusters. A k-way partitioning via recursive bisection is obtained by recursively applying the above algorithm

to compute 2-way clusterings (i.e., bisections). Initially, the documents are partitioned into two clusters, then one of

these clusters is selected and is further bisected, and so on. This process continues k − 1 times, leading to k clusters.

A number of different schemes have been developed for selecting the initial set of seed documents [11, 20, 45].

A commonly used scheme is to select these seeds at random. In such schemes, a small number of different sets of

1For the non-US reader, FDA is responsible for regulating food products and prescription drugs within the US.

9



random seeds are often selected, a clustering solution is computed using each one of these sets, and the best of these

solutions is selected as the final clustering. The quality of such partitional clusterings is evaluated by computing the

similarity of each document to the centroid vector of the cluster that it belongs to. The best solution is the one that

maximizes the sum of these similarities over the entire set of documents. CI’s clustering algorithm uses this random

seed approach, and selects the best solution obtained out of five random sets of seeds.

The CI algorithm computes a k-way clustering of the documents using recursive bisection. This approach gives

a better control of the relative size of the clusters, as it tends to produce clusters whose sizes are not substantially

different. This tends to lead to better dimensionality reductions for the following reason. Recall from Section 4,

that CI uses the centroid vectors to represent the concepts present in the collection. Ideally, given a small number of

dimensions, we would like to capture concepts that are present in a large number of documents. This is better achieved

if the centroid vectors are obtained from larger clusters. We found in our experiments (which are not reported here)

that a direct k-way clustering solution may sometimes create some very small clusters, as it tends to be more sensitive

to outliers.

One of the key steps in any recursive bisection clustering algorithm is the scheme used to select which cluster to

partition next. That is, given an l-way clustering solution, the algorithm must select one of these l clusters to bisect

further, so that it will obtain the (l + 1)-way clustering solution. A simple scheme will be to select the cluster that

contains the largest number of documents. Unfortunately, even though this scheme tends to produce clusters whose

size is not substantially different, in certain cases concepts may be over-represented in the final clustering. This

will happen in cases in which the actual number of documents supporting the various concepts are of substantially

different size. In such scenarios, bisecting the largest cluster can easily lead to a solution in which the large concepts

are captured by multiple clusters, but the smaller concepts are completely lost. Ideally, we would like to bisect a

cluster that contains a large number of dissimilar documents, as this will allow us to both capture different concepts,

and at the same time ensure that these concepts are present in a large number of documents.

CI achieves this goal as follows. Recall from Section 3, that given a cluster Si and its centroid vector �Ci , the square

of the length of this vector (i.e., ‖Ci‖2
2) measures the average pairwise similarity between the documents in Si . Thus,

we can look at 1 − ‖Ci‖2
2 as a measure of the average pairwise dissimilarity. Furthermore the aggregate pairwise

dissimilarity between the documents in the cluster is equal to

Aggregate Dissimilarity = |Si |2(1 − ‖Ci‖2
2). (5)

CI uses this quantity in selecting the next cluster to bisect. In particular, CI bisects the cluster that has the highest

aggregate dissimilarity over all the clusters.

The complexity of this clustering algorithm is O(n log k), where n is the number of documents and k is the number

of clusters. Furthermore, for large document data sets such as WWW documents indexed by search engines, clustering

algorithms [71, 8, 21] utilizing sampling, out-of-core techniques, and incremental clustering can be used to find clusters

efficiently.

6 Experimental Results

In this section we experimentally evaluate the quality of the dimensionality reduction performed by CI. Two different

sets of experiments are presented. The first set focuses on evaluating the document retrieval performance achieved by

CI when used to compute the dimensionality reduction in an unsupervised setting, and its performance is compared

against LSI. The second set of experiments focuses on evaluating the quality of the dimensionality reduction computed

10



by CI in a supervised setting, both in terms of the document retrieval performance as well as in terms of the classifica-

tion improvements achieved by traditional classification algorithms when operating in the reduced dimensional space.

In all the experiments using LSI, we used the same unit length tf-idf document representation used by CI.

6.1 Document Collections

Data Source # of doc # of class min class size max class size avg class size # of words
west1 West Group 500 10 39 73 50.0 977
west2 West Group 300 10 18 45 30.0 1078
west3 West Group 245 10 17 34 24.5 1035
oh0 OHSUMED-233445 1003 10 51 194 100.3 3182
oh5 OHSUMED-233445 918 10 59 149 91.8 3012
oh10 OHSUMED-233445 1050 10 52 165 105.0 3238
oh15 OHSUMED-233445 913 10 53 157 91.3 3100
ohscal OHSUMED-233445 11162 10 709 1621 1116.2 11465
re0 Reuters-21578 1504 13 11 608 115.7 2886
re1 Reuters-21578 1657 25 10 371 66.3 3758
tr11 TREC 414 9 6 132 46.0 6429
tr12 TREC 313 8 9 93 39.1 5804
tr21 TREC 336 6 4 231 56.0 7902
tr31 TREC 927 7 2 352 132.4 10128
tr41 TREC 878 10 9 243 87.8 7454
tr45 TREC 690 10 14 160 69.0 8261
la1 TREC 3204 6 273 943 534.0 31472
la2 TREC 3075 6 248 905 512.5 31472
fbis TREC 2463 17 38 506 144.9 2000
new3 TREC 9558 44 104 696 217.2 83487
wap WebACE 1560 20 5 341 78.0 8460

Table 2: Summary of data sets used.

The characteristics of the various document collections used in our experiments are summarized in Table 2. The first

three data sets are from the statutory collections of the legal document publishing division of West Group described

in [10]. Data sets tr11, tr12, tr21, tr31, tr41, tr45, and new3 are derived from TREC-5 [63], TREC-6 [63], and

TREC-7 [63] collections. Data set fbis is from the Foreign Broadcast Information Service data of TREC-5 [63].

Data sets la1, and la2 are from the Los Angeles Times data of TREC-5 [63]. The classes of the various trXX, new3,

and fbis data sets were generated from the relevance judgment provided in these collections. The class labels of

la1 and la2 were generated according to the name of the newspaper sections that these articles appeared, such as

“Entertainment”, “Financial”, “Foreign”, “Metro”, “National”, and “Sports”. Data sets re0 and re1 are from Reuters-

21578 text categorization test collection Distribution 1.0 [49]. We divided the labels into 2 sets and constructed data

sets accordingly. For each data set, we selected documents that have a single label. Data sets oh0, oh5, oh10, oh15, and

ohscal are from the OHSUMED collection [26] subset of MEDLINE database, which contains 233,445 documents

indexed using 14,321 unique categories. We took different subsets of categories to construct these data sets. Data set

wap is from the WebACE project (WAP) [56, 23, 6, 7]. Each document corresponds to a web page listed in the subject

hierarchy of Yahoo! [67]. For all data sets, we used a stop-list to remove common words, and the words were stemmed

using Porter’s suffix-stripping algorithm [59].

6.2 Unsupervised Dimensionality Reduction

One of the goals of dimensionality reduction techniques such as CI and LSI is to project the documents of a collection

onto a low dimensional space so that similar documents (i.e., documents that are part of the same topic) come closer
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together, relative to documents belonging to different topics. This transformation, if successful, can lead to substantial

improvements in the accuracy achieved by regular queries. The query performance is often measured by looking at the

number of relevant documents present in the top-ranked returned documents. Ideally, a query should return most of the

relevant documents (recall), and the majority of the documents returned should be relevant (precision). Unfortunately,

a number of the larger collections in our experimental testbed did not have pre-defined queries associated with them,

so we were not able to perform this type of evaluation. For this reason our evaluation was performed in terms of how

effective the reduced dimensional space was in bringing closer together documents that belong to the same class.

To evaluate the extent to which a dimensionality reduction scheme is able to bring closer together similar docu-

ments, we performed the following experiment for each one of the data sets shown in Table 2. Let D be one of these

datasets. For each document d ∈ D, we computed the k-nearest-neighbor sets both in the original as well as in the

reduced dimensional space. Let K o
d and K r

d be these sets in the original and reduced space, respectively. Then, for

each of these sets, we counted the number of documents that belong to the same class as d, and let n o
d and nr

d be these

counts. Let No = ∑
d∈D no

d , and Nr = ∑
d∈D nr

d , be the cumulative counts over all the documents in the data set.

Given these two counts, then the performance of a dimensionality reduction scheme was evaluated by comparing N r

against No. In particular, if the ratio Nr /No is greater than one, then the reduced space was successful in bringing a

larger number of similar documents closer together than they were in the original space, whereas if the ratio is less

than one, then the reduced space is worse. We will refer to this ratio as the retrieval improvement (RI) achieved by

the dimensionality reduction scheme.

An alternate way of interpreting this experiment is that for each document d, we perform a query using d as the

query itself. In this context, the sets K o
d and K r

d are nothing more than the result of this query, the numbers n o
d and nr

d

are a measure of the recall, and the numbers No and Nr are a measure of the cumulative recall achieved by performing

as many queries as the total number of documents. Thus, retrieval performance increases as N r increases, because

both the recall, and because we compute the recall on a fixed size neighborhood, the precision also increases.

Table 3 shows the values for the RI measure obtained by both CI and LSI on the eight largest data sets in our

testbed. The RI measure was computed using the 20-nearest-neighbors 2. The first columns of these tables show the

number of dimensions of the reduced space. For re0, re1, la1, la2, fbis, wap, and ohscal we used 10, 20, 30, 40, and

50 dimensions, whereas for new3, we used 25, 50, 75, 100, and 125. This is because, for the first seven data sets, the

retrieval performance peaks at a smaller number of dimensions than does for new3.

Looking at these results we can see that the retrieval improvements achieved by CI are comparable to those achieved

by LSI. Both schemes were able to achieve similar values for the RI measure, and both schemes compute spaces in

which similar documents are closer together (the RI measures are greater than one in most of the experiments). CI

does somewhat better for la1, fbis, and ohscal, and LSI does somewhat better for re1, wap, and new3; however these

differences are quite small. This can also be seen by comparing the last row of the table, which shows the average

value of RI that is achieved over the five different lower dimensional spaces.

The results presented in Table 3 provide a global overview of the retrieval performance achieved by CI over an

entire collection of documents. To see how well it does in bringing closer together documents of the different classes,

we computed the RI measure on a per class basis. These results are shown in Table 4 for both CI and LSI. Due to space

considerations, we only present the per-class comparisons for a single number of dimensions. In particular, for new3,

Table 4 shows the per-class RI measures obtained by reducing the number of dimensions to 125, and for the other data

2We also computed the RI measures using 10-, 30-, and 40-nearest-neighbors. The relative performance between CI and LSI remained the same,
so we did not include these results.
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re0 re1 la1 la2 fbis wap ohscal
Ndims CI LSI CI LSI CI LSI CI LSI CI LSI CI LSI CI LSI
10 1.03 1.06 0.92 0.97 1.14 1.13 1.13 1.12 1.00 1.00 1.00 1.03 1.24 1.21
20 1.06 1.08 1.02 1.03 1.15 1.14 1.13 1.13 1.04 1.05 1.09 1.11 1.30 1.32
30 1.08 1.07 1.04 1.06 1.15 1.12 1.12 1.13 1.08 1.06 1.10 1.11 1.32 1.32
40 1.09 1.06 1.07 1.06 1.15 1.12 1.13 1.12 1.09 1.05 1.10 1.12 1.33 1.30
50 1.09 1.06 1.07 1.08 1.14 1.12 1.13 1.11 1.09 1.05 1.09 1.11 1.33 1.29
Average 1.07 1.066 1.024 1.04 1.146 1.126 1.128 1.122 1.06 1.042 1.076 1.096 1.304 1.288

new3
Ndims CI LSI
25 0.98 1.03
50 1.06 1.08
75 1.07 1.09
100 1.09 1.09
125 1.09 1.09
Average 1.058 1.076

Table 3: The values of the RI measure achieved by CI and LSI.

sets, Table 4 shows the per-class RI measures obtained by reducing the number of dimensions to 50. Also note that for

each dataset, the column labeled “Size” shows the number of documents in each class. The various classes are sorted

in decreasing class-size order.

A number of interesting observations can be made from the results shown in this table. First, the overall perfor-

mance of CI is quite similar to LSI. Both schemes are able to improve the retrieval performance for some classes,

and somewhat decrease it for others. Second, the size of the different classes does affect the retrieval performance.

Both schemes tend to improve the retrieval of larger classes at a higher degree than they do for the smaller classes.

Third, from these results we can see that CI compared to LSI, in general, does somewhat better for larger classes and

somewhat worse for smaller classes. We believe this is a direct result of the way the clustering algorithm used by CI is

biased towards creating large clusters (Section 5). A clustering solution that better balances the tradeoffs between the

size and the variance of the clusters can potentially lead to better results even for the smaller classes. This is an area

that we are currently investigating.

Summarizing the results, we can see that the dimensionality reductions computed by CI achieve comparable re-

trieval performance to that obtained using LSI. However, the amount of time required by CI to find the axes of the

reduced dimensionality space is significantly smaller than that required by LSI. CI finds these axes by just using a

fast clustering algorithm, whereas LSI needs to compute the singular-value-decomposition. The run-time comparison

of CI and LSI is shown in Table 5. We used the single-vector Lanczos method (las2) of SVDPACK [4] for LSI.

SVDPACK is a widely used package for computing the singular-value-decomposition of sparse matrices and las2 is

the fastest implementation of SVD among the algorithms available in SVDPACK. From the results shown in this table

we can see that CI is consistently eight to ten times faster than LSI.

6.3 Supervised Dimensionality Reduction

One of the main features of CI is that it can quickly compute the axes of the reduced dimensional space by taking into

account a priori knowledge about the classes that the various documents belong to. As discussed in Section 4, this

supervised dimensionality reduction is particularly useful to improve the retrieval performance of a pre-categorized

collection of documents. To illustrate this, we used the same set of data sets as in the previous section, but this time

we used the centroid of the various classes as the axes of the reduced dimensionality space. The RI measures for the

different classes in each one of these data sets are shown in Table 6. Note that the number of dimension in the reduced
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Size CI LSI Size CI LSI Size CI LSI Size CI LSI Size CI LSI
608 1.06 1.01 371 1.08 1.05 506 1.05 1.03 341 1.06 1.04 696 1.10 1.05
319 1.15 1.11 330 1.11 1.06 387 1.00 0.99 196 1.31 1.32 568 1.01 0.98
219 1.19 1.12 137 1.21 1.24 358 1.17 1.14 168 0.97 0.94 493 1.35 1.24
80 1.53 1.30 106 1.19 1.13 190 1.03 0.99 130 0.99 1.03 369 1.10 1.11
60 1.04 0.99 99 1.06 1.04 139 1.02 1.04 97 1.13 1.09 330 1.02 1.03
42 0.97 1.14 87 1.07 1.04 125 1.22 1.15 91 1.16 1.29 328 1.05 1.08
39 0.98 1.14 60 1.15 1.14 121 1.03 1.09 91 1.51 1.74 326 1.11 1.09
38 1.06 0.82 50 0.79 0.90 119 0.97 0.99 76 1.08 1.14 306 1.05 1.05
37 0.89 1.16 48 0.94 0.99 94 1.28 1.20 65 1.02 0.99 281 1.09 1.05
20 0.95 1.06 42 0.82 1.01 92 1.27 1.09 54 1.01 1.09 278 1.06 1.06
16 0.75 1.00 37 0.92 1.22 65 0.93 1.04 44 1.55 1.34 276 1.06 1.03
15 0.86 0.76 32 1.04 1.19 48 1.39 1.29 40 0.84 0.88 270 1.17 1.14
11 0.68 0.73 31 1.13 1.23 46 0.97 1.14 37 1.43 1.27 253 1.25 1.29

31 1.12 1.26 46 1.08 1.06 35 1.69 1.52 243 1.05 1.04
27 1.15 1.30 46 0.99 0.97 33 1.03 1.10 238 1.05 1.08
20 0.99 1.06 43 0.87 0.91 18 0.49 0.52 218 1.07 1.11
20 1.24 1.27 38 1.17 0.94 15 0.75 0.76 211 1.02 1.02
19 0.93 0.93 13 0.53 0.87 198 1.26 1.38
19 0.61 0.80 11 1.07 1.02 196 1.15 1.14
18 0.61 0.97 5 0.78 0.78 187 1.11 1.16
18 0.73 1.09 181 1.22 1.23
17 0.69 0.83 179 1.07 1.02
15 1.08 0.98 174 0.94 0.99
13 0.82 0.80 171 1.44 1.35
10 0.50 0.43 171 0.95 1.00

161 1.09 1.11
159 1.22 1.19
153 1.06 1.02
141 1.13 1.16
139 1.06 1.10
139 1.12 1.11
136 1.01 1.08

Size CI LSI Size CI LSI Size CI LSI 130 1.23 1.22
943 1.16 1.12 905 1.17 1.13 1621 1.28 1.24 126 1.17 1.08
738 1.09 1.07 759 1.07 1.06 1450 1.37 1.37 124 1.03 1.03
555 1.16 1.11 487 1.16 1.13 1297 1.21 1.19 123 1.00 1.16
354 1.26 1.25 375 1.14 1.15 1260 1.28 1.29 120 0.89 0.97
341 1.14 1.14 301 1.09 1.14 1159 1.41 1.41 116 0.81 0.92
273 1.08 1.08 248 1.00 1.09 1037 1.34 1.39 115 0.94 1.03

1001 1.57 1.53 110 1.13 1.08
864 1.34 1.33 110 1.02 1.07
764 1.42 1.35 106 1.00 1.02
709 1.16 1.28 105 1.12 1.16

104 1.36 1.17

re1

la2

new3

la1

re0

ohscal

wapfbis

Table 4: The per-class RI measures for various data sets.

space for each data set is different, and is equal to the number of classes in the data set.

As we can see from this table, the supervised dimensionality reduction computed by CI dramatically improves the

retrieval performance for all the different classes in each data set. Moreover, the retrieval performance of the smaller

classes tends to improve the most. This is because in unsupervised dimensionality reduction, these smaller classes

are not sufficiently represented (as the experiments shown in Table 4 indicate), whereas in supervised dimensionality

reduction, all classes are equally represented, regardless of their size.

The supervised dimensionality reduction performed by CI can also be used to improve the performance of tra-

ditional classification algorithms. To illustrate this, we performed an experiment in which we used two traditional

classification algorithms, C4.5 and k-nearest-neighbor, both on the original space, as well as on the reduced dimen-

sional space. C4.5 [60] is a widely used decision tree-based classification algorithm that has been shown to produce

good classification results, primarily on low dimensional data sets. The k-nearest-neighbor (kNN) classification al-

gorithm is a well known instance-based classification algorithm that has been applied to text categorization since the

early days of research [53, 29, 68].
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re0 re1 la1 la2 fbis wap ohscal new3
CI 0.56 0.72 5.01 4.59 3.17 1.97 7.01 29.85
LSI 6.58 7.00 44.20 39.80 20.10 18.10 65.10 275.00

Table 5: Run-time comparison (in seconds) of LSI and CI. These times correspond to the amount of time required to compute 50
dimensions for all data sets except new3 for which 125 dimensions were computed. All experiments were performed on a Linux
workstation equipped with an Intel Pentium II running at 500Mhz.

For each set of documents, the reduced dimensionality experiments were performed as follows. First, the entire

set of documents was split into a training and test set. Next, the training set was used to find the axes of the reduced

dimensional space by constructing an axis for each one of the classes 3. Then, both the training and the test set were

projected into this reduced dimensional space. Finally, in the case of C4.5, the projected training and test set were

used to learn the decision tree and evaluate its accuracy, whereas in the case of kNN, the neighborhood computations

were performed on the projected training and test. In our experiments, we used a value of k = 10 for kNN, both for

the original as well as for the reduced dimensional space.

The classification accuracy of the various experiments are shown in Table 7. These results correspond to the

average classification accuracies of 10 experiments, where in each experiment a randomly selected 80% fraction of

the documents was used for training and the remaining 20% was used for testing. The first two columns of this table,

show the classification accuracy obtained by C4.5 and kNN when used on the original data sets. The next two columns

show the classification accuracy results obtained by the same algorithms when used on the reduced dimensional space

computed by CI. The next four columns show the classification accuracy obtained by these algorithms when used

on the reduce dimensional space computed by LSI. For each algorithm, we present two sets of results, obtained on

a 25- and on a 50-dimensional space. Note that these lower dimensional spaces were computed without taking into

account any class information, as LSI cannot perform dimensionality reduction in a supervised setting. Finally, the

last column shows the results obtained by the naive Bayesian (NB) classification algorithm in the original space. In

our experiments, we used the NB implementation provided by the Rainbow [55] software library. The NB results are

presented here to provide a reference point for the classification accuracies. Note that we did not use the NB algorithm

in the reduced dimensional space, as NB cannot effectively handle continuous attributes [34]. Also, for each of these

data sets, we highlighted the scheme that achieved the highest classification accuracy, by using a boldface font.

Looking at the results, we can see that both C4.5 and kNN, benefit greatly by the supervised dimensionality re-

duction computed by CI. For both schemes, the classification accuracy achieved in the reduced dimensional space is

greater than the corresponding accuracy in the original space for all 21 data sets. In particular, over the entire 21 data

sets, CI improves the average accuracy of C4.5 and kNN by 7%, and 6%, respectively. Comparing these results against

those obtained by naive Bayesian, we can see that kNN, when applied on the reduced dimensional space, substantially

outperforms naive Bayesian, which was not the case when comparing the performance of kNN in the original space.

In particular, over the entire 21 data sets, the accuracy of kNN in the reduced space is 5% greater than that of naive

Bayesian. Looking at the various classification results obtained by C4.5 and kNN on the lower dimensional spaces

computed by LSI, we can see that the performance is mixed. In particular, comparing the best performance achieved

in either one of the lower dimensional spaces, over that achieved in the original space, we can see that LSI improves

the results obtained by C4.5 in only four data sets, and by kNN in ten data sets. However, CI, by computing a lower

3We also performed experiments in which the number of dimensions in the reduced space was two and three times greater than the number of
classes. The overall performance of the algorithms did not change, and due to space limitations we did not include these results.
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Size CI-S Size CI-S Size CI-S Size CI-S Size CI-S
608 1.12 371 1.25 341 1.05 506 1.07 696 1.13
319 1.31 330 1.18 196 1.72 387 1.02 568 1.03
219 1.28 137 1.51 168 1.31 358 1.31 493 1.87
80 1.89 106 1.23 130 1.42 190 1.07 369 1.31
60 1.26 99 1.11 97 1.17 139 1.17 330 1.09
42 2.17 87 1.11 91 1.75 125 1.32 328 1.49
39 1.30 60 1.44 91 1.94 121 1.17 326 1.24
38 1.38 50 1.94 76 1.37 119 1.03 306 1.08
37 1.66 48 1.05 65 1.22 94 1.33 281 1.18
20 1.54 42 2.13 54 1.71 92 1.44 278 1.16
16 1.60 37 1.59 44 3.81 65 1.40 276 1.07
15 1.32 32 1.33 40 1.14 48 1.80 270 1.23
11 1.64 31 1.67 37 2.36 46 1.80 253 1.63

31 1.72 35 2.98 46 1.09 243 1.07
27 1.84 33 2.83 46 1.73 238 1.35
20 2.01 18 3.63 43 2.26 218 1.24
20 1.41 15 3.49 38 2.68 211 1.17
19 1.81 13 2.57 198 1.85
19 2.18 11 2.66 196 1.20
18 1.69 5 2.78 187 1.34
18 3.67 181 1.39
17 1.49 179 1.14
15 3.75 174 1.84
13 1.40 171 1.92
10 2.27 171 1.09

161 1.19
159 1.41
153 1.25
141 1.69
139 1.25
139 1.27
136 1.19

Size CI-S Size CI-S Size CI-S 130 1.29
943 1.33 905 1.31 1621 1.38 126 1.66
738 1.11 759 1.10 1450 1.56 124 1.06
555 1.21 487 1.25 1297 1.37 123 1.23
354 1.34 375 1.20 1260 1.46 120 1.03
341 1.41 301 1.48 1159 1.63 116 1.53
273 2.22 248 1.75 1037 1.81 115 1.18

1001 1.85 110 1.18
864 1.47 110 1.11
764 1.78 106 1.04
709 1.51 105 1.28

104 2.54

fbis

la1 la2

new3re0 re1

ohscal

wap

Table 6: The per-class RI measures for various data sets for supervised dimensionality reduction.

dimensional space in a supervised setting, significantly and consistently outperforms the classification results obtained

on the lower dimensional spaces obtained by LSI.

We have not included the results of C4.5 and kNN using feature selection techniques due to the inconsistent perfor-

mance of such schemes in these data sets. In particular, the right number of dimensions for different data sets varies

considerably. For detailed experiments showing the characteristics of feature selection schemes in text categorization,

readers are advised to see [70, 25].

7 Conclusion and Directions of Future Work

In this paper we presented a new fast dimensionality reduction technique called concept indexing that can be used

equally well for reducing the dimensions in a supervised and in an unsupervised setting. CI reduces the dimensionality

of a document collection according to the concepts present in the collection and expresses each document as a function

of the various concepts. Our analysis has shown that the lower-dimensional representation computed by CI is capable

of capturing both the actual as well as the latent information available in the document collections. In particular,
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C4.5 k NN C4.5 k NN 25 Dims 50 Dims 25 Dims 50 Dims NB
west1 85.5% 82.9% 86.2% 86.7% 73.7% 74.5% 83.0% 81.4% 86.7%
west2 75.3% 77.2% 75.3% 78.7% 63.8% 59.2% 75.5% 73.8% 76.5%
west3 73.5% 76.1% 74.5% 80.6% 57.8% 55.3% 75.5% 77.3% 75.1%
oh0 82.8% 84.4% 87.3% 89.8% 74.5% 72.8% 83.9% 81.9% 89.1%
oh5 79.6% 85.6% 88.4% 92.0% 76.5% 76.7% 87.0% 86.8% 87.1%
oh10 73.1% 77.5% 79.6% 82.6% 70.9% 65.5% 79.4% 77.7% 81.2%
oh15 75.2% 81.7% 84.6% 86.4% 67.5% 64.9% 81.3% 80.7% 84.0%
re0 75.8% 77.9% 82.3% 85.0% 69.1% 64.4% 79.5% 76.3% 81.1%
re1 77.9% 78.9% 80.0% 81.6% 59.8% 60.6% 71.2% 75.4% 80.5%
tr11 78.2% 85.3% 87.0% 88.9% 79.3% 80.5% 81.3% 83.0% 85.3%
tr12 79.2% 85.7% 88.4% 89.0% 76.2% 72.5% 80.8% 82.7% 79.8%
tr21 81.3% 89.1% 90.3% 90.0% 74.6% 73.1% 87.6% 88.5% 59.6%
tr31 93.3% 93.9% 94.7% 96.9% 90.2% 87.5% 93.0% 92.3% 94.1%
tr41 89.6% 93.5% 95.3% 95.9% 89.9% 87.3% 93.4% 92.4% 94.5%
tr45 91.3% 91.1% 92.9% 93.6% 80.3% 80.9% 91.1% 92.1% 84.7%
la1 75.2% 82.7% 85.7% 87.6% 76.1% 74.2% 83.4% 82.1% 87.6%
la2 77.3% 84.1% 87.2% 88.6% 78.2% 76.1% 85.9% 84.7% 89.9%
fbis 73.6% 78.0% 81.3% 84.1% 59.7% 56.0% 76.4% 76.3% 77.9%
wap 68.1% 75.1% 77.5% 82.9% 62.3% 60.2% 74.3% 76.1% 80.6%
ohscal 71.5% 62.5% 73.5% 77.8% 59.4% 57.5% 70.9% 69.6% 74.6%
new3 72.7% 67.9% 73.1% 77.2% 41.1% 43.5% 53.9% 63.1% 74.4%

LSI Reduced Space
Original Space CI  Reduced Space C4.5 k NN

Table 7: The classification accuracy of the original and reduced dimensional data sets.

CI captures concepts with respect to word synonymy and polysemy. Our experimental evaluation has shown that in

an unsupervised setting, CI performs equally well to LSI while requiring an order of magnitude less time, and in a

supervised setting it dramatically improves the performance of various classification algorithms.

The performance of CI can be improved in a variety of ways. First, CI when used in an unsupervised setting, can

take advantage of better document clustering algorithms, leading to better lower dimensional spaces as well as faster

performance. One area that we are currently investigating is to develop robust clustering algorithms that compute

a k-way clustering directly and not via recursive bisection. Such techniques hold the promise of improving both the

quality of the lower dimensional representation, especially for small classes, as well as further reducing the already low

computational requirements of CI. Second, the supervised dimensionality reductions computed by CI can be further

improved by using techniques that adjust the importance of the different features in a supervised setting. A variety of

such techniques have been developed in the context of k-nearest-neighbor classification [13, 65, 64, 37, 40, 52, 25],

all of which can be used to scale the various dimensions prior to the dimensionality reduction for computing centroid

vectors and to scale the reduced dimensions for the final classification.
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