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Abstract

A fundamental task associated with the analysis of a
dynamic network is to study and understand how the
network changes over time. Co-evolution of patterns,
where all the relations among a set of entities change
in a consistent way over time, can provide evidence of
possibly unknown coordination mechanism among the
entities of a dynamic network. This paper introduces
a new class of dynamic network patterns, referred to
as coevolving induced relational motifs (CIRMs), which
are designed to identify a recurring set of nodes whose
complete set of intra-relations undergo some changes in
a consistent way over time. We develop an algorithm to
analyze all relational changes between entities and find
all frequent coevolving induced relational motifs. Ex-
perimental results based on multiple dynamic networks
derived from real world datasets show that the algo-
rithm is able to identify all frequent CIRMs in small
amount of time. In addition, a qualitative analysis of
the results shows that the discovered CIRMs are able
to capture network characteristics that can be used as
features for modeling the underlying dynamic network
in the context of a classification task.

1 Introduction

Dynamic networks are widely used to model the rela-
tionships between various entities that evolve over time
and to capture the dynamic aspects of the data from
many complex real world applications. In this paper
we focus on finding patterns that capture frequent con-
served changes over time among the relationships of the
entities involved (i.e., co-evolution). Such patterns can
indicate, possibly unknown, coordination among the en-
tities and may expose the factors that influence their
consistent change. In addition, in the context of classi-
fication tasks, these patterns can be used as features for
exploring the processes that lead to certain outcomes.
For example, the co-evolving patterns found in [1] from
a bioprocess network were able to capture sufficient net-
work characteristics to identify the high-yielding pro-
duction runs.
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The growing research of mining evolving pat-
terns is primarily focused on finding dynamic sub-
graphs [2], finding subgraph subsequences [5], identify-
ing co-evolution patterns capturing attribute trends [4],
and finding co-evolving relational motifs (CRMs) that
consists of recurring subgraphs changing in a consistent
way [1]. Most of the existing methods target patterns
that are arbitrary in nature (i.e., subgraphs). Such pat-
terns allow the algorithms to ignore some of the relations
that exist among the nodes and cause them to gener-
ate a large number of patterns. However, in order to
understand how the relations between groups of entities
have changed over time, we need to take into account
all of their relations. For example, when analyzing the
changes in a co-authorship network over time, it is im-
portant to focus on how all the relations between a set
of authors have changed to effectively understand the
development path of their research area and popular
scientific research trends.

In this paper, our contribution is two fold: First, we
define a new class of patterns, referred as coevolving in-
duced relational motifs (CIRMs), designed to represent
patterns in which all the relations among recurring sets
of nodes are captured and some of the relations undergo
changes in a consistent way across different snapshots of
the network. Second, we present an algorithm, referred
to as CIRMminer, to efficiently mine all frequent coe-
volving induced relational motifs. CIRMminer follows a
depth-first exploration approach that uses canonical la-
beling for redundancy elimination and ensures induced
isomorphism of the motifs.

We experimentally evaluate our algorithm on dy-
namic networks derived from three real world datasets:
a large co-authorship network, a bioprocess network,
and a market sales network. We perform compre-
hensive evaluation of the performance and scalability
of CIRMminer on all three datasets by varying dif-
ferent input parameters. Our experiments show that
CIRMminer is able to identify all frequent patterns in a
small amount of time and scales linearly to the output
space (i.e., based on number of frequent patterns present
in a dataset). Our qualitative analysis of the discovered
CIRMs in the context of a bioprocess network shows
that CIRMs can capture network characteristics that
can be used as features for classification tasks.
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Figure 1: An example of a coevolving induced relational motif in the context of a hypothetical country-to-country trading network

where labels represent the commodities been traded. Assume the minimum support threshold (φ) for the CIRM is 2.

2 Related Work

The problem of finding patterns in static network is a
well studied research area [10, 7, 11]. In recent years,
there has been a lot of research work focused on the
problem of mining dynamic networks. The notion of
the dynamic subgraph was introduced in [2] to capture
a sequence of subgraphs that exist in a consecutive
sequence of snapshots. Their algorithm identifies the
set of dynamic subgraphs that occur frequently in a
dynamic network. Jin et. al. [6] introduced trend
motif, which was later [4] defined in a more generic way
to capture the problem of mining cohesive co-evolving
patterns that represent the local co-evolution of similar
vertices at several timestamps based on their attributes
trends. Inokuchi et. al. [5] solved the problem of
finding frequent induced subgraph subsequences from
graph sequence data and capturing the changes of a
subgraph over the subsequence. Recently, Ahmed et.
al. [1] introduced coevolving relational motifs (CRM),
that consist of recurring sets of entities (i.e., nodes)
whose relations change in a consistent way across the
different snapshots of the network.

All the above patterns except [5] correspond to ar-
bitrary subgraphs that may ignore some of the relations
that exist among the nodes. This forces these algo-
rithms to identify a lot of trivial and redundant patterns
where most of them may fail to capture the complete
set of relations that exist and have co-evolved among
the nodes. In case of [5], the algorithm first forms a
union graph based on the graph sequence, then iden-
tifies all frequent induced subgraphs within the union
graph, and lastly uses a frequent sequence miner to de-
termine each induced subgraph sequences in the graph
sequence. Their method does not allow users to control
the length (i.e., number of graphs in a subsequence) or
the size of the patterns. This may lead to generating a
lot of short and trivial frequent sequences. Our work in
this paper is directly related to CRMs and designed to

focus on all relations among the nodes and identify pat-
terns in significantly less time. The fundamental differ-
ences between a CRM and the CIRM that is the focus
of this paper are: i) CIRMs are composed of induced
relational motifs, and ii) a CIRM can potentially have
more motifs than the number of motifs in the anchor
(split extensions).

3 Definitions and Notation

A dynamic network is represented via a sequence of
labeled undirected graphs. A labeled graph G =
(V,E,L[V ], L[E]) is composed of a set of nodes V mod-
eling the entities of the network, a set of edges E
modeling the relations between these entities, a set
of node labels L[V ] modeling the type of the entities
(|V | ≥ |L[V ]|), and a set of edge labels L[E] modeling
the type of the relations (|E| ≥ |L[E]|). The labels as-
signed to the vertices (edges) are typically not unique
and multiple vertices (edges) can have the same label.
A subgraph G′ = (V ′, E′, L[V ′], L[E′]) of G is a graph
such that V ′ ⊆ V , E′ ⊆ E ∩ (V ′ × V ′). An induced
subgraph G′′ = (V ′′, E′′, L[V ′′], L[E′′]) of G is a graph
such that V ′′ ⊆ V , E′′ ⊆ E and ∀(u, v) ∈ E such that
v ∈ V ′′ and u ∈ V ′′, (u, v) ∈ E′′.

A dynamic network N = 〈G1, G2, . . . , GT 〉 is
a finite sequence of graphs, where each Gt =
(V,Et, Lt[V ], Lt[Et]) is a labeled graph describing the
state of the system at a discrete time interval t. The
term snapshot will be used to refer to each of the graphs
in the sequence. Snapshots are assumed to contain the
same set of nodes, which will also be referred to as the
nodes of N , denoted by VN , but potentially different
sets of edges and node/edge labels. When nodes appear
or disappear over time, the set of nodes of each snapshot
is the union of all the nodes over all snapshots. Also,
the nodes across the different snapshots are numbered
consistently, so that the ith node of Gk (1 ≤ k ≤ T )
will always correspond to the same ith node of N .



We define the span sequence of an edge as the
sequence of maximal-length time intervals in which an
edge is present in a consistent state. An edge (u, v) is in
a consistent state over a time interval s :e if it is present
in all snapshots Gs, . . . , Ge with the same label l. The
span sequence of an edge will be described by a sequence
of vertex labels, edge labels and time intervals of
the form 〈(lu1

, le1 , lv1 , s1 :e1), . . . , (lun
, len , lvn , sn :en)〉,

where lui
, lvi ∈ L[V ], lei ∈ L[E], si ≤ ei, and ei ≤ si+1.

An induced relational motif is an induced subgraph
that occurs frequently in a single snapshot or a collec-
tion of snapshots. In order to determine if a snapshot
supports an induced relational motif (and how many
times), we need to perform induced subgraph isomor-
phism operations (i.e., identify the embeddings of the
relational motif’s graph pattern). We will use M to
denote an induced relational motif and the underly-
ing induced subgraphs will be denoted by the tuple
(N,A,L[N ], L[A]), where N is the set of nodes, A is
the set of edges (arcs), L[N ] is the set of node labels,
and L[A] is the set of edge labels.

4 Coevolving Induced Relational Motifs

Coevolving Induced Relational Motifs (CIRMs) are
designed to capture frequent patterns that include all
relations among a set of entities (i.e., induced) at a
certain time in the dynamic network and change in
a consistent way over time. To illustrate this type
of patterns consider the network of Figure 1. The
network for 1990 shows an induced relational motif
(M1) between pairs of nodes that occurs four times
(shaded nodes and solid labeled edges). Three out of
the four occurrences have evolved into a new motif
(M2) that includes an additional node in the network
for 2000. Finally, in 2005 we see a new motif (M3)
that now involves four nodes and occurs two times.
This example shows that the initial relational motif has
changed in a fairly consistent fashion over time (i.e., it
coevolved) and such a sequence of motifs M1 ; M2 ;

M3 that captures all relations among a set of entities
represents an instance of a CIRM whose frequency is
two (determined by M3).

The formal definition of a CIRM that is used in this
paper is as follows:

Definition 1 A CIRM of length m is a tuple
{N, 〈M1, . . . ,Mm〉}, where N is a set of vertices and
each Mj = (Nj , Aj) is an induced relational motif de-
fined over a subset of the vertices of N that satisfies the
following constraints:

i) it occurs at least φ times,
ii) each occurrence uses a non-identical set of nodes,

iii) Mj 6= Mj+1, and
iv) |Nj | ≥ β|N | where 0 < β ≤ 1.

An induced relational motif Mj is defined over a subset
of vertices N if there is an injection ξj from Nj to N .
A m-length CIRM occurs in a dynamic network whose
node set is V if there is a sequence of m snapshots
〈Gi1 , Gi2 , . . . , Gim〉 and a subset of vertices B of V (i.e.,
B ⊆ V ) such that:

i) there is a bijection ξ from N to B
ii) the injection ξ ◦ ξj is an embedding of Mj in Gij

iii) there is no embedding of Mj via the injection ξ◦ξj
in Gij+1

or no embedding of Mj+1 via the injection
ξ ◦ ξj+1 in Gij .

The parameter φ is used to eliminate sequences of
evolving motifs that are not frequent enough. Whereas
the parameter β is used to control the degree of change
between the sets of nodes involved in each motif of a
CIRM and enforces a minimum node overlap among all
motifs of CIRM.

In this paper, we focus on identifying a subclass of
CIRMs, called anchored CIRMs, such that in addition
to the conditions of Definition 1, all motifs of the CIRM
share at least one edge (anchor) that itself is a CIRM
(i.e., the anchor is an evolving edge). This restriction
ensures that all motifs of a CIRM contain at least a
common pair of nodes and captures how these core set
of entities coevolved.

Note that due to the above restriction, the number
of motifs in a CIRM will be exactly the same as the num-
ber of motifs (i.e., edge spans) in its anchor. In some
cases this will fail to identify evolving patterns that
started from an anchor and then experience multiple
relational changes between any two non-anchor nodes
within the span of a motif. To address the above, we
also identify a special class of CIRMs, referred as CIRM
split extensions, that have additional motifs than the
anchor. A pattern is a CIRM split extension if:
a) all of its motifs share an edge that satisfies proper-

ties (i), (ii), and (iv) of Definition 1, and
b) for each maximal run of edge-spans (x1, x2, . . . , xk)

with the same label, there is another edge-span in
the network that starts at the first snapshot of x1
and ends at the last snapshot of xk such that this
edge-span is supported by the snapshots starting at
the first snapshot that supports x1 and ends at the
last snapshot that supports xk.

Given the above definition, the work in this paper
is designed to develop an efficient algorithm for solving
the following problem:

Problem 1 Given a dynamic network N containing
T snapshots, a user defined minimum support φ (1 ≤
φ), a minimum number of vertices kmin per CIRM,
and a minimum number of motifs mmin per CIRM,
find all frequent anchored CIRMs and all CIRM split
extensions.



A CIRM that meets the requirements specified in
Problem 1 is referred as a frequent CIRM and it is valid
if it also satisfies the minimum node overlap constraint
(Definition 1(iv)).

5 Coevolving Induced Relational Motif Mining

We developed an algorithm for solving Problem 1,
called CIRMminer that follows a depth-first exploration
approach from each anchor and identifies in a non-
redundant fashion the complete set of CIRMs that occur
at least φ times. For the rest of the discussion, any
references to a relational motif or a motif will assume it
is an induced relational motif.

5.1 CIRM Representation We adopt the method
of [1] to represent a CIRM c = {N, 〈M1, . . . ,Mm〉} as a
graph Gc = (N,Ec), such that an edge (u, v) ∈ Ec is a 5-
item tuple (u, v, lu, lu,v, lv), where u, v ∈ N , the vectors
lu and lv contain the vertex labels and lu,v contains
the edge labels of all motifs. If the CIRM consists of m
motifs, then lu = 〈lu1

, . . . , lum
〉, lv = 〈lv1 , . . . , lvm〉 and

lu,v = 〈lu1,v1 , . . . , lum,vm〉. The kth entry in each vector
lu, lu,v, and lv records the connectivity information
among the vertices of the kth motif (Mk). If an edge
(u, v) is part of motif Mk, then the kth entry of lu, lv,
and lu,v are set to the labels of u and v vertices, and the
label of the (u, v) edge respectively. If an edge (u, v),
or any of the vertices u, or v, is not present in the Mk

motif, then ω is inserted at the kth entry of that label
vector. Note that the value of ω is lexicographically
greater than the maximum edge and vertex label. This
representation is illustrated in Figure 2.

AE/IE/FG

v0 v1

M1

AE

IE/FG

RM

v0

v2

v1

M2

RM

PE

ME/FG

PMAE

v0

v2

v1

v3

M3

BEL NTH

GDR ITA

BEL BELNTH NTH

GDR

ω

ω
RM

 ω 
 AE 

 PE 

AE/IE/FG

IE/FG

ME/FG

ω
RM

PM

ω

ω
AE

v0

v2

v1

v3

ω

ω
ITA

BEL

BEL

BEL

NTH

NTH

NTH

ω
GDR

GDR

Figure 2: A CIRM Representation. The CIRM c consists of
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Figure 3: The process of mining anchors from the network

〈G1, G2, G3〉. Since all vertex labels remained consistent over
time, we listed the edge label sequences as the span sequence

of the evolving edges.

5.2 Mining Anchors The search for CIRMs is ini-
tiated by locating the frequent anchors that satisfy the
CIRM definition and the restrictions defined in Prob-
lem 1. This process is illustrated in Figure 3. Given a
dynamic network N , we sort all the vertices and edges
by their label frequency and remove all infrequent ver-
tices. The remaining vertices and all edges are rela-
beled in decreasing frequency. We determine the span
sequences of each edge and collect every edge’s span se-
quence if that sequence contains at least a span with an
edge label that is different from the rest of the spans. At
this point, we use the sequential pattern mining tech-
nique prefixSpan [10] to determine all frequent span sub-
sequences. Each of the frequent span subsequences is
supported by a group of node pairs where the edge be-
tween each pair of nodes evolve in a consistent way over
time. Since the frequent subsequences can be partial
sequences of the original input span sequences, it is not
guaranteed that they all contain consecutive spans with
different labels. Thus, the frequent subsequences that
contain different consecutive spans in terms of label are
considered as the anchors. The number of spans in a fre-
quent span sequence corresponds to the total number of
motifs in the anchor.

5.3 CIRM Enumeration Given an anchor,
CIRMminer generates the set of desired CIRMs by
growing the size of the current CIRM one vertex at
a time following a depth-first approach. The vertex-
based CIRM growth approach was selected in order
to ensure that each motif of the CIRM contains all
edges among the vertices of that motif (i.e., it is an
induced subgraph). To ensure that each CIRM is
generated only once in the depth-first exploration, it
uses an approach similar to gSpan [11], which we have
extended for the problem of CIRM mining. gSpan
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performs a depth-first exploration of the pattern lattice
avoiding redundant visits to the same node using a
canonical labeling scheme, called minimum DFS code,
and traverses a set of edges that form a spanning tree
of the lattice. In order to apply the ideas introduced by
gSpan to the problem of efficiently mining CIRMs, we
defined the minimum DFS code of a CIRM folllowing
the definition of the minimum DFS code of a CRM [1].
We use the minimum DFS code of a CIRM as the
canonical label. Due to the space constraint, we omit
the discussion on minimum DFS code of a CIRM and
encourage readers to refer to [1]. Once properly defined,
the correctness and completeness of frequent CIRM
enumeration follows directly from the corresponding
proofs of gSpan.

5.3.1 CIRM growth The CIRM enumeration pro-
cess follows the rightmost extension rule [11] to se-
lect candidates for the next expansion and discards all
CIRM extensions that do not contain a minimum DFS
code. This is done by searching through all embeddings
of the CIRM to identify the adjacent vertices that (i)
connect to the nodes on the rightmost path and (ii) the
span of the vertices overlaps the span of the CIRM. For
each adjacent vertex, CIRMminer goes through all em-
beddings of the CIRM to collect the sets of edges that
connect that vertex with all existing vertices within the
CIRM’s span. To identify a set of edges for an em-
bedding, it traverses through all snapshots within each
motif’s span and selects all maximal sets of edges con-
necting that vertex with the other CIRM vertices and
remain in a consistent state. Each maximal set of edges
along with the associated span is assigned a unique ID.
The vertex and edge labels, and the corresponding span
determines the ID. Given these IDs, the algorithm then
represents the set of edges resulting from a particular
embedding of a CIRM as a sequence of IDs.

Figure 4 presents an example of generating a se-
quence of IDs during the process of CIRM growth.
The CIRM consists of three motifs 〈M1,M2,M3〉, three
vertices (shaded nodes), and two edges (solid labeled
edges). An embedding of the CIRM is shown where the
vertices are v0, v1, and v2, and the edges are (v0, v1)
and (v1, v2). We omitted vertex labels to form a simple
example. To grow the CIRM by adding a new vertex,
CIRMminer selects the adjacent vertex v3 for this em-
bedding. Hence, it needs to consider the set of edges
that connects v3 to the existing vertices v0, v1, and v2.
By analyzing the overlapping spans of the edges (v0, v1),
(v0, v2), and (v0, v3), it identifies five different segments
such that each one contains a maximal set of edges in a
consistent state. As a result, these maximal sets are as-
signed unique IDs I1 through I5 where each ID contains
a set of edges and a specific span. The set of edges is
represented as: 〈I1, I2, I3, I4, I5〉.

CIRMminer represents the collected sets of edges
from all embeddings as a collection of ID sequences and
apply frequent sequence mining technique [10] to find
all frequent ID sequences. Each frequent ID sequence
is then considered as a frequent set of edges associated
with a candidate vertex for the next CIRM extension.
For example, the subsequence 〈I1, I2, I5〉 from Figure 4
is frequent, then the following set of edges is considered
for vertex v3: (0, 3, 〈P, P, P 〉, 〈d, h, w〉, 〈S, S, S〉), (1, 3,
〈Q,Q,Q〉, 〈k, ω, ω〉, 〈S, S, S〉), (2, 3, 〈R,R,R〉, 〈c, g, z〉,
〈S, S, S〉)

It is possible that a frequent ID sequence contains
multiple IDs that belong to a particular motif of the
CIRM. For example, if an ID sequence 〈I1, I2, I4, I5〉
is frequent (in Figure 4), both IDs I2 and I4 contains
the span that belongs to motif M2. To identify CIRMs
according to Definition 1, it needs to divide these set
of edges as multiple candidate sets where each set
contains only one of the overlapping span for each



motif to match the total number of motifs of the
original CIRM. To find the CIRM split extensions,
the algorithm considers all such set of edges as valid
extensions. This inclusion leads to identifying a super
set of anchored CIRMs. Some of the CIRM split
extensions may violate constraint (iii) of Definition 1
(i.e., Mj 6= Mj+1). It discards such CIRM split
extensions as a post-processing step. Note that each
frequent candidate set of edges are added to the CIRM
following the rightmost extension rules to determine the
exact edge order ensuring that the minimum DFS code
check can be performed on the extended CIRM.

Algorithm 1 CIRMminer(N , C)
1: Canchor ← find all frequent anchors from N
2: for each c in Canchor do

3: ec ← all embeddings of c in N
4: ExpandCIRM(N , C, c, ec)

5: return

Algorithm 2 ExpandCIRM(N , C, c, ec)
1: if support(c, ec) < φ then

2: return
3: if size(c) ≥ kmin then

4: if overlap(c) ≥ β then

5: C ← C ∪ c
6: if size(c) = kmax then

7: return
8: V ← all frequent adjacent nodes of c in N
9: for each candidate v in V do

10: S ← find all frequent edge sets that connect v to c
11: for each edge set s in S do

12: c′ ← add s to c

13: if c′ = CanonicalLabel(c′) then
14: ec′ ← all embeddings of c′ in N
15: ExpandCIRM(N , C, c′, ec′ )
16: return

5.4 CIRMminer Algorithm The high-level struc-
ture of CIRMminer is shown in Algorithm 1. It first
finds all frequent anchors according to Section 5.2. Af-
ter locating all embeddings of an anchor c, the algorithm
grows it recursively by adding one frequent adjacent
node at a time. The recursive function ExpandCIRM
first checks the support of c to prune any infrequent
expansion. If c meets the minimum size and overlap
requirement, it is added to the C to be recorded as a
valid CIRM. It terminates expansion when c reaches
the maximum size. To grow c further, the algorithm
collects all adjacent nodes of c in N following the DFS
rightmost extension rules. For each of the candidate
node v ∈ V , it finds all frequent edge sets that connect
the new node v to the existing nodes of c according
to Section 5.3.1. Each of the candidate edge set s is
added to c to construct its child c′. To prevent redun-
dancy and ensure completeness, it only grows c′ if it

represents the canonical label of c′, i.e., the minimum
DFS code of c′.

5.5 Minimum Support (φ) To efficiently search
patterns in a single large graph using a minimum sup-
port constraint, the support measure needs to guarantee
the anti-monotonicity property. We adopted the mini-
mum image based support measure [3] to calculate the
minimum support of a CIRM in a dynamic network.

As defined in Section 3, a dynamic network N can
be represented as a single large graph where the nodesN
are considered as the vertices of the large graph. Given
a CIRM c = {Nc, 〈M1,M2, . . . ,Mm〉} in a dynamic
network N = {VN , 〈G0, G1, . . . , GT 〉} where m ≤ T ,
this measure identifies the vertex in c which is mapped
to the least number of unique vertices inN and uses this
number as the frequency of c in N . To formally define,
the minimum image based support of c is defined as:

σ(c,N ) = min
v∈Vc

| {ϕi(v): ϕi is an occurrence of c in N} |.

Similar to the support measure of a pattern in a single
large graph, by selecting the support of the vertex in c
that has the least number of unique mapping in N , we
maintain the anti-monotonicity property.

5.6 Minimum Overlap (β) Each motif of a CIRM
needs to contain at least a minimum percentage of the
nodes from all the nodes of the CIRM. This minimum
node overlap threshold (defined as β in Section 3)
controls the degree of change that is allowed between the
sets of nodes in each motif of a CIRM. Given a CIRM
c = {Nc, 〈M1,M2, . . . ,Mm〉} containing m motifs, the
minimum overlap of a CIRM is defined as:

ρ(c) =
min

1≤i≤m
{|VMi |}

|Nc|
,

where VMi
is the set of nodes in motif Mi. Even though

the minimum overlap constraint is a reasonable ap-
proach to ensure that the motifs that make the CIRM
are coherent, it is not anti-monotonic [12]. Thus, to
generate a complete set of CIRMs that meet user speci-
fied thresholds of support and overlap, we cannot prune
CIRMs that do not satisfy this constraint as CIRMs de-
rived from it can satisfy the constraint. Hence, we need
to enumerate all CIRMs that meet the support thresh-
old and then search the output space for CIRMs that
meet the minimum overlap requirement.

6 Experimental Methodology & Datasets

All experiments are conducted on a 64-bit Linux desk-

top with 8-core Intel R© Core
TM

i7-3770 processor at
3.40GHz and 16GB of RAM.



Table 1: Dynamic Network Datasets.

Dataset #Vertices #Edges Span Avg. #Edges Avg. Degree

DBLP 1,057,524 3,971,100 55 72,202 0.07

GT 3,458 83,454 47 1,776 0.51
Sales 2,697 138,044 66 2,092 0.78

#Vertices denotes the total number of vertices in the dynamic net-
work, #Edges denotes the total number of edges in the dynamic net-
work. Span denotes the total number of snapshots in the dynamic
network. Avg. #Edges denotes the average number of edges per
snapshot in the dynamic network. Avg. Degree denotes the avg.
number of edges per node in a snapshot.

6.1 Co-Authorship Network (DBLP) This net-
work models the yearly co-authorship relations from
1958 to 2012 (Table 1) based on the DBLP Computer
Science Bibliography Database [9]. The nodes model
the authors of the publications and the undirected edges
model the collaboration between two authors at a cer-
tain year. To assign edge labels, we cluster the publica-
tion titles into 50 thematically related groups and use
the cluster number as the labels.

6.2 Bioprocess Network (GT) This is a cell cul-
ture bioprocess dataset [8] that tracks the dynamics of
various process parameters at every minute over 11 days
period for 247 production runs. To represent this data
as a dynamic network (Table 1), we computed 47 cor-
relation matrices for 14 of the process parameters using
a sliding window of 12 hours interval with 50% overlap.
To construct a network snapshot based on a correlation
matrix, we use each parameter as a vertex and two pa-
rameters/vertices are connected with an edge labeled as
positive/negative if their correlation is above or below
a certain threshold. Data from each run forms a small
graph based on the correlation matrix at a certain time
interval and the union of the graphs from all 247 runs
at a certain time interval represents the snapshot.

6.3 Store Transaction Network (Sales) This net-
work is constructed using Dominicks Finer Foods store
sales data that captures weekly store-level sales from
93 stores collected over a period of more than seven
years (400 weeks). To represent the dynamic network,
we generate 66 correlation matrices between 29 product
categories using a sliding window of 12 weeks interval
with 50% overlap. To construct a network snapshot,
we use each category as a vertex and two vertices are
connected with an edge labeled as positive or negative
if their correlation is above or below a threshold. Data
from each store sales forms a small graph based on the
correlation matrix at a certain time interval and the
union of the graphs from all 93 stores at a certain time
interval represents the snapshot.

7 Results & Discussion
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Figure 5: CIRMminer performance for different values of the

minimum support (φ) and overlap threshold (β). TCRM denotes
the frequent CIRMs (TCIRM). Q 0.6, Q 0.5, and Q 0.4 denotes the

valid CIRMs (QCIRM) for the specified β threshold.

7.1 Performance Results In order to assess the
scalability and performance of CIRMminer, we collected
experimental results by running CIRMminer for differ-
ent support thresholds to generate the complete set of
CIRMs (TCIRM) and then applied the overlap threshold
to identify the valid CIRMs (QCIRM) from the output
space. Figure 5 shows the performance of CIRMminer
for different values of the minimum support and over-
lap threshold1. The following observations can be made
from these results. First, for all datasets, the number
of discovered CIRMs (TCIRM and QCIRM) increases as the
minimum support (φ) decreases. The increase in the
number of CIRMs is expected due to the anti-monotonic
property of the support threshold. Second, the number
of valid CIRMs (QCIRM) increases as the overlap thresh-
old (β) decreases. This is expected as the lower overlap
requirement allows a greater number of different nodes
in the CIRM.

Third, the time to discover the CIRMs increases, as
the minimum support (φ) decreases. For the DBLP

1To ensure that all experiments are easily reproducible, we

provided datasets and CIRMminer software at our project site
https://sites.google.com/site/cirm2014sup/



Table 2: Comparing CRMminer vs. CIRMminer results.

Data φ CRMminer CIRMminer

#TCRM #QCRM Time #TCIRM #QCIRM Time

DBLP 140 103.5K 47.7K 68,303 414 412 60.24

130 151.3K 68.7K 92,106 513 511 71.85

120 223.5K 100.4K 129,413 651 648 91.07
110 334.3K 148.9K 181,036 833 830 116.40

100 512.5K 226.7K 248,101 1,115 1,106 163.85
90 807.4K 356.6K 423,217 1,493 1,476 225.21

GT 70 547.8K 506.8K 266 209 206 0.69

60 1.4M 1.2M 577 359 352 1.11
50 5.3M 4.6M 1,642 732 692 2.03

40 20.9M 17.2M 4,774 2,208 1,941 5.09

30 86.2M 69.6M 13,966 74,855 9,236 561.52

Sales 45 10.9K 1.7K 10 41 41 0.27

40 109.9K 9.1K 64 223 195 0.76

35 3.4M 585.2K 1,005 2,335 1,722 5.57
30 62.9M 17.7M 10,825 19,567 12,195 36.15

25 259.4M 64.8M 40,128 74,908 42,576 99.89

Run times are in seconds. φ denotes the minimum support. #TCRM

denotes the total number of discovered CRMs. #QCRM denotes the
number of CRMs that meet the β threshold out of #TCRM. #TCIRM

denotes the total number of discovered CIRMs. #QCIRM denotes the
number of CIRMs that meet the β threshold out of #TCIRM. For all
datasets, β is 0.50, mmin is 3, kmin is 4 and kmax is 8.

and the Sales datasets, the runtimes scale linearly
to the size of the output space (i.e., the number of
frequent patterns present in the dataset). For the
DBLP dataset, as the support threshold decreases from
100 to 80, the output space increases by 1.8 times and
the runtime increases by 2.3 times. Similarly, for the
Sales dataset, as the support threshold decreases, the
output space increases about 25 times when the runtime
increases by 18 times. However, for the GT dataset, the
runtime increases at a higher rate than the output space.
The reason for that is for φ=25, CIRMminer spent
a long time processing a large number of candidates
(2, 748, 974 CIRMs), but most of those candidates failed
to qualify later due to lack of minimum support or size
requirements. Thus, this significant increase in the work
associated with a decrease in support is not directly
captured by simply looking at the number of discovered
CIRMs.

7.2 Comparing CRMs with CIRMs Table 2
compares the results obtained by CIRMminer and
CRMminer across the three datasets for different val-
ues of support. As expected, the number of discov-
ered CIRMs is significantly smaller than the number
of CRMs. For the GT dataset, as the support thresh-
old decreases from 70 to 30, the number of valid CRMs
increases by 137 times. In case of CIRMminer, as the
support threshold decreases, the number of valid CIRMs
increases by 45 times. The runtime to discover CIRMs
is lower by 24 to 938 times than mining CRMs as the

support threshold decreases. Even though additional
computations are needed for the induced isomorphism
check, CIRMminer enumerates a fraction (i.e., the in-
duced ones) of all frequent CRMs resulting in a signif-
icant reduction in the overall execution time. Similar
output and runtime ratios are observed for the DBLP
and the Sales datasets.

7.3 Qualitative Analysis
DBLP Case Studies To illustrate the types of

relational changes found by CIRMminer on the DBLP
dataset, Figure 6 shows two identified CIRMs that cap-
ture the frequent relational changes that are themat-
ically different. The first CIRM shows the periodic
changes in research topics represented as 8 and 2 and
the topic similarity between these topics is 0.15. The
CIRM captures the periodic transitions of the relations
as author a and b collaborate with other authors c, d,
and e over the time. The embeddings show relations
among the four different sets of authors. The second
CIRM also shows periodic changes in research topics
represented as 2 and 20 and the topic similarity is 0.15.

Classification of Multivariate Time Series
The authors of [1] showed that the CRMs can be used
as features for building a predictive model to classify
the production runs in the GT dataset into low and
high-yielding runs. Specifically, out of the 247 runs,
they identified 48 low yielding runs, and 48 high yield-
ing runs, and then used CRMminer algorithm to find
frequent CRMs and showed that most of these frequent
CRMs are supported by the networks associated with
the high yielding runs.

To see if CIRMs can also be used as features for this
classification task, we perform a similar analysis as that
reported in [1]. Figure 7 shows the class distribution of
the embeddings for the discovered CIRMs and CRMs.
It shows that the CIRMs are also present mostly in the
high yield runs, since more than 75% of the embeddings
belong to the Good class (Good ic). Note that the
ratio of the embeddings supporting the Good class
remains consistent between CRMs (Good c) and CIRMs
(Good ic). This analysis illustrates that even though
there are fewer CIRMs detected compared to CRMs,
the information captured within the discovered CIRMs
represents the characteristics of the underlying dynamic
network.

8 Conclusion

We presented coevolving induced relational motifs to
capture patterns that focus on identifying all relations
between the set of entities and how that complete set
of relations change in a consistent way across different
snapshots of the network. The algorithm efficiently
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Figure 7: A distribution of the CIRM embeddings. The Good

class represents the production runs with high yield and the Bad

class represents with poor yield. CIRMs were collected using φ =
(70, 60 and 50), β = 0.50, mmin = 3, kmin = 3, and kmax = 8.

handles the additional complexity of ensuring induced
isomorphism and allows the anchored CIRMs to grow
beyond the initial size. Using three real world datasets,
the experimental evaluation shows the efficiency and
scalability of the algorithm. Further, the qualitative
analysis shows that the fewer induced evolving patterns
were able to capture same level of characteristics of the
underlying network as the arbitrarily evolving patterns.
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