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Abstract
Grade prediction for future courses not yet taken by students
is important as it can help them and their advisers during
the process of course selection as well as for designing per-
sonalized degree plans and modifying them based on the
students’ performance. In this paper, we present a cumula-
tive knowledge-based regression model with different course-
knowledge spaces for the task of next-term grade prediction.
This method utilizes historical student-course grades as well
as the information available about the courses to capture
the relationships between courses in terms of the knowledge
components provided by them. Our experiments on a large
dataset obtained from College of Science & Engineering at
University of Minnesota show that our proposed methods
achieve better performance than competing methods and
that these performance gains are statistically significant.

Keywords

grade prediction, regression, knowledge acquisition modeling

1 Introduction and Background

The analysis of data related to education and learning
has recently gained a lot of attention by machine learn-
ing and data mining researchers. Different data mining
techniques have been proposed to solve various prob-
lems in these fields, including: next-term course grade
prediction [10, 13], predicting the course’s final grade
based on the student’s on-going class performance [8,9],
predicting the grades for course activities [2], knowledge
tracing and student modeling [3, 7, 11], and predicting
student performance in tutoring systems [4,5,12,14,15].

Many academic programs offer flexible degree plans,
that include a small number of required core courses and
a large number of elective courses. These electives allow
students to customize their degree plans to better match
their career goals. This makes course selection a crucial
step that every student goes through prior to registering
for each term. Our work focuses on helping students
make informed decisions about which courses to register
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for by developing methods that can predict the grades
for future courses that they have not yet taken. By
knowing how well they are expected to perform in a
course, students can select the courses that they are
best prepared for, which can improve student retention
and lead to successful and timely graduation.

A natural way to model the problem of grade pre-
diction is to model the way the academic degree pro-
grams are structured. Each degree program requires a
set of courses that need to be taken in some suggested
sequence such that the knowledge provided by the ear-
lier courses are essential for students to be able to per-
form well in more advanced courses. Polyzou et al. [10]
proposed a Course-Specific Regression Model (CSRM)
which builds on this idea. However, CSRM’s under-
lying model (described in Section 4) cannot correctly
capture the students’ state of knowledge when the same
knowledge can be acquired by taking different subsets
of courses. As a result, its prediction performance de-
teriorates for programs with flexible degree plans.

In this paper, we develop the Cumulative
Knowledge-based Regression Model (CKRM) that also
builds on the idea of accumulating knowledge but ad-
dresses the aforementioned limitation of CSRM. CKRM
assumes that there is a space of knowledge components
describing the overall curriculum. Within that space,
each course is modeled via a knowledge component vec-
tor that contains the knowledge components that it pro-
vides. A knowledge component can be provided by a
single or multiple courses. A student by taking a course
acquires its knowledge components in a way that de-
pends on the grade that he/she obtains in that course.
CKRM models the knowledge that a student has ac-
quired after taking a set of courses via a knowledge
state vector that is computed as the sum of the knowl-
edge component vectors of these courses weighted by the
grades that he/she has obtained in them. In order to
predict the grade that a student will obtain on a specific
course, CKRM estimates a per-course linear model that
captures the knowledge components that are required
in order to perform well in that course. Given the stu-
dent’s knowledge state vector prior to taking a course
and that course’s estimated linear model, the predicted
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grade is obtained as the dot-product of these two vec-
tors.

We investigated three different ways of constructing
the knowledge component space. Two of them construct
the knowledge space in terms of an automatically iden-
tified latent space and the third uses the free text de-
scriptions of the courses to extract keywords that form
the space’s dimensions. The difference between the two
latent spaces is that one imposes the constraint that
courses from different departments do not share any
knowledge components, whereas the other one does not.

The main contributions of this work are as follows:

1. We propose a cumulative knowledge-based method
for the problem of next-term grade prediction that
better models the structure of degree programs and
is better suited for flexible degree programs.

2. We performed an extensive experimental evaluation
on a real world dataset containing 10 years worth
of student grades from 12 academic departments
from the College of Science and Engineering at
University of Minnesota. This evaluation showed
that the proposed methods perform statistically
significantly better than competing approaches.

3. We showed that the models that were estimated
based on the extracted keywords can identify the
knowledge that is required in order to perform well
in a course, which is not captured by the course
pre-requisites. This can be used to inform changes
in course sequencing and degree programs.

The rest of the paper is organized as follows.
Section 2 explains the definitions and notations used
throughout the paper. We explain our proposed meth-
ods in Section 3. Section 4 reviews the previous research
that is relevant to our proposed methods. Section 5 de-
scribes the experimental setup and evaluation method-
ology. The results are shown in Section 6. Finally, we
conclude our work in Section 7.

2 Notations and Definitions

Boldface uppercase letters will be used to represent
matrices (e.g., G,R) and boldface lowercase letters to
represent row vectors, (e.g., r). The ith row of matrix
A is represented as ai. The entry in the ith row and
jth column of matrix A is denoted as ai,j . A predicted
value is denoted by having a hat over it (e.g., ĝ).

Matrix G will represent the m × n student-course
grades matrix, where gs,c denotes the grade that student
s obtained in course c.

For a student s and a course c not yet taken by s and
he/she would like to register for it in the following term,
we define the problem of predicting the grade that s will

obtain on c as the next-term grade prediction problem,
or the grade prediction problem for short.

3 CKRM: Cumulative Knowledge-based
Regression Models

Consider a student s that has taken j courses 〈c1, . . . , cj〉
in that sequence, and a course c that s has not yet
taken for which we will like to predict his/her grade.
A course c is assumed to provide a set of knowledge
components that the student acquires after taking c.
These knowledge components can be the set of topics
or concepts taught by the course. We assume that all
courses can be represented in a knowledge space of these
different components. We will refer to the knowledge
component vector of a course c as its provided knowledge
component vector and we will denote it as pc. We
define the knowledge state for student s after taking
j courses as the knowledge he/she has acquired so far
in the different knowledge components provided by the
j courses. A student’s s knowledge state after taking
j courses will be denoted by the knowledge state vector
ks,j and will be computed as

ks,j =

j∑
i=1

(
ξ(s, cj , ci) gs,ci pci

)
,(3.1)

where gs,ci is the grade that student s obtained on
course ci, and ξ(s, cj , ci) is a time-based exponential de-
caying function designed to de-emphasize courses that
were taken a long time ago. This equation models a
student’s knowledge state as the sum of the provided
knowledge component vectors of the courses he/she has
taken so far, weighted by his/her grades in them. The
grade-based weighting is designed to capture the fact
that a student better acquires the knowledge compo-
nents of a course on which he/she obtained a good grade
than a course on which he/she did not.

The decaying function that we used is:

ξ(s, cj , ci) = e−λ(ts,cj−ts,ci ),(3.2)

where λ is a user-specified non-negative parameter that
controls the shape of the exponential decaying function,
and ts,ci is the term number when student s took
course ci. This term number is encoded as follows.
For each student, we encode his/her first term as the
term numbered as 1, and each following term number
is incremented by 1. This numbering technique applies
a time-based decaying importance on the prior courses,
such that as the time difference between taking course
ci and the most recent taken course cj increases, the
effect of the corresponding components of ci (namely,
gs,cipci) on the student’s current knowledge state (after
taking j courses) will get smaller.



CKRM computes the grade that student s will
obtain on a course c by applying a course-specific linear
model rc on the student’s knowledge state vector prior
to taking c. That is, the predicted grade is given by

ĝs,c = rc kTs,j ,(3.3)

where ks,j is the corresponding knowledge state vector.
These course-specific linear models are estimated from
the historical grade data and can be considered as
capturing and weighting the knowledge components
that a student needs to have accumulated in order to
perform well in a course. For this reason, we will refer to
these linear models as the required knowledge component
vectors.

3.1 The course knowledge component space. In
order to capture the knowledge components provided
by courses, we experiment with three different ways
of defining the structure of the knowledge component
space. Two of them are based on a latent space, and
the third one is based on the textual descriptions of
these courses.

3.1.1 Latent knowledge component space. The
most straightforward way to define the latent knowledge
component space is to use the standard latent structure
in which all dimensions, i.e., knowledge components,
are shared across all courses. We will refer to the
CKRM-based method that uses the standard latent
structure as CKRMall. For academic courses that
belong to different departments, however, they should
not share their provided knowledge components among
each other. For instance, a course that belongs to
Mechanical Engineering in general should not share any
of its provided knowledge components with a course
from Computer Science & Engineering.

In order to model this, we experiment with a “pre-
scribed” latent structure, which is based on the assump-
tion that courses belonging to the same department pro-
vide the same set of knowledge components and that
courses belonging to different departments do not share
any of their provided knowledge components with each
other. In this case, we allocate a distinct set of l la-
tent dimensions for each department. For example, if
l = 5, and we are working with 10 departments, then
the number of dimensions for that approach will be
5 × 10 = 50 dimensions. We will refer to the CKRM-
based method that uses this prescribed latent structure
as CKRMdep.

Within that prescribed structure, for each provided
knowledge component vector (pc) we will need to esti-
mate only l values, whereas for each required knowledge
component vector (rc), we can potentially be estimating

all dimensions.

3.1.2 Textual-based knowledge component
space. A source that offers information about the
knowledge components provided by courses is their
textual descriptions in the University course catalog.
These are usually short descriptions of what different
knowledge components are provided by the courses
in a form of free-text sentences and/or keywords.
We hypothesize that it may be possible to derive a
knowledge component space using these descriptions.

In order to test this hypothesis, we will use the set
of 2-ngrams that co-exist within a specific window in
the textual descriptions of the courses as the knowledge
component space and represent each course as a bag-
of-ngrams vector. With this representation, we can
use the vectors in the knowledge component space
as indicator vectors and just estimate the required
knowledge component space, or we can estimate the
non-zero entries of the provided knowledge component
space along with estimating the required knowledge
component space. In the latter case, the weights on the
provided knowledge component vectors can be viewed
as indicating some type of relative importance of the
different dimensions (i.e., ngrams) in that course. We
will refer to the CKRM-based method that uses the
textual descriptions of courses as CKRMtext.

3.2 Parameter estimation. The parameters of the
CKRM-based methods are the required knowledge com-
ponent vectors associated with each course, i.e., the var-
ious rc vectors, and the provided knowledge component
vectors of each course, i.e., the pc vectors (the latter vec-
tors are estimated for all the approaches except when
using them as indicator vectors in CKRMtext).

We use the squared error loss function to estimate
these parameters. For the approaches that estimate the
provided knowledge component vectors, the optimiza-
tion problem is

minimize
R,P

1

2

∑
s,c∈G

(gs,c − ĝs,c)2
+
α

2

(
‖R‖2F + ‖P‖2F

)
subject to R ≥ 0, P ≥ 0,(3.4)

where gs,c is the actual grade, ĝs,c is the predicted grade

(computed as in Eq. 3.3), R ∈ Rn×d is the matrix whose
rows are the required knowledge component vectors,
P ∈ Rn×d is the matrix whose rows are the provided
knowledge component vectors, and α is a regularization
parameter to avoid overfitting. The non-negativity
constraints on R and P are enforced since they represent
knowledge acquisition, which should be non-negative.
Note that for CKRMdep and CKRMtext, P has a



predefined sparse structure, so only the weights of its
encoded non-zero entries are estimated. For CKRMtext
that uses the provided knowledge component vectors as
indicator vectors, the optimization problem is

minimize
R

1

2

∑
s,c∈G

(gs,c − ĝs,c)2
+
α

2
‖R‖2F

subject to R ≥ 0.(3.5)

The optimization problems of Eqs. 3.4 and 3.5
are solved using a Stochastic Gradient Descent (SGD)
algorithm, which is an iterative algorithm. Algorithm 1
provides the detailed procedure and gradient update
rules. Matrices R and P are initialized with small
random values as the initial estimate (line 6). In
each iteration of SGD (lines 7–25), if the course has
at least l courses taken prior to it, then its required
knowledge component vector rc is updated as well as
the preceding j courses’ provided knowledge component
vectors pci . This process is repeated until the RMSE
on the validation set does not decrease further or the
number of iterations has reached a predefined threshold.
Note that, for solving Eq. 3.5, lines 18–21 are ignored
and the non-zero entries of P are just used as indicator
vectors.

4 Review of Relevant Research

In recent years different techniques have been proposed
for solving the next term grade prediction problem.
The majority of these methods leverage ideas that were
developed in the context of recommender systems [1,
10,13] as well as approaches that are based on standard
classification and regression [10,13].

One of the approaches proposed by Polyzou et.
al. [10] is a cumulative knowledge-based model, called
Course-specific Regression Model (CSRM), which is
based on the fact that the student’s performance in a
future course is based on his performance in the past
courses. Consider a student s that has taken j courses
〈c1, . . . , cj〉 in that sequence, and a course c that s has
not yet taken for which we will like to predict his/her
grade. In CSRM, the grade for student s in course c is
predicted as a sparse linear combination of his previous
grades, which is computed as

ĝs,c = rTc

( j∑
i=1

gs,cizci

)
,(4.6)

where r and z are vectors of dimension equal to the total
number of courses n, rc is a linear model associated with
course c, gs,ci is the grade that student s obtained on
course ci, and zci is an indicator vector with one in the
dimension corresponding to course ci.

Algorithm 1 CKRM:Learn

1: procedure CKRM Learn
2: l← minimum # prior courses
3: η ← learning rate
4: α← regularization weight
5: iter ← 0
6: Init the non-zero entries of R and P with

random values in [-0.001, 0.001]
7: while iter < maxIter or RMSE on validation

set decreases do
8: for all gs,c ∈ G do
9: j ← # courses taken by s prior to c

10: if j ≥ l then
11: cj ← last course taken by s prior to c
12: ks,j ← 0
13: for all ci ∈ gs s.t. ci was taken by s

prior to c do
14: ks,j ← ks,j + ξ(s, cj , ci) gs,ci pci
15: end for
16: ĝs,c ← rc kTs,j
17: esc ← gs,c − ĝs,c
18: rc ← rc + η · (es,c · ks,j − α · rc)
19: for all ci ∈ gs s.t. ci was taken by s

prior to c do
20: pci ← pci +η·(es,c ·gs,ci ·rc−α·pci)
21: end for
22: end if
23: end for
24: iter ← iter + 1
25: end while
26: return R and P
27: end procedure

Since CSRM treats each course as having a unique
dimension that does not share anything with any other
course, it assumes that each course provides a set
of knowledge components that are totally different
from any other course, which does not hold for many
courses. As we will see in the experimental results
(Section 6), the capability of CSRM to accurately
model the accumulation of knowledge decreases as the
flexibility of the degree program increases, i.e., as
students can take more diverse courses that provide the
same or similar knowledge components prior to taking
the target course.

Similar models to CKRM have also been explored in
the context of recommender systems, in which models
are developed for item rating prediction, such as the
factored item-similarity model (FISM) presented in [6].
The difference between the two methods is that, in
CKRM, there are temporal dependencies, in which the
prediction for the grade that student s will obtain on



course c depends on the courses that s has taken prior to
c, unlike FISM, which aggregates over all items without
taking the rating time into account.

5 Experimental Evaluation

5.1 Dataset description and preprocessing. The
data used in our experiments was obtained from the
College of Science and Engineering at University of
Minnesota and includes 12 degree programs. The data
that we used span a period of about 10 years (Fall
2006 to Spring 2015). From that dataset, we extracted
the students who were registered at the University for
at least three terms1. For each of these students, we
extracted the set of courses that belong to these 12
majors. We removed any courses that were taken as
pass/fail. The initial grades were in the A–F scale,
which were converted to the 4–0 scale using the standard
letter grade to GPA conversion. If a course was taken
more than once by a student, then only its most recent
grade is retained and the older ones are eliminated. The
statistics of the extracted majors are shown in Table 1.

Table 1: Information about the different majors.

Major Abbrev. #Students Flexibility

Mathematics MATH 1,032 0.704

Statistics STAT 289 0.698

Physics PHYS 241 0.664

Chemistry CHEM 665 0.653

Computer Science CSE 1,293 0.609

Electrical Eng. ECE 737 0.589

Materials Science MATS 272 0.520

Chemical Eng. CHEN 785 0.512

Mechanical Eng. ME 1,302 0.490

Biomedical Eng. BMEN 524 0.485

Aerospace Eng. AEM 450 0.439

Civil Eng. CE 560 0.439

The majors are sorted with respect to their flexibility in a decreas-
ing order (see Section 5.1 for the definition of the major’s flexibility).

Table 2: Datasets statistics.

Train Validation Test

#Students 59,054 27,101 21,797
#Courses 8,708 3,941 1,318
#Grades 856,025 83,518 56,915

These statistics are accumulated over the eight datasets created for
the eight test terms (see Section 5.2).

Table 1 also shows each major’s flexibility, which
is a measure that we computed in order to differentiate
between degree programs that that have a large number
of electives and the students’ degree programs tend to
include different sets of courses (flexible) over those that

1There are three terms at this University: Fall, Spring and
Summer.

offer a few electives and the degree programs of all stu-
dents are quite similar (restricted). As our results will
show, the major’s flexibility impacts the performance
of certain models. We computed the major’s flexibility
as the average course offering flexibility over all course
offerings that belong to that major, weighted by the
number of pairs of students in that offering. We com-
puted the flexibility of a course offering c as one minus
the average Jaccard coefficient of the courses that were
taken by the students that took c prior to taking this
class. The flexibility will be low if the students that took
c have taken very similar courses before c and high oth-
erwise. Note that only the students belonging to each
major were used while computing its flexibility.

Since the CKRM-based methods rely on extracting
the different knowledge areas/components provided by
the courses, we manually removed courses that do
not provide consistent knowledge, such as independent
study, directed research, and other non-topic specific
courses. For CKRMtext, we extracted the 2-ngrams
from each course description that exist within a window
of size three after removing the stopwords and created a
course-by-ngram matrix that was used as the provided
knowledge component matrix P.

5.2 Generating train, validation, and test sets.
The entire dataset was used to extract eight different
subsets in order to assess the performance of the dif-
ferent methods. Specifically, we selected the eight most
recent Fall and Spring terms in our dataset to predict
their grades (which we will refer to as the set of test
terms T ), where for each of these test terms t ∈ T , only
the terms prior to t are used for training and validation.
The training, validation and test sets were extracted as
follows. For each test term t, the term prior to it that
is either a Fall or a Spring term (not a Summer term)
is used for validation and model selection, and all the
terms prior to the validation term are used for learning
the model. For a student to be considered in the train-
ing set, he/she must have taken at least three courses in
the training set. This is to ensure that the students have
taken a sufficient number of courses so that CKRM can
capture knowledge accumulation. Also, we did not con-
sider a course for predicting its grades in the validation
or test set if its required knowledge component vector
(rc) was estimated, during learning the model, less than
50 times, as we considered such courses not to have reli-
able estimated required knowledge component vectors.
Therefore, for a course to be considered for prediction
during validation or testing, it must have been taken by
at least 50 students after at least 3 courses. The statis-
tics about the accumulated training, validation and test
sets over the eight subsets of data are shown in Table 2.



Table 3: Prediction performance of the different methods on major students.

#Ticks Method MATH STAT PHYS CHEM CSE ECE MATS CHEN ME BMEN AEM CE

Percentage of
grades
predicted
with no error

BiasOnly 18.41 18.99 23.20 20.01 22.13 23.90 20.14 17.51 24.55 26.73 28.12 23.12

MF 18.65 18.85 24.18 21.26 22.88 24.63 21.94 18.85 24.40 26.52 26.56 22.88

CSRM 18.52 16.83 22.83 19.94 23.54 26.20 19.43 21.51 25.65 29.28 30.34 23.33

CKRMdep 19.28 18.70 23.20 20.94 24.41 26.14 22.01‡ 20.98† 26.06 29.24 30.41 23.57

CKRMall 19.21 17.84 24.30 21.26 24.63 26.33 20.98‡ 21.15† 26.36‡ 29.58 31.01† 23.93

CKRMtext 19.22 18.42 25.28 21.45 25.03† 26.09 22.84‡ 21.72† 26.20 30.13 30.76† 23.62

Percentage of
grades
predicted
with an error
of at most one
tick

BiasOnly 52.65 55.11 60.93 52.88 59.31 63.51 53.60 54.42 63.17 69.15 68.36 60.80

MF 52.85 54.39 61.30 53.33 60.50 63.94 55.92 55.79 63.49 71.01 69.73 61.23

CSRM 51.62 54.10 58.61 54.20 61.98 64.15 57.27 58.94 65.78 73.69 71.65 63.87

CKRMdep 54.06‡ 56.55 60.32 54.78 62.84† 64.58‡ 57.47 59.10† 65.90† 74.12† 71.61† 64.20

CKRMall 54.10‡ 56.54 60.81 54.90 63.05†‡ 64.41‡ 57.15 58.74† 66.00† 74.84 71.44† 64.61

CKRMtext 53.99‡ 56.40 59.95 54.71 63.24† 64.24‡ 59.27†‡ 59.19† 65.97† 74.67† 71.44† 64.56

Percentage of
grades
predicted
with an error
of at most
two ticks

BiasOnly 76.96 76.84 83.64 75.85 82.49 84.82 78.05 80.41 85.63 90.36 89.45 83.61

MF 76.99 76.98 84.25 76.17 82.67 84.67 79.54 80.58 85.70 90.44 90.04 83.68

CSRM 76.68 80.86 81.93 77.00 83.89 84.43 81.72 82.65 86.12 91.50 87.67 84.71

CKRMdep 77.22 81.58† 83.39 76.75 84.61†‡ 84.70 79.86 83.26†‡ 85.81 91.80 87.85 84.87†
CKRMall 77.55 82.01† 83.76 76.65 84.72†‡ 84.55 80.76 82.66† 85.98 91.50 88.06 85.09†
CKRMtext 77.59 81.30† 82.29 76.55 84.40†‡ 84.32 80.63 83.09† 85.98 91.54 87.99 85.21†

# Predicted Grades 4,632 695 819 3,109 7,180 5,344 1,554 5,305 7,118 2,353 2,864 4,179

The majors are sorted in descending order with respect to their flexibility (see Table 1). See Section 5.5 for the definition of a tick. Un-
derlined entries denote the best value obtained for each major for each #ticks. † denotes statistical significance over the best of MF and
BiasOnly, whereas ‡ denotes statistical significance over CSRM, both at the 5% significance level. The parameters for the selected models
are shown in the Appendix.

5.3 Grade standardization. A characteristic of the
course grade data is that the mean and standard devia-
tion of the same course vary across its different offerings,
for many reasons, including the instructor who teaches
the course, the knowledge states and background skills
of the students taking the class, and the structure of the
course evaluation method. In order to deal with such
course offering variations, we used the standardized z-
scores that are computed on a per-course-offering basis,
as follows. We first computed the global standard devi-
ation using all the grades in the training set. Then, for
each course offering, we computed the mean and stan-
dard deviation of its grades. We then computed the
z-score for a grade g in a course offering as

z =
g − µ

σlocal + σglobal
,(5.7)

where µ and σlocal are the mean and standard deviation
of the grades for that course offering, respectively, and
σglobal is the global standard deviation. We added
σglobal as a damping factor in order to widen the range
of the set of the computed z-scores. Since these z-
scores are not restrictively non-negative, we removed
the constraint of non-negativity on R while estimating
the CKRM-based methods using the z-scores.

After estimating the parameters of the model, we

converted the predicted (standardized) grades into ac-
tual grades using the information on the past course
offerings. Specifically, for a course c for which we pre-
dicted its grades, we approximated its mean as the mean
of the means of the grades of its past offerings, and its
standard deviation as the sum of the global standard
deviation and the mean of the standard deviations of
the grades of its past offerings. Note that this approach
does not use any information about the distribution of
the grades of the test course and as such, the predicted
grades represent predictions for a course that has not
been yet completed.

5.4 Baseline/Competing methods. In our exper-
iments, we compared the performance of the CKRM-
based methods against the following competing meth-
ods:

1. CSRM: This is the course specific regression
model that was described in Section 4.

2. Matrix Factorization (MF): This approach pre-
dicts the grade for student s in a course cas

ĝs,c = µ+ sbs + cbc + uTv,(5.8)

where µ, sbs and cbc are the global, student and
course bias terms, respectively, and u and v are



Table 4: Prediction performance of the different methods on non-major students.

#Ticks Method MATH STAT PHYS CHEM CSE ECE MATS ME AEM CE

Percentage of
grades
predicted
with no error

BiasOnly 18.19 24.51 18.82 19.20 20.59 19.16 19.77 16.09 21.45 13.90

MF 19.55 27.54 18.99 19.73 21.93 21.41 19.07 17.69 21.25 17.76

CSRM 20.99 17.29 18.98 21.14 18.69 22.23 24.29 18.23 21.25 14.67

CKRMdep 20.69 20.95† 17.68‡ 22.85 18.61† 23.56 23.45† 16.35 20.51 18.53

CKRMall 20.27 21.92† 18.82‡ 23.16 20.90 24.69 23.45† 18.50 22.12 15.06

CKRMtext 21.48 19.52† 19.15 23.51 19.87† 25.00 22.32† 16.62 21.92 18.92

Percentage of
grades
predicted
with an error
of at most one
tick

BiasOnly 53.83 62.84 56.63 55.66 58.04 56.76 55.22 47.72 56.35 49.42

MF 53.79 63.01 56.30 56.27 58.19 56.15 57.91 50.40 56.55 49.81

CSRM 53.61 56.59 54.99 57.55 55.58 57.99 57.48 57.64 56.09 42.08

CKRMdep 53.72 59.18‡ 54.50 60.85 56.29 59.32 58.19 56.57 55.82 47.50‡
CKRMall 54.10 59.27‡ 55.48 60.77† 56.93 60.04 59.46 56.30† 57.23 47.11

CKRMtext 53.91 59.80 54.66 61.47†‡ 55.74† 60.55 60.31 54.16†‡ 56.42 43.25

Percentage of
grades
predicted
with an error
of at most
two ticks

BiasOnly 76.21 83.96 81.51 79.79 79.10 81.24 82.20 78.55 78.48 78.77

MF 76.03 83.87 81.01 80.14 77.91 81.14 82.77 79.09 78.68 76.84

CSRM 75.39 82.44 79.05 80.58 80.05 82.37 83.61 79.62 78.89 72.97

CKRMdep 75.96 82.62 79.05 82.78 77.67‡ 82.07 84.89 81.50 79.02 73.36

CKRMall 76.22 82.09† 80.19 82.48 77.36‡ 81.96‡ 84.89 81.77 79.35 75.68

CKRMtext 76.26†‡ 81.82 79.54 82.74‡ 77.83‡ 81.35 85.03 82.30 79.55 74.52

# Predicted Grades 2,649 1,122 611 2,271 1,263 976 708 373 1,487 259

Underlined entries denote the best value obtained for each major for each #ticks. † denotes statistical significance over the best of MF and
BiasOnly, whereas ‡ denotes statistical significance over CSRM, both at the 5% significance level.

the student and course latent vectors, respectively.

We used the squared loss function with L2 regu-
larization to estimate this model, by solving the
following optimization problem:

minimize
µ,sb,cb,U,V

1

2

∑
s,c∈G

(gs,c − ĝs,c)2
+
α

2

(
‖sb‖22

+ ‖cb‖22 + ‖U‖2F + ‖V‖2F
)
,(5.9)

where: sb and cb are the student and course bias
vectors, respectively, and U and V are the student
and course latent factor matrices, respectively.

3. BiasOnly: This method is a special case of MF, in
which the number of latent dimensions is 0. That
is, it predicts the grade for student s in a specific
course c using only the bias terms in Eq. 5.8.

5.5 Evaluation methodology and performance
metrics. We evaluated the performance of the different
approaches by using them to predict the grades for each
of the eight test terms in our dataset using the data
from the terms prior to each test term for training and
validation (see Table 2).

The grading system used by the University uses
a 12 letter grade system (i.e., A, A-, B+, . . . F). We
will refer to the difference between two successive letter
grades (e.g., B+ vs B) as a tick. We assessed the
performance of the different approaches based on the
Root Mean Squared Error (RMSE) as well as how many
ticks away the predicted grade is from the actual grade.
We converted the predicted grades into their closest
letter grades and then computed the percentages of each
of the x ticks, where the number of x-ticks denotes the
number of predicted grades that were x ticks away from
their actual grades.

We believe that the grades that are predicted with
at most one or two ticks error are sufficiently accurate
for the task of course selection and that the grades that
can be predicted with an error of three or more ticks can
incorrectly influence course selection. For these reasons,
we will tend to refer to the grades that are predicted
with at most one or two ticks error to be sufficiently
accurate.

We also performed statistical significance tests of
the CKRM-based methods against the competing meth-
ods as well as against each other. We ran a paired-
sample one-tailed t-test using the ticks percentages of



Table 5: Effect of major’s flexibility on the performance of the CKRM-based methods against the competing
methods on major and non-major students.

Average Percentage Improvement

#Ticks Most Flexible Flexible Least Flexible Most Flexible Flexible Least Flexible

Major Students Non-major Students

Baseline CSRM

No error 8.37 6.34 2.60 10.31 6.95 11.52
Within one tick 3.60 1.65 0.75 3.57 3.92 4.35
Within two ticks 1.13 0.21 0.30 1.39 -0.48 2.64

Baseline Best of MF & BiasOnly

No error 1.83 8.90 8.47 2.38 10.21 4.74
Within one tick 1.78 4.40 4.39 0.65 2.89 2.93
Within two ticks 1.88 1.80 0.37 0.04 0.71 0.42

The 12 majors are divided into three groups of four majors each, according to their flexibility (see Table 1). Each of these per-
centages is averaged over the included majors’ percentage improvements.

the courses belonging to each major in each of the eight
datasets as the data points for each method.

5.6 Model selection. We did an extensive search in
the parameter space for model selection. We experi-
mented with the regularization parameter α in the range
[1e-5, 0.1] and with the learning rate η in the range [5e-
5,1]. For CKRMall and CKRMdep, we used the number
of dimensions: {10, 20, 30}, whereas for MF we used it
in the range [10,60] with a step of 5. For the CKRM-
based methods, we experimented with the parameter λ
in the range [0, 1] with a step of 0.1.

The training set was used for estimating the models,
whereas the validation set was used to select the best
performing parameters in terms of the overall RMSE of
the validation set.

6 Experimental Results

For each of the 12 departments, we divided the results
into the set of students that belong to the same depart-
ment (major students) and the set of students that be-
long to one of the remaining 11 departments (non-major
students), since these two groups of students represent
different populations for each department.

We organized the experimental results into three
parts. The first and second show a quantitative com-
parison of the CKRM-based methods against each other
as well as against the competing methods on major
and non-major students, respectively. Finally, the third
shows a qualitative analysis on CKRMtext.

6.1 Quantitative performance on major stu-
dents. Table 3 shows the performance achieved by the
CKRM-based and competing methods on major stu-
dents in terms of the percentage of grades predicted
with no error, with an error of at most one tick, and
with an error of at most two ticks.

Comparing the performance achieved by the three
CKRM-based methods, we can see that their perfor-
mance is quite similar. If we consider the best perform-
ing entries across the different departments and error
levels we see that one of them outperforms the other
two. However, even when a method does better than an-
other one, the differences are fairly small. The close per-
formance of the three methods was also confirmed by the
statistical significance tests that we ran, which showed
that the performance difference of the three schemes
were not statistically significant for most departments.

Comparing the performance achieved by the
CKRM-based methods against that achieved by CSRM,
we see that the former leads to more accurate predic-
tions and its performance advantage is greater for the
flexible majors than the restricted ones. This is further
illustrated in Table 5, which shows the average percent-
age improvements of the CKRM-based methods based
on the majors’ flexibility. The CKRM-based methods
achieve an average improvement of 8.37, 3.6, and 1.13%
over CSRM in the most flexible majors, as opposed to
2.6, 0.75, and 0.3% in the least flexible ones for the
no error, within one tick, and within two ticks errors,
respectively. These percentage improvements also in-
dicate that the CKRM-based methods do considerably
better than CSRM in terms of the no error predictions.
These results confirm our hypothesis that CSRM’s per-
formance degrades as the major’s flexibility increases,
since this method depends on the prior set of courses to
predict the grades, which can fail in such flexible ma-
jors as each student can take a different combination
of courses that offer the same knowledge components
required for performing well in that course.

Comparing the performance achieved by the
CKRM-based methods against that achieved by MF and
BiasOnly, we see that they also outperform both MF
and BiasOnly in most cases and that their performance



is statistically significant over both baselines in some
cases. As shown in Table 5, the CKRM-based meth-
ods tend to have greater improvement over MF and Bi-
asOnly in the flexible and least flexible major groups
than in the most flexible ones.

Comparing the performance of CSRM against that
of both MF and BiasOnly, we can see that CSRM does
generally better in the less flexible majors and worse in
the more flexible ones, as it is more suited to the less
flexible majors, as we explained above.

6.2 Quantitative performance on non-major
students. Table 4 shows the prediction performance
achieved by the CKRM-based and competing methods
on the set of non-major students in terms of the per-
centage of grades predicted with no error, with an error
of at most one tick, and with an error of at most two
ticks.

Comparing the performance achieved by the three
CKRM-based methods, we can see that their perfor-
mance is quite similar, and there was no statistically
significant difference in their performance. Comparing
the performance of the CKRM-based methods against
that of the competing approaches, we can see that the
former lead to more accurate predictions that are statis-
tically significant in most departments. Both MF and
BiasOnly tend to outperform the other methods for the
prediction of the STAT grades.

The last three columns of table 5 show the average
percentage improvements of the CKRM-based methods
based on the majors’ flexibility2. As shown in the
table, the performance of the CKRM-based methods
leads to more accurate predictions than the competing
approaches, and they do considerably better in terms of
the no error predictions.

6.3 Qualitative analysis of CKRMtext’s mod-
els. The fact that the performance of CKRMtext’s
models are comparable to that of the other two latent
space based variants of CKRM (as discussed in Sec-
tion 6.1) is important, because the models estimated by
CKRMtext are easier to interpret (since their dimen-
sions correspond to keywords extracted from the course
descriptions). As a result, they can be analyzed in order
to learn, from students’ historical data, the importance
of each of the knowledge components for each course.

For this reason, we analyzed the results of CKRM-
text’s models, as follows. For each course, we extracted,
from the students who took that course, the top 2-
ngrams that have the highest weights in their knowledge

2Note that the major’s flexibility are based on major students
only

states prior to taking that course (see Eq. 3.1) and com-
puted the percentage of its extracted top ngrams match-
ing the descriptions of the course’s pre-requisites3.We
found that most courses have their top ngrams match-
ing only 0–39% of their pre-requisite descriptions. This
suggests that there are other knowledge components not
listed in the course’s pre-requisite descriptions that also
affect the student’s performance in that course.

In order to better understand the type of infor-
mation that these “other” knowledge components cap-
ture, we manually analyzed the top-20 ngrams for the
CSE courses. Table 6 shows a sample of four of these
courses along with their top ngrams. We can see that
the ngrams (shown in black) that are not included in
the text description of the pre-requisites are also rele-
vant for the requirements of these courses. For instance,
for the network course (CSCI 5221), there are three
ngrams that contain the word “java” (“java object”,
“java programming” and “java oriented”), along with
other ngrams about programming languages in general.
This suggests that the students’ performance in the pro-
gramming courses, especially those that taught the Java
language had significant impact on their performance
in that course. Another example is the Artificial In-
telligence course (CSCI 5512), which has eight of its
top 20 ngrams, namely “control programming”, “ap-
plications sensing”, “dynamics kinematics”, “applica-
tions programming”, “based programming”, “applica-
tions based”, “inverse kinematics”, and “applications
robotics”, not appearing in the pre-requisites. However,
after some further analysis, we determined that these
ngrams appear in the description of the CSE course en-
titled “CSCI 5551, Introduction to Intelligent Robotic
Systems”, which is not listed as a pre-requisite for that
course. This also suggests that students’ performance
in CSCI 5551 along with the other introductory CSE
courses that contain the remaining top ngrams highly
affect their performance in CSCI 5512. Similar insights
can be gained from the other courses.

This analysis can provide information about the
“hidden” or “informal” knowledge components whose
acquisition by previous students have greatly affected
their performance in the target courses. Moreover,
these knowledge components can be mapped back to
their corresponding courses, which would tell us about
the specific courses that have more impact on the
performance of students in these courses. This can
help in improving the pre-requisite structure and/or the
suggested degree plans of the various degree programs

3These results were obtained by learning models to estimate
the actual grades and not the z-scores. This allowed us to have

both R and P to be non-negative and as such made the results

more interpretable.



Table 6: Top-20 textual features for a sample of four CSE courses.

CSCI 2011 – Discrete Structures of Computer Science

Top Features: calculus space:15.97, functions polynomials:12.72, quantitative systems:9.76, integration involving:9.48, principles sys-
tems:9.21, introduction programming:8.63, language languages:8.26, curves space:8.23, language structures:8.15, data languages:7.8,
functions taylor:7.79, calculus integration:7.62, language programming:7.5, data programming:6.44, involving taylor:6.25, forces mechan-
ical:6.24, modularity programming:6.2, languages programming:6.03, development program:5.58, motion systems:5.53

CSCI 4203 – Computer Architecture

Top Features: logical models:6.38, analysis models:4.91, computer machine:4.35, languages models:4.24, mathematical models:2.48, data
languages:2.25, computer mathematical:2.17, computer programming:1.98, introduction programming:1.76, probability sampling:1.69,
analysis data:1.67, formal models:1.63, computer models:1.61, distributions sampling:1.38, functions methods:1.27, networks program-
ming:1.16, programming projects:1.13, algebra boolean:1.11, communication projects:1.1, development program:1.06.

CSCI 5221 – Foundations of Advanced Networking

Top Features: data programming:3.12, data network:2.94, computer programming:2.21, language structures:1.69, networks program-
ming:1.61, language programming:1.21, architectures routing:1.1, architectures examples:1.06, development program:1.05, computer sci-
ence:0.95, java object:0.94, network programming:0.92, architectures protocols:0.81, java programming:0.72, communication program-
ming:0.68, architectures network:0.68, computer data:0.64, data networks:0.62, concepts programming:0.6, java oriented:0.54.

CSCI 5512 – Artificial Intelligence II

Top Features: language structures:1.44, computer programming:1.37, data programming:1.24, introduction programming:1.16, control
programming:1.16, computer machine:1.13, language programming:1.06, applications sensing:1.04, analysis data:1.01, dynamics kinemat-
ics:0.98, java object:0.95, introduction theorem:0.92, applications programming:0.89, based programming:0.87, differential equations:0.85,
applications based:0.82, analysis design:0.79, inverse kinematics:0.73, development program:0.72, applications robotics:0.67.

The ngrams colored in red denote those that exist in the course’s pre-requisite descriptions. The weight of each ngram is shown next to it,
which is computed as explained in Section 6.3.

in order to take the actual “learned” structure into
account. It can also help in providing future students
with the knowledge components (or courses) that have
had more impact on the previous students’ performance
in the different courses, other than the ones listed in the
course’s pre-requisites.

7 Conclusion

In this paper, we modeled the next-term grade predic-
tion problem in a traditional University setting as a Cu-
mulative Knowledge-based Regression Model (CKRM)
that accumulates the performance of a student in all
the courses that he/she has previously taken in order
to predict his/her future grades. We conducted an ex-
tensive experimental evaluation on a large dataset that
includes 12 degree programs of the College of Science
& Engineering at University of Minnesota. The results
showed that the CKRM-based methods are able to es-
timate more accurate predictions than the competing
methods. Moreover, the analysis of the CKRM-based
methods that use the textual course descriptions showed
that they can be used to identify the knowledge required
for students to perform well in courses.
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Table 7: Models hyper-parameters.

Method params Fall 11 Spring 12 Fall 12 Spring 13 Fall 13 Spring 14 Fall 14 Spring 15

BiasOnly α 1e-1 5e-2 5e-2 5e-2 1e-1 5e-2 1e-1 5e-2

η 5e-4 5e-4 5e-4 5e-4 1e-3 1e-3 5e-3 5e-4

MF α 5e-4 1e-4 5e-3 5e-3 5e-5 5e-5 5e-3 5e-3

η 5e-4 5e-4 1e-3 1e-3 5e-4 5e-4 5e-3 5e-3

dim 60 55 60 45 55 60 60 60

CSRM α 1e-5 5e-4 5e-3 1e-3 5e-3 1e-5 1e-5 1e-5

η 5e-5 1e-4 5e-4 5e-5 5e-5 5e-5 5e-5 5e-4

CKRMdep α 5e-3 5e-3 1e-3 5e-3 1e-3 1e-3 5e-3 1e-3

η 1e-2 5e-3 5e-3 5e-3 5e-4 1e-2 5e-3 5e-3

λ 4e-1 4e-1 5e-1 2e-1 4e-1 4e-1 4e-1 3e-1

dim 30 30 30 30 30 30 30 30

CKRMall α 5e-5 5e-3 1e-3 1e-5 1e-3 1e-3 1e-4 5e-3

η 5e-3 1e-2 5e-3 5e-3 1e-2 1e-2 1e-2 5e-3

λ 5e-1 4e-1 5e-1 2e-1 5e-1 4e-1 5e-1 3e-1

dim 30 20 30 30 30 30 20 30

CKRMtext α 1e-4 1e-3 1e-3 1e-3 1e-3 1e-4 5e-5 1e-5

η 1e-4 1e-4 5e-3 1e-4 1e-3 1e-4 1e-4 1e-4

λ 4e-1 3e-1 5e-1 2e-1 4e-1 3e-1 5e-1 3e-1

estimate-P true false true false true false false true

The headers of columns 3–10 denote the test term for each of the eight generated datasets. The parameter η denotes the learning rate for
the SGD algorithm, the parameter “dim” denotes the number of latent dimensions used in the corresponding methods, and the parameter
“estimate-P” for CKRMtext’ models denotes whether the matrix P was estimated (true) or was used as indicator vectors (false).
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Models Hyper-parameters
Table 7 shows the hyper-parameters of the selected models for each
of the CKRM-based methods as well as the competing approaches
for each of the eight subsets of the data that were generated (see
Section 5.2).
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