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ABSTRACT
Retriev al techniques based on dimensionality reduction, such
as Latent Semantic Indexing (LSI), have been shown to im-
prove the quality of the information being retrieved by cap-
turing the latent meaning of the words present in the docu-
ments. Unfortunately, the high computational and memory
requirements of LSI and its inabilit yto compute an e�ec-
tive dimensionality reduction in a supervised setting limits
its applicability. In this paper we present a fast supervised
dimensionality reduction algorithm that is derived from the
recen tly dev eloped cluster-based unsupervised dimensional-
ity reduction algorithms. We experimentally evaluate the
quality of the low er dimensional spaces both in the context
of document categorization and improvements in retrieval
performance on a variety of di�erent document collections.
Our experiments show that the lower dimensional spaces
computed by our algorithm consistently improve the per-
formance of traditional algorithms such as C4.5, k-nearest-
neigh bor, and Support Vector Machines (SVM), by an av-
erage of 2% to 7%. Furthermore, the supervised lower di-
mensional space greatly improves the retriev al performance
when compared to LSI.

1. INTRODUCTION
The emergence of the World-Wide-Web has led to an ex-

ponential increase in the amount of documents available
electronically . A tthe same time, various digital libraries,
news sources, and company-wide intranets pro vide h uge col-
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lections of online documents. These developments have led
to an increased interest in methods that allow users to quickly
and accurately retrieve and organize these types of informa-
tion.
T raditionally, information has been retrieved b y literally

matching terms in documents with those present in a user's
query .Unfortunately, methods that are based only on lexi-
cal matching can lead to poor retrieval performance due to
tw o e�ects. First, because most terms have multiple mean-
ings, many unrelated documents may be included in the
answer set just because they matched some of the query
terms. Second, because the same concept can be described
by multiple terms, relevant documents that do not contain
an y of the query terms will not be retrieved. These problems
arise from the fact that the ideas in a document are more
related to the concepts described in them than the words
used in their description. Th us, e�ective retrieval methods
should match the concept present in the query to the con-
cepts present in the documents. This will allow retriev al of
documents that are part of the desired concept even when
they do not contain any of the query terms, and will pre-
vent documents belonging to unrelated concepts from be-
ing retriev ed even if they contain some of the query terms.
This concept-centric nature of documents is also one of the
reasons wh y the problem ofdocument categorization (i.e.,
assigning a document into a pre-determined class or topic)
is particularly challenging.
T o address these problems, techniques based on dimen-

sionality r eductionhave been explored for capturing the con-
cepts present in a collection. The main idea behind these
techniques is to map each document (and a query or a test
document) into a lo wer dimensional space that can poten-
tially take into account the dependencies betw een the terms.
The associations present in the low er dimensional represen-
tation can then be used to improve the retrieval or catego-
rization performance. The various dimensionality reduction
techniques can be classi�ed as either supervised or unsu-
pervised. Supervised dimensionality reduction refers to the
set of techniques that take advan tage of class-membership
information while computing thelo w erdimensional space.
These techniques are primarily used fordocumen t classi�-
cation and for improving the retrieval performance of pre-
categorized document collections. Examples of such tech-
niques include a variety of feature selection schemes [18, 32,
22] that reduce the dimensionality by selecting a subset of
the original features, and techniques that create new fea-
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tures by clustering the terms [2]. On the other hand, unsu-
pervised dimensionality reduction refers to the set of tech-
niques that compute a lower dimensional space without us-
ing any class-membership information. These techniques are
primarily used for improving the retrieval performance, and
to a lesser extent for document categorization. Examples
of such techniques include Principal Component Analysis
(PCA) [13], Latent Semantic Indexing (LSI) [3, 8], Kohonen
Self-Organizing Map (SOFM) [19] and Multi-Dimensional
Scaling (MDS) [14]. In the context of document data sets,
LSI is probably the most widely used of these techniques,
and experiments have shown that it signi�cantly improves
the retrieval performance [3, 8] for a wide variety of docu-
ment collections.
Recently, a new class of dimensionality reduction algo-

rithms for document data sets have been developed that de-
rive the axes of the lower dimensional space using document
clustering [7, 17]. In these algorithms, the original set of doc-
uments is �rst clustered into k similar groups, and then for
each group, the centroid vector (i.e., the vector obtained by
averaging the documents in the group) is used as one of the k
axes of the lower dimensional space. The key motivation be-
hind this dimensionality reduction approach is the view that
each centroid vector represents a concept present in the col-
lection, and the lower dimensional representation expresses
each document as a function of these concepts. This in-
terpretation of the lower dimensional representation of each
document is the reason that this dimensionality scheme is
call concept indexing (CI) [17], and each one of the centroid
vectors are called concept vectors [7]. Extensive theoret-
ical analysis presented in [7] and experimental evaluation
presented in [17] show that concept indexing leads to lower
dimensional spaces that are similar to those obtained by
LSI and lead to similar information retrieval performance.
However, unlike the high computational and memory re-
quirements of LSI, CI can compute the lower dimensional
space very fast by using near linear time document cluster-
ing algorithms [7, 17, 6, 20, 1]. Experiments presented in
[17] show that CI is an order of magnitude when compared
to LSI and has a linear memory complexity.
The focus of this paper is to extend and experimentally

evaluate concept indexing in the context of supervised di-
mensionality reduction. Since CI derives the axes of the
lower dimensional space by using the centroid vectors of
groups of similar documents, it can potentially be modi-
�ed to take into account class-membership information. In
this paper we explore one way of achieving this, by simply
forcing the groups used to derive the axes of the lower di-
mensional space to only contain document of a single class.
We experimentally evaluate the quality of this lower dimen-
sional space both in the context of document categorization
and improvements in retrieval performance on a variety of
di�erent document collections. Our experiments show that
the lower dimensional spaces computed by CI consistently
improve the performance of traditional algorithms such as
C4.5 [25], k-nearest-neighbor [31, 28], and support vector
machines (SVM) [15], by an average of 3% to 7%. Fur-
thermore, the lower dimensional space greatly improves the
retrieval performance when compared to LSI that cannot
take class-membership information when performing the di-
mensionality reduction.
The reminder of this paper is organized as follows. Sec-

tion 2 describes the vector-space document model used in

our algorithm. Section 3 describes the concept indexing di-
mensionality reduction algorithm. Section 4 provides the ex-
perimental evaluation of the quality of the supervised lower
dimensional space computed by concept indexing. Finally,
Section 5 o�ers some concluding remarks and directions for
future research.

2. VECTOR-SPACE MODELING OF DOC-
UMENTS

The documents in concept indexing are represented using
the popular vector-space model [26]. In this model, each
document d is considered to be a vector in the term-space.
In its simplest form, each document is represented by the

term-frequency (TF) vector ~dtf = (tf
1
; tf

2
; : : : ; tfn), where tfi

is the frequency of the ith term in the document. A widely
used re�nement to this model is to weight each term based
on its inverse document frequency (IDF) in the document
collection. The motivation behind this weighting is that
terms appearing frequently in many documents have limited
discrimination power, and for this reason they need to be de-
emphasized. This is commonly done [26] by multiplying the
frequency of each term i by log(N=dfi), where N is the total
number of documents in the collection, and dfi is the number
of documents that contain the ith term (i.e., document fre-
quency). This leads to the tf-idf representation of the docu-

ment, i.e., ~dt�df = (tf
1
log(N=df

1
); tf

2
log(N=df

2
); : : : ; tfn log(N=dfn)).

Finally, in order to account for documents of di�erent lengths,
the length of each document vector is normalized so that it

is of unit length, i.e., k~dt�dfk2 = 1. In the rest of the pa-

per, we will assume that the vector representation ~d of each
document d has been weighted using tf-idf and it has been
normalized so that it is of unit length.
In the vector-space model, the similarity between two doc-

uments di and dj is commonly measured using the cosine
function [26], given by

cos(~di; ~dj) =
~di � ~dj

k~dik2 � k~djk2
; (1)

where \�" denotes the dot-product of the two vectors. Since
the document vectors are of unit length, the above formula

is simpli�ed to cos(~di; ~dj) = ~di � ~dj .
Given a set S of documents and their corresponding vector

representations, we de�ne the centroid vector ~C to be

~C =
1

jSj

X
d2S

~d; (2)

which is the vector obtained by averaging the weights of the
various terms in the document set S. We will refer to S as
the supporting set for the centroid ~C. Analogously to indi-
vidual documents, the similarity between a document d and
a centroid vector ~C is computed using the cosine measure,
as follows:

cos(~d; ~C) =
~d � ~C

k~dk2 � k ~Ck2
=

~d � ~C

k ~Ck2
: (3)

Note that even though the document vectors are of length
one, the centroid vectors will not necessarily be of unit
length.
Intuitively, this document-to-centroid similarity function

tries to measure the similarity between a document and the
documents belonging to the supporting set of the centroid.
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A careful analysis of Equation 3 reveals that this similarity
captures a number of interesting characteristics. In par-

ticular, the similarity between ~d and ~C is the ratio of the

dot-product between ~d and ~C, divided by the length of ~C.
If S is the supporting set for ~C, then it can be easily shown
[6, 10] that

~d � ~C =
1

jSj

X
x2S

cos(~d; ~x);

and that

k ~Ck2 =

vuut 1

jSj2

X
di2S

X
dj2S

cos(~di; ~dj): (4)

Thus, the dot-product is the average similarity between d
and all other documents in S, and the length of the centroid
vector is the square-root of the average pairwise similarity
between the documents in S, including self-similarity. Note
that because all the documents have been scaled to be of
unit length, k ~Ck2 � 1. Hence, Equation 3 measures the
similarity between a document and the centroid of a set
S, as the average similarity between the document and all
the documents in S, ampli�ed by a function that depends
on the average pairwise similarity between the documents
in S. If the average pairwise similarity is small, then the
ampli�cation is high, whereas if the average pairwise sim-
ilarity is high, then the ampli�cation is small. One of the
important features of this ampli�cation parameter is that it
captures the degree of dependency between the terms in S
[10]. In general, if S contains documents whose terms are
positively dependent (e.g., terms frequently co-occurring to-
gether), then the average similarity between the documents
in S will tend to be high, leading to a small ampli�cation.
On the other hand, as the positive term dependency between
documents in S decreases, the average similarity between
documents in S tends to also decrease, leading to a larger
ampli�cation. Thus, Equation 3 computes the similarity
between a document and a centroid, by both taking into
account the similarity between the document and the sup-
porting set, as well as the dependencies between the terms
in the supporting set.

3. CONCEPT INDEXING
As discussed in Section 1, concept indexing computes a

lower dimensional space by �nding groups of similar docu-
ments and using them to derive the axes of the lower di-
mensional space. In the rest of this section we describe the
details of the CI dimensionality reduction algorithm for both
an unsupervised and a supervising setting, and analyze the
nature of its lower dimensional representation.

3.1 Unsupervised Dimensionality Reduction
CI computes the reduced dimensional space in the unsu-

pervised setting as follows. If k is the number of desired
dimensions, CI �rst computes a k-way clustering of the doc-
uments (using variants of k-means document clustering [6,
20, 1, 7, 17]), and then uses the centroid vectors of the
clusters as the axes of the reduced k-dimensional space. In
particular, let D be an n�m document-term matrix, (where
n is the number of documents, and m is the number of
distinct terms in the collection) such that the ith row of

D stores the vector-space representation of the ith docu-

ment (i.e., D[i; �] = ~di). CI uses a clustering algorithm to
partition the documents into k disjoint sets, S1; S2; : : : ; Sk.
Then, for each set Si, it computes the corresponding cen-
troid vector ~Ci (as de�ned by Equation 2). These centroid
vectors are then scaled so that they have unit length. Let
f ~C0

1; ~C0
2; : : : ; ~C0

kg be these unit length centroid vectors.
Each of these vectors form one of the axis of the reduced k-
dimensional space, and the k-dimensional representation of
each document is obtained by projecting it onto this space.
This projection can be written in matrix notation as follows.
Let C be the m � k matrix such that the ith column of C
corresponds to ~C0

i. Then, the k-dimensional representation

of each document ~d is given by ~dC, and the k-dimensional
representation of the entire collection is given by the matrix
Dk = DC. Similarly, the k-dimensional representation of a
query ~q for a retrieval is given by ~qC. Finally, the similarity
between two documents in the reduced dimensional space
is computed by calculating the cosine between the reduced
dimensional vectors.

3.2 Supervised Dimensionality Reduction
In the case of supervised dimensionality reduction, CI can

be modi�ed to use the pre-existing clusters of documents
(i.e., the classes or topics in which the documents belong to)
in �nding the groups of similar documents. In the simplest
case, each one of these groups can correspond to one of the
classes in the data set. In this case, the rank of the lower di-
mensional space will be identical to the number of classes in
the collection. A lower dimensional space with a rank k that
is greater than the number of classes, l, can be computed by
using the l classes to obtain an initial l-way clustering of the
documents (a cluster for each class) and then using a clus-
tering algorithm to obtain a k-way clustering by repeatedly
partitioning some of these clusters. Note that in the �nal
k-way clustering, each one of these �ner clusters will contain
documents from only one class. The reverse of this approach
can be used to compute a lower dimensional space that has
a rank that is smaller than the number of distinct classes,
by repeatedly combining some of the initial clusters using
an agglomerative clustering algorithm. However, this lower
dimensional space tend to lead to poor classi�cation perfor-
mance as it combines together potentially di�erent concepts,
and is not recommended. Note that once these clusters have
been identi�ed, then the algorithm proceeds to compute the
lower dimensional space in the same fashion as in the unsu-
pervised setting (Section 3.1).

3.3 Analysis & Discussion
In order to understand this dimensionality reduction scheme,

it is necessary to understand two things. First, we need to
understand what is encapsulated within the centroid vec-
tors, and second, we need to understand the meaning of the
reduced dimensional representation of each document. For
the rest of this discussion we focus on the supervised di-
mensionality reduction computed by concept indexing, but
similar observations can be made for the unsupervised set-
ting.
Given a set of documents, each belonging to a di�erent

class, the centroid vector provides a mechanism to summa-
rize their content. In particular, the prominent dimensions
of the vector (i.e., terms with the highest weights), corre-
spond to the terms that are most important within the set.
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cocoa 0.62 cocoa 0.40 buffer 0.29 icco 0.25 deleg 0.23 stock 0.18 rule 0.12 consum 0.11 council 0.10 ghana 0.09 compromis
grain 0.37 wheate 0.27 corn 0.27 tonne 0.24 grain 0.16 export 0.16 mln 0.14 soviet 0.14 usda 0.13 maize 0.13 crop
veg 0.44 palm 0.35 oil 0.25 tax 0.24 veget 0.21 ec 0.18 tonne 0.15 fate 0.13 indonesia 0.13 olein 0.12 rbd
wheat 0.52 wheate 0.28 tonne 0.17 stg 0.16 intervent 0.16 bonu 0.16 home 0.15 market 0.15 flour 0.13 barlei 0.13 fe
copper 0.72 copper 0.21 mine 0.17 ct 0.17 cent 0.17 magma 0.16 cathod 0.14 ton 0.14 lb 0.12 noranda 0.11 miner
coffee 0.67 coffee 0.26 ico 0.26 quota 0.17 bag 0.16 export 0.15 brazil 0.14 colombia 0.14 meet 0.12 ibc 0.12 produc
sugar 0.72 sugar 0.22 tonne 0.22 white 0.15 trader 0.14 intervent 0.14 ec 0.13 tender 0.12 ecu 0.12 rebat 0.11 cargoe
ship 0.33 ship 0.27 port 0.23 strike 0.20 vessel 0.20 seamen 0.14 union 0.13 cargo 0.13 tanker 0.12 gulf 0.12 worker
cotton 0.77 cotton 0.35 bale 0.14 plant 0.12 upland 0.11 weather 0.11 crop 0.10 certif 0.08 china 0.08 exchang 0.08 pct
carcass 0.46 beef 0.34 meate 0.19 iowa 0.16 slaughter 0.15 dakota 0.15 plant 0.15 pork 0.15 citi 0.15 lockout 0.14 ufcwu
crude 0.41 oil 0.24 crude 0.24 barrel 0.21 opec 0.17 bpd 0.17 dlr 0.17 mln 0.14 price 0.13 bble 0.12 energi
nat 0.59 ga 0.27 natur 0.25 feet 0.21 pipelin 0.18 cubic 0.17 butan 0.12 lt 0.11 flow 0.11 energi 0.11 co
meal 0.33 meal 0.30 fe 0.24 tonne 0.22 pellet 0.18 cake 0.18 compound 0.16 mln 0.16 guarante 0.15 credit 0.14 fish
alum 0.59 aluminium 0.28 alcan 0.27 aluminum 0.26 smelter 0.15 alumina 0.14 lme 0.12 tonne 0.12 metal 0.12 suralco 0.11 capac
oilseed 0.49 soybean 0.24 tonne 0.21 crusher 0.21 rapese 0.21 oilsee 0.16 loan 0.16 shipment 0.15 cargill 0.14 japanes 0.12 bought
gold 0.64 gold 0.38 ounce 0.25 mine 0.22 ton 0.14 coin 0.13 feet 0.12 silver 0.12 ore 0.11 assai 0.10 reserv
tin 0.63 tin 0.28 miner 0.18 atpc 0.17 itc 0.17 strike 0.16 bolivia 0.11 comibol 0.11 bolivian 0.10 paz 0.10 hunger
livestock 0.40 beef 0.35 cattle 0.29 pork 0.23 meate 0.17 dairi 0.16 lb 0.14 head 0.13 japan 0.12 bonu 0.11 nppc
iron 0.69 steel 0.19 iron 0.13 mln 0.13 industri 0.12 ore 0.12 product 0.12 coal 0.11 steelmak 0.10 tonne 0.10 plate
rubber 0.65 rubber 0.25 pact 0.24 inra 0.16 confer 0.15 consum 0.15 price 0.14 natur 0.14 xuto 0.12 agreem 0.11 adopt
zinc 0.71 zinc 0.16 pound 0.16 grade 0.15 metal 0.14 februari 0.14 januari 0.13 smelter 0.12 mint 0.12 smelt 0.11 ct
orange 0.46 orang 0.41 juice 0.31 fcoj 0.27 duti 0.26 gallon 0.21 frozen 0.17 florida 0.16 citru 0.13 brazil 0.12 depart
pet 0.31 resin 0.28 ethylen 0.25 pound 0.19 dow 0.19 chemic 0.19 plant 0.18 polypropylen 0.17 ventur 0.16 ct 0.15 petrochem
dlr 0.65 dollar 0.32 yen 0.28 bank 0.17 dealer 0.16 japan 0.16 baker 0.15 rate 0.15 currenc 0.14 interven 0.14 pari
gas 0.59 gasolin 0.23 unlead 0.17 mln 0.16 distill 0.16 tax 0.14 fuel 0.13 refin 0.13 eia 0.13 octan 0.11 compon

re1

Table 1: The ten highest weight terms in the centroids of the classes for a subset of the Reuters-21578 text
collection.

One example of such centroid vectors for a subset of the
topics in the Reuters-21578 [21] text collection is shown in
Table 1. For each of these vectors, Table 1 shows the ten
highest weight terms1. The number that precedes each term
in this table is the weight of that term in the centroid vec-
tor. Also note that the terms shown in this table are not
the actual words, but their stems.
A number of observations can be made by looking at the

terms present in the various centroids. First, looking at the
weight of the various terms, we can see that for each cen-
troid, there are relatively few terms that account for a large
fraction of its length; that is, each centroid can be described
by a relative small number of keyword terms. This is a di-
rect consequence of the fact that the supporting sets for
each centroid correspond to groups of documents belonging
to the same topic, and not just random subsets of docu-
ments. Second, these terms are quite e�ective in providing
a summary of the topics that the documents belong to, and
their weights provide an indication of how central they are in
these topics. This feature of centroid vectors has been used
successfully in the past to build very accurate summaries [6,
20], and to improve the performance of clustering algorithms
[1]. Third, the prevalent terms of the various centroids of-
ten contain terms that act as synonyms within the context
of the topic they describe. This can easily be seen in most of
the centroids in Table 1. For example, the terms ship, vessel,
and tanker are all present in the centroid corresponding to
the topic \ship"; similarly, the terms aluminium, aluminum,
and alumina are all present in the centroid corresponding
to the topic \alum". Note that these terms may not neces-
sarily be present in a single document; however, such terms
will easily appear in the centroid vectors if they are used
interchangeably to describe the underlying topic. Fourth,
looking at the various terms of the centroid vectors, we can
see that the same term often appears in multiple centroids.
This is because many terms have multiple meanings (poly-
semy). For example, this happens in the case of the term
oil that appears in the centroids for the topics \veg" and
\crude". The meaning of oil in the \veg" centroid is is that
of cooking oil, whereas the meaning of oil in the \crude"

1The centroid vectors were scaled so that they are of length
one.

centroid is that of fuel. To summarize, the centroid vectors
provide a very e�ective mechanism to represent the concepts
present in the supporting set of documents, and these vec-
tors capture actual as well as latent associations between
the terms that describe the concept.
Given a set of k centroid vectors and a document d, the ith

coordinate of the reduced dimensional representation of this
document is the similarity between document d and the ith
centroid vector as measured by the cosine function (Equa-
tion 3). Note that this is consistent with the earlier de�ni-
tion (Section 3.1), in which the ith coordinate was de�ned as

the dot-product between ~d, and the unit-length normalized
centroid vector ~C0

i. Thus, the di�erent dimensions of the
document in the reduced space correspond to the degree at
which each document matches the concepts that are encap-
sulated within the centroid vectors. Note that documents
that are close in the original space will also tend to be close
in the reduced space, as they will match the di�erent con-
cepts to the same degree. Moreover, because the centroids
capture latent associations between the terms describing a
concept, documents that are similar but are using somewhat
di�erent terms will be close in the reduced space even though
they may not be close in the original space, thus improving
the retrieval of relevant information. Similarly, documents
that are close in the original space due to polysemous words,
will be further apart in the reduced dimensional space; thus,
eliminating incorrect retrievals.

4. EXPERIMENTAL RESULTS
In this section we experimentally evaluate the quality of

the supervised dimensionality reduction performed by CI.
Three di�erent sets of experiments are presented. The �rst
two sets focus on evaluating the document categorization
performance achieved by traditional categorization algorithms
when operating on the reduced dimensional space. We present
two sets of experiments, one evaluating the multi-class cat-
egorization (where each document can belong to multiple
classes) performance, and the second evaluating the single-
class k-way categorization (where each document belongs to
only one of k classes) performance. The third set of ex-
periments focuses on evaluating the retrieval performance
achieved in the supervised lower dimensional space. Note
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that in all the experiments using LSI, we used the same
unit length tf-idf document representation used by CI.

4.1 Multi-Class Categorization Performance
We used the Reuters-21578 [21] text collection to evalu-

ate the multi-class categorization performance achieved by
the k-nearest-neighbor and SVM [15] document categoriza-
tion algorithms both on the original as well as the reduced
dimensional space. In particular, we used the \ModApte"
split to divide the text collection into a set of 9603 training
documents and 3299 test documents. After eliminating stop-
words and removing terms that occur less than two times,
the training corpus contains 11,001 distinct terms. Then,
for each one of the 115 non-empty topic categories of the
training set, we computed its concept vector by averaging
the vectors of the documents in the training set that belong
to that topic. Note that documents that belongs to multiple
topics contribute to multiple concept vectors. These concept
vectors were used as the axis of the lower dimensional space,
and were used to obtained the lower dimensional represen-
tation for both the training and the test set.
Table 2 shows the Precision/Recall Breakeven Point achieved

by the k-nearest-neighbor (kNN) and the SVM classi�ers
for the ten largest classes, for both the original and the re-
duced dimensional space. The columns labeled \kNN" and
\SVM" show the performance achieved by these algorithms
on the original space, whereas the columns labeled \CI-
kNN" and \CI-SVM" shows the performance on the lower
dimensional space. The kNN results were obtained using a
distance-weighted version of the algorithm [28, 31], similar
to that used by Yang and Liu [31] and k = 30, whereas the
SVM results were obtained using the linear model o�ered
by SVM light [15]. The last row in Table 2 shows the mi-
croaveraged [30] Precision/Recall Breakeven Point over all
Reuters topics.

Topic kNN CI-kNN SVM CI-SVM

earn 97.10 97.40 98.46 98.45
acq 91.00 92.60 92.89 92.35
money-fx 77.40 82.10 76.26 82.32
grain 85.40 89.20 92.66 93.83
crude 85.50 88.60 87.83 88.76
trade 74.80 81.80 76.32 80.00
interest 72.10 78.40 68.80 76.07
ship 81.30 85.60 83.79 87.20
wheat 80.30 80.00 83.33 87.14
corn 78.40 78.90 85.15 84.87

microaverage 83.13 86.10 85.15 87.62

Table 2: Precision/Recall breakeven point on the
ten most frequent Reuters topics and microaveraged
performance over all Reuters topics.

From the results in that table we can see that CI's lower
dimensional space improves the categorization performance
of both algorithms. In particular, \CI-kNN" achieves a mi-
croaverage of 86.10 that is higher than the 83.13 achieved by
kNN, whereas \CI-SVM" achieves a microaverage of 87.62
which is higher than the 85.15 achieved by SVM on the
original space. Note that the kNN and SVM results on the
original space shown in Table 2 are comparable to those re-
ported in [15] and are somewhat di�erent from the results
reported by [31]. We believe the di�erence is due to slight
di�erences in pre-processing and the logarithmic tf model
used in [31].

4.2 Single-Class k-way Categorization Perfor-
mance

In our second set of experiments we evaluated the catego-
rization performance of the lower dimensional representation
computed by CI on a variety of documents data sets, each
of which contained documents that belong to a single class.
The characteristics of the various document collections used
in this experiment are summarized in Table 3 2.
The �rst three data sets are from the statutory collections

of the legal document publishing division of West Group de-
scribed in [5]. Data sets tr11, tr12, tr21, tr31, tr41, tr45,
and new3 are derived from TREC-5 [27], TREC-6 [27], and
TREC-7 [27] collections. Data set fbis is from the Foreign
Broadcast Information Service data of TREC-5 [27]. Data
sets la1, and la2 are from the Los Angeles Times data of
TREC-5 [27]. The classes of the various trXX, new3, and
fbis data sets were generated from the relevance judgment
provided in these collections. The class labels of la1 and la2
were generated according to the name of the newspaper sec-
tions that these articles appeared, such as \Entertainment",
\Financial", \Foreign", \Metro", \National", and \Sports".
Data sets re0 and re1 are from Reuters-21578 text catego-
rization test collection Distribution 1.0 [21]. We removed
dominant classes such as \earn" and \acq" that have been
shown to be relatively easy to classify. We then divided
the remaining classes into 2 sets. Data sets oh0, oh5, oh10,
oh15, and ohscal are from OHSUMED collection [12] subset
of MEDLINE database. We took di�erent subsets of cate-
gories to construct these data sets. Data set wap is from the
WebACE project (WAP) [9, 4]. Each document corresponds
to a web page listed in the subject hierarchy of Yahoo! [29].
To illustrate the performance improvement of supervised

dimensionality reduction by CI on these data sets, we per-
formed an experiment in which we used C4.5 [25] and k-
nearest-neighbor, both on the original space, as well as on
the reduced dimensional space. For each set of documents,
the reduced dimensionality experiments were performed as
follows. First, the entire set of documents was split into a
training and test set. Next, the training set was used to �nd
the axes of the reduced dimensional space by constructing
an axis for each one of the classes3. Then, both the training
and the test set were projected into this reduced dimensional
space. Finally, in the case of C4.5, the projected training
and test set were used to learn the decision tree and evaluate
its accuracy, whereas in the case of kNN, the neighborhood
computations were performed on the projected training and
test. In our experiments, we used a value of k = 20 for kNN,
both for the original as well as for the reduced dimensional
space.
The classi�cation accuracy of the various experiments are

shown in Table 4. These results correspond to the average
classi�cation accuracies of 10 experiments, where in each ex-
periment a randomly selected 80% fraction of the documents
was used for training and the remaining 20% was used for
testing. The �rst two columns of this table show the classi-
�cation accuracy obtained by C4.5 and kNN on the original

2These data sets are available from
http://www.cs.umn.edu/~han/data/tmdata.tar.gz.
3We also performed experiments in which the number of
dimensions in the reduced space was two and three times
greater than the number of classes. The overall performance
of the algorithms did not change, and due to space limita-
tions we did not include these results.
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Data Source # of doc # of class min class size max class size avg class size # of words

west1 West Group 500 10 39 73 50.0 977
west2 West Group 300 10 18 45 30.0 1078
west3 West Group 245 10 17 34 24.5 1035
oh0 OHSUMED-233445 1003 10 51 194 100.3 3182
oh5 OHSUMED-233445 918 10 59 149 91.8 3012
oh10 OHSUMED-233445 1050 10 52 165 105.0 3238
oh15 OHSUMED-233445 913 10 53 157 91.3 3100
ohscal OHSUMED-233445 11162 10 709 1621 1116.2 11465
re0 Reuters-21578 1504 13 11 608 115.7 2886
re1 Reuters-21578 1657 25 10 371 66.3 3758
tr11 TREC 414 9 6 132 46.0 6429
tr12 TREC 313 8 9 93 39.1 5804
tr21 TREC 336 6 4 231 56.0 7902
tr31 TREC 927 7 2 352 132.4 10128
tr41 TREC 878 10 9 243 87.8 7454
tr45 TREC 690 10 14 160 69.0 8261
la1 TREC 3204 6 273 943 534.0 31472
la2 TREC 3075 6 248 905 512.5 31472
fbis TREC 2463 17 38 506 144.9 2000
new3 TREC 9558 44 104 696 217.2 83487
wap WebACE 1560 20 5 341 78.0 8460

Table 3: Summary of data sets used.

data sets. The next two columns show the classi�cation
accuracy results obtained by the same algorithms on the
reduced dimensional space computed by CI. The next four
columns show the classi�cation accuracy obtained by these
algorithms when used on the reduce dimensional space com-
puted by LSI. For each algorithm, we present two sets of re-
sults, obtained on a 25- and on a 50-dimensional space. Note
that these lower dimensional spaces were computed without
taking into account any class information, as LSI cannot
perform dimensionality reduction in a supervised setting.
Finally, the last column shows the results obtained by the
naive Bayesian (NB) classi�cation algorithm in the original
space. In our experiments, we used the NB implementation
with the multinomial event model provided by the Rainbow
[24] software library. The NB results are presented here to
provide a reference point for the classi�cation accuracies.
Note that we did not use the NB algorithm in the reduced
dimensional space, as NB cannot e�ectively handle contin-
uous attributes [16]. Also, for each of these data sets, we
highlighted the scheme that achieved the highest classi�ca-
tion accuracy, by using a boldface font.
Looking at the results, we can see that both C4.5 and

kNN, bene�t greatly by the supervised dimensionality re-
duction computed by CI. For both schemes, the classi�-
cation accuracy achieved in the reduced dimensional space
is greater than the corresponding accuracy in the original
space for all 21 data sets. In particular, over the entire 21
data sets, CI improves the average accuracy of C4.5 and
kNN by 7%, and 6%, respectively. Comparing these results
against those obtained by naive Bayesian, we can see that
kNN, when applied on the reduced dimensional space, sub-
stantially outperforms naive Bayesian, which was not the
case when comparing the performance of kNN in the orig-
inal space. In particular, over the entire 21 data sets, the
accuracy of kNN in the reduced space is 5% greater than
that of naive Bayesian. Looking at the various classi�cation
results obtained by C4.5 and kNN on the lower dimensional
spaces computed by LSI, we can see that the performance
is mixed. In particular, comparing the best performance
achieved in either one of the lower dimensional spaces over
that achieved in the original space, we can see that LSI im-
proves the results obtained by C4.5 in only four data sets,

and by kNN in only ten data sets. Note also that none of
the best performance achieved in either one of the lower di-
mensional spaces by LSI is better than the best performance
achieved in the lower dimensional space by CI.
We have not included the results of C4.5 and kNN using

feature selection techniques due to the inconsistent perfor-
mance of such schemes in these data sets. In particular,
the right number of dimensions for di�erent data sets varies
considerably. For detailed experiments showing the charac-
teristics of feature selection schemes in text categorization,
readers are advised to see [32, 11].

4.3 Query Retrieval Performance
One of the goals of dimensionality reduction techniques

such as CI and LSI is to project the documents of a col-
lection onto a low dimensional space so that similar docu-
ments (i.e., documents that are part of the same topic) come
closer together, relative to documents belonging to di�erent
topics. This transformation, if successful, can lead to sub-
stantial improvements in the accuracy achieved by regular
queries. The query performance is often measured by look-
ing at the number of relevant documents present in the top-
ranked returned documents. Ideally, a query should return
most of the relevant documents (recall), and the majority
of the documents returned should be relevant (precision).
Unfortunately, a number of the larger collections in our ex-
perimental testbed did not have pre-de�ned queries associ-
ated with them, so we were not able to perform this type of
evaluation. For this reason our evaluation was performed in
terms of how e�ective the reduced dimensional space was in
bringing closer together documents that belong to the same
class.
To evaluate the extent to which a dimensionality reduc-

tion scheme is able to bring closer together similar docu-
ments, we performed the following experiment for each one
of the data sets shown in Table 3. Let D be one of these
datasets. For each document d 2 D, we computed the k-
nearest-neighbor sets both in the original as well as in the
reduced dimensional space. Let Ko

d and Kr
d be these sets

in the original and reduced space, respectively. Then, for
each of these sets, we counted the number of documents
that belong to the same class as d, and let nod and nrd be
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C4.5 k NN C4.5 k NN 25 Dims 50 Dims 25 Dims 50 Dims NB
west1 85.5% 82.9% 86.2% 86.7% 73.7% 74.5% 83.0% 81.4% 86.7%
west2 75.3% 77.2% 75.3% 78.7% 63.8% 59.2% 75.5% 73.8% 76.5%
west3 73.5% 76.1% 74.5% 80.6% 57.8% 55.3% 75.5% 77.3% 75.1%
oh0 82.8% 84.4% 87.3% 89.8% 74.5% 72.8% 83.9% 81.9% 89.1%
oh5 79.6% 85.6% 88.4% 92.0% 76.5% 76.7% 87.0% 86.8% 87.1%
oh10 73.1% 77.5% 79.6% 82.6% 70.9% 65.5% 79.4% 77.7% 81.2%
oh15 75.2% 81.7% 84.6% 86.4% 67.5% 64.9% 81.3% 80.7% 84.0%
re0 75.8% 77.9% 82.3% 85.0% 69.1% 64.4% 79.5% 76.3% 81.1%
re1 77.9% 78.9% 80.0% 81.6% 59.8% 60.6% 71.2% 75.4% 80.5%
tr11 78.2% 85.3% 87.0% 88.9% 79.3% 80.5% 81.3% 83.0% 85.3%
tr12 79.2% 85.7% 88.4% 89.0% 76.2% 72.5% 80.8% 82.7% 79.8%
tr21 81.3% 89.1% 90.3% 90.0% 74.6% 73.1% 87.6% 88.5% 59.6%
tr31 93.3% 93.9% 94.7% 96.9% 90.2% 87.5% 93.0% 92.3% 94.1%
tr41 89.6% 93.5% 95.3% 95.9% 89.9% 87.3% 93.4% 92.4% 94.5%
tr45 91.3% 91.1% 92.9% 93.6% 80.3% 80.9% 91.1% 92.1% 84.7%
la1 75.2% 82.7% 85.7% 87.6% 76.1% 74.2% 83.4% 82.1% 87.6%
la2 77.3% 84.1% 87.2% 88.6% 78.2% 76.1% 85.9% 84.7% 89.9%
fbis 73.6% 78.0% 81.3% 84.1% 59.7% 56.0% 76.4% 76.3% 77.9%
wap 68.1% 75.1% 77.5% 82.9% 62.3% 60.2% 74.3% 76.1% 80.6%
ohscal 71.5% 62.5% 73.5% 77.8% 59.4% 57.5% 70.9% 69.6% 74.6%
new3 72.7% 67.9% 73.1% 77.2% 41.1% 43.5% 53.9% 63.1% 74.4%

LSI Reduced Space
Original Space CI  Reduced Space C4.5 k NN

Table 4: The classi�cation accuracy of the original and reduced dimensional data sets.

these counts. Let No =
P

d2D nod, and Nr =
P

d2D nrd, be
the cumulative counts over all the documents in the data
set, for the original and reduced space, respectively. Given
these two counts, then the performance of a dimensionality
reduction scheme was evaluated by comparing Nr against
No. In particular, if the ratio Nr=No is greater than one,
then the reduced space was successful in bringing a larger
number of similar documents closer together than they were
in the original space, whereas if the ratio is less than one,
then the reduced space is worse. We will refer to this ratio
as the retrieval improvement (RI) achieved by the dimen-
sionality reduction scheme.
The RI measures for the di�erent classes in each one of

these data sets are shown in Table 5. Note that the number
of dimension in the CI-reduced space for each data set is
di�erent, and is equal to the number of classes in the data
set. For the LSI results, the dimension for new3 is 125 and
the dimension for the rest of data sets is 50. The LSI results
had the best performance with these dimensions [17].
As we can see from this table, the supervised dimension-

ality reduction computed by CI dramatically improves the
retrieval performance for all the di�erent classes in each data
set and outperforms LSI in all classes. Note also that the
retrieval performance of CI on the smaller classes tends to
improve the most. This is because in supervised dimension-
ality reduction by CI, each class is equally represented as
one dimension, regardless of its size. In contrast, LSI re-
sults show that the performance of the smaller classes tend
to be worse than that of larger classes. This is because
smaller classes contribute less to the error of the reduced
ranked approximation, and the resulting lower dimensional
representation fails to capture the characteristics of smaller
classes.

5. CONCLUSIONS AND DIRECTIONS OF
FUTURE WORK

In this paper we presented a fast supervised dimension-
ality reduction technique based on the recently developed
cluster-based unsupervised dimensionality reduction algo-
rithms. Our experimental evaluation shows that this lower
dimensional space greatly improves the categorization per-
formance of traditional algorithms, and leads to substantial

gains in information retrieval performance in pre-categorized
document collections.
The quality of the lower dimensional spaces can be further

improved by using techniques that adjust the importance
of the di�erent features in a supervised setting. A variety
of such techniques have been developed in the context of
k-nearest-neighbor classi�cation [28, 23, 11], all of which
can be used to scale the various dimensions prior to the
dimensionality reduction for computing centroid vectors and
to scale the reduced dimensions for the �nal classi�cation.
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