
Dynamic Load Balancing of Unstructured Computations in Decision Tree
Classifiers �

A. Srivastava E. Han V. Kumar V. Singh

Information Technology Lab Dept. of Computer Science Information Technology Lab

Hitachi America, Ltd. Army HPC Research Center Hitachi America, Ltd.

anurags@hitachi.com University of Minnesota vsingh@hitachi.com

fhan,kumarg@cs.umn.edu

Abstract

One of the important problems in data mining is discov-
ering classification models from datasets. Application do-
mains include retail target marketing, fraud detection, and
design of telecommunication service plans. Highly paral-
lel algorithms for constructing classification decision trees
are desirable for dealing with large data sets. Algorithms
for building classification decision trees have a natural con-
currency, but are difficult to parallelize due to the inher-
ent dynamic nature of the computation. In this short pa-
per, we present parallel formulations of classification de-
cision tree learning algorithm based on induction. We de-
scribe two basic parallel formulations, Synchronous Tree
Construction Approach and Partitioned Tree Construction
Approach. We propose a hybrid method that employs the
good features of these methods. Our experimental results
of the hybrid method on an IBM SP-2 demonstrate excellent
speedups.

1 Introduction

Data mining [3, 5, 7, 8, 13, 14] is the efficient and pos-
sibly unsupervised discovery of interesting, useful and pre-
viously unknown patterns from databases. One of the im-
portant problems in data mining is discovering classification
models from datasets. Given an input training dataset with
a number of attributes and a class label, the discovery task

�A significant part of this work was done while Anurag Srivastava and
Vineet Singh were at IBM TJ Watson Research Center. This work was
supported by NSF grant ASC-9634719, Army Research Office contract
DA/DAAH04-95-1-0538, Cray Research Inc. Fellowship, and IBM part-
nership award, the content of which does not necessarily reflect the policy
of the government, and no official endorsement should be inferred. Access
to computing facilities was provided by AHPCRC, Minnesota Supercom-
puter Institute, Cray Research Inc., and NSF grant CDA-9414015.

is to build a model of the class label such that the model
can be used to classify new datasets. Application domains
include retail target marketing, fraud detection, and design
of telecommunication service plans. Several classification
models like neural networks [10], genetic algorithms [6],
and decision trees [12], have been proposed. Among these
classification models, decision trees are probably the most
popular since they obtain reasonable accuracy [4], they are
relatively inexpensive to compute and they are easy to inter-
pret.

In the data mining domain, the data to be processed tends
to be very large. Hence, it is highly desirable to design com-
putationally efficient as well as scalable algorithms. Clas-
sification decision tree construction algorithms have natu-
ral concurrency, as once a node is generated, all of its chil-
dren in the classification tree can be generated concurrently.
Furthermore, the computation for generating successors of
a classification tree node can also be decomposed by per-
forming data decomposition on the training data. Neverthe-
less, parallelization of the algorithms for constructing the
classification tree is challenging for the following reasons.
First, the shape of the tree is highly irregular and is deter-
mined only at runtime. Furthermore, the amount of work
associated with each node also varies, and is data depen-
dent. Hence any static allocation scheme is likely to suffer
from major load imbalance. Second, even though the suc-
cessors of a node can be processed concurrently, they all use
the training data associated with the parent node. If this data
is dynamically partitioned and allocated to different proces-
sors that perform computation for different nodes, then there
is a high cost for data movements. If the data is not parti-
tioned appropriately, then performance can be bad due to the
loss of locality.

In this short paper, we present parallel formulations of
classification decision tree learning algorithm based on in-
duction. We describe two basic parallel formulations. One



is based on Synchronous Tree Construction Approach and
the other is based on Partitioned Tree Construction Ap-
proach. We propose a hybrid method that employs the
good features of these methods. Experimental results of
the hybrid method on an IBM SP-2 demonstrate excellent
speedups. Extended version of this paper is available at
[15].

2 Sequential Classification Rule Learning Al-
gorithms

Most of the existing induction–based algorithms like
C4.5 [12], CDP [1], SLIQ [11], and SPRINT [13] use Hunt’s
method [12] as the basic algorithm. Here is a recursive
description of Hunt’s method for constructing a decision
tree from a set T of training cases with classes denoted
fC1; C2; : : : ; Ckg.

Case 1 T contains cases all belonging to a single class Cj .
The decision tree for T is a leaf identifying class Cj .

Case 2 T contains cases that belong to a mixture of
classes. A test is chosen, based on a single attribute,
that has one or more mutually exclusive outcomes
fO1; O2; : : : ; Ong. Note that in many implementa-
tions, n is chosen to be 2 and this leads to a binary deci-
sion tree. T is partitioned into subsets T1; T2; : : : ; Tn,
where Ti contains all the cases in T that have outcome
Oi of the chosen test. The decision tree for T consists
of a decision node identifying the test, and one branch
for each possible outcome. The same tree building ma-
chinery is applied recursively to each subset of training
cases.

Case 3 T contains no cases. The decision tree for T is a
leaf, but the class to be associated with the leaf must
be determined from information other than T . For ex-
ample, C4.5 chooses this to be the most frequent class
at the parent of this node.

In case 2 of Hunt’s method, a test based on a single at-
tribute is chosen for expanding the current node. The choice
of an attribute is normally based on the entropy gains of the
attributes. The entropy of an attribute is calculated from
class distribution information. For a discrete attribute, class
distribution information of each value of the attribute is re-
quired. For a continuous attribute, binary tests involving all
the distinct values of the attribute are considered. Once the
class distribution information of all the attributes are gath-
ered, each attribute is evaluated in terms of either entropy
[12] or Gini Index [2]. The best attribute is selected as a test
for the node expansion.

Proc 0

Proc 0 Proc 1 Proc 2 Proc 3

Proc 1 Proc 2 Proc 3

Class Distribution Information

Class Distribution Information

Figure 1. Synchronous Tree Construction Ap-
proach with Depth–First Expansion Strategy

3 Parallel Formulations

In this section, we give two basic parallel formulations
for the classification decision tree construction and a hybrid
scheme that combines good features of both of these ap-
proaches. We focus our presentation for discrete attributes
only. Our approaches are also applicable when continuous
attributes are present. Detailed discussion of handling con-
tinuous attributes is given in [9, 13, 16]. In all parallel for-
mulations, we assume that N training cases are randomly
distributed to P processors initially such that each proces-
sor has N=P cases.

In Synchronous Tree Construction Approach approach,
all processors construct a decision tree synchronously by
sending and receiving class distribution information of lo-
cal data. Figure 1 shows the overall picture. The root node
has already been expanded and the current node is the left-
most child of the root (as shown in the top part of the fig-
ure). All the four processors cooperate to expand this node
to have two child nodes. Next, the leftmost node of these
child nodes is selected as the current node (in the bottom of
the figure) and all four processors again cooperate to expand
the node.

In Partitioned Tree Construction approach, whenever
feasible, different processors work on different parts of the
classification tree. In particular, if more than one processors
cooperate to expand a node, then these processors are parti-
tioned to expand the successors of this node. At the begin-
ning, all processors work together to expand the root node
of the classification tree. At the end, the whole classification
tree is constructed by combining subtrees of each processor.

Figure 2 shows an example. First (at the top of the fig-



Proc 0 Proc 1 Proc 2 Proc 3

Proc 0 Proc 1 Proc 2 Proc 3

Data Item

Data Item

Proc 0 Proc 1 Proc 3Proc 2

Figure 2. Partitioned Tree Construction Ap-
proach

ure), all four processors cooperate to expand the root node
just like they do in the synchronous tree construction ap-
proach. Next (in the middle of the figure), the set of four
processors is partitioned in three parts. The leftmost child is
assigned to processors 0 and 1, while the other nodes are as-
signed to processors 2 and 3, respectively. Now these sets of
processors proceed independently to expand these assigned
nodes. In particular, processors 2 and processor 3 proceed to
expand their part of the tree using the serial algorithm. The
group containing processors 0 and 1 splits the leftmost child
node into three nodes. These three new nodes are partitioned
in two parts (shown in the bottom of the figure); the leftmost
node is assigned to processor 0, while the other two are as-
signed to processor 1. From now on, processors 0 and 1 also
independently work on their respective subtrees.

Our hybrid parallel formulation has elements of both
schemes. The Synchronous Tree Construction Approach in-
curs high communication overhead as the tree deepens. The
Partitioned Tree Construction Approach incurs high cost of
data movements and load balancing after each partition of
the tree expansion frontier. The hybrid scheme keeps con-
tinuing with the first approach as long as the communica-
tion cost incurred by the first formulation is not too high.
Once this cost becomes high, the processors as well as the
current frontier of the classification tree are partitioned into

Computation Frontier at depth 3

Figure 3. The computation frontier during
computation phase

Partition 1 Partition 2

Figure 4. Binary partitioning of the tree to re-
duce communication costs

two parts.
As an example of the hybrid algorithm, Figure 3 shows a

classification tree frontier at depth 3. So far, no partitioning
has been done and all processors are working cooperatively
on each node of the frontier. At the next frontier at depth 4,
partitioning is triggered, and the nodes and processors are
partitioned into two partitions as shown in Figure 4.

A key element of the algorithm is the criterion that trig-
gers the partitioning of the current set of processors (and
the corresponding frontier of the classification tree ). If
partitioning is done too frequently, then the hybrid scheme
will approximate the partitioned tree construction approach,
and thus will incur too much data movement cost. If the
partitioning is done too late, then it will suffer from high
cost for communicating statistics generated for each node
of the frontier, like the synchronized tree construction ap-
proach. One possibility is to do splitting when the accu-
mulated cost of communication becomes equal to the cost
of moving records around in the splitting phase. More pre-
cisely, splitting is done when

X
(Communication Cost) �MovingCost+LoadBalancing

4 Experimental Results

We have implemented the three parallel formulations us-
ing the MPI programming library. We use binary split-



ting at each decision tree node and grow the tree in breadth
first manner. For generating large datasets, we have used
the widely used synthetic dataset proposed in the SLIQ pa-
per [11] for all our experiments. Ten classification functions
were also proposed in [11] for these datasets. We have used
the function 2 dataset for our algorithms. In this dataset,
there are two class labels and each record consists of 9 at-
tributes having 3 categoric and 6 continuous attributes. Ex-
periments were done on an IBM SP2. The results for com-
paring speedup of the three parallel formulations are re-
ported for parallel runs on 1, 2, 4, 8, and 16 processors.
More experiments for the hybrid approach are reported for
up to 128 processors. Each processor has a clock speed of
66.7 MHz with 256 MB real memory. The operating system
is AIX version 4 and the processors communicate through a
high performance switch (hps).

First, we present results of our schemes in the context of
discrete attributes only. We compare the performance of the
three parallel formulations on up to 16 processor IBM SP2.
For these results, we discretized 6 continuous attributes uni-
formly. For measuring the speedups, we worked with 1.6
million training cases and increased the processors from 1
to 16. The results in Figure 5 show the speedup comparison
of the three parallel algorithms proposed in this paper.

The results show that the synchronous tree construction
approach has a good speedup for 2 processors, but it has a
very poor speedup for 4 or more processors. There are two
reasons for this. First, the synchronous tree construction ap-
proach incurs high communication cost, while processing
lower levels of the tree. Second, a synchronization has to be
done among different processors as soon as their communi-
cation buffer fills up.

The partitioned tree construction approach has a better
speedup than the synchronous tree construction approach.
However, its efficiency decreases as the number of proces-
sors increases to 8 and 16. The partitioned tree construction
approach suffers from load imbalance. Even though nodes
are partitioned so that each processor gets equal number of
tuples, there is no simple way of predicting the size of the
subtree for that particular node. This load imbalance leads
to the runtime being determined by the most heavily loaded
processor. The partitioned tree construction approach also
suffers from the high data movement during each partition-
ing phase, the partitioning phase taking place at higher levels
of the tree. As more processors are involved, it takes longer
to reach the point where all the processors work on their lo-
cal data only. We have observed in our experiments that load
imbalance and higher communication, in that order, are the
major cause for the poor performance of the partitioned tree
construction approach as the number of processors increase.

The hybrid approach has a superior speedup compared to
the partitioned tree approach as its speedup keeps increasing
with increasing number of processors. As discussed in Sec-

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

No Of Processors

S
pe

ed
up

 Speedup for 1.6 million examples, partitioned − "−+−", hybrid − "−o−", synchronous − "−x−" 

Figure 5. Speedup comparison of the three
parallel algorithms.

tion 3, the hybrid controls the communication cost and data
movement cost by adopting the advantages of the two basic
parallel formulations. The hybrid strategy also waits long
enough for splitting, until there are large number of decision
tree nodes for splitting among processors. Due to the alloca-
tion of decision tree nodes to each processor being random-
ized to a large extent, good load balancing is possible. The
results confirmed that the proposed hybrid approach based
on these two basic parallel formulations is effective.

We have also performed experiments to verify that our
splitting criterion of the hybrid algorithm is correct. Figure 6
shows the runtime of the hybrid algorithm with different ra-
tio of communication cost and the sum of moving cost and
load balancing cost, i.e.,

ratio =

P
(Communication Cost)

Moving Cost + Load Balancing
:

The result was obtained with 1.6 million examples on 16
processors. We proposed that splitting when this ratio is 1.0
would be the optimal time. The results verified our hypoth-
esis as the runtime is the lowest when the ratio is around 1.0.
As the splitting decision is made farther away from the op-
timal point proposed, the runtime increases significantly.

The experiments on 16 processors clearly demonstrated
that the hybrid approach gives a much better performance
and the splitting criterion used in the hybrid approach is
close to optimal. We then performed experiments of running
the hybrid approach on more number of processors with dif-
ferent sized datasets to study the speedup and scalability.
For these experiments, we used the original data set with
continuous attributes and used a clustering technique to dis-
cretize continuous attributes at each decision tree node [16].



−4 −2 0 2 4 6 8 10
0

100

200

300

400

500

600

log2(Splitting Criteria Ratio), x=0 −> ratio=1

 R
un

tim
es

 Runtimes for splitting at different values of ratio, 16 processors, 1.6 million examples

Figure 6. Splitting criterion verification in the
hybrid algorithm.

Note that the parallel formulation gives almost identical per-
formance as the serial algorithm in terms of accuracy and
classification tree size [16]. The results in Figure 7 show the
speedup of the hybrid approach. The results confirm that the
hybrid approach is indeed very effective.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Database mining:
A performance perspective. IEEE Transactions on Knowl-
edge and Data Eng., 5(6):914–925, December 1993.

[2] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classi-
fication and Regression Trees. Wadsworth, Monterrey, CA,
1984.

[3] M. Chen, J. Han, and P. Yu. Data mining: An overview from
database perspective. IEEE Transactions on Knowledge and
Data Eng., 8(6):866–883, December 1996.

[4] D. S. D. Michie and C. Taylor. Machine Learning, Neural
and Statistical Classification. Ellis Horwood, 1994.

[5] U. Fayyad, G. Piatetski-Shapiro, and P. Smith. From data
mining to knowledge discovery: An overview. In U. Fayyad,
G. Piatetsky-Shapiro, P. Smith, and R. Uthurusamy, editors,
Advances in Knowledge Discovery and Data Mining, pages
1–34. AAAI/MIT Press, 1996.

[6] D. E. Goldberg. Genetic Algorithms in Search, Optimiza-
tions and Machine Learning. Morgan-Kaufman, 1989.

[7] E. Han, G. Karypis, and V. Kumar. Scalable parallel
data mining for association rules. In Proc. of 1997 ACM-
SIGMOD Int. Conf. on Management of Data, Tucson, Ari-
zona, 1997.

[8] E. Han, G. Karypis, V. Kumar, and B. Mobasher. Clustering
based on association rule hypergraphs (position paper). In
Proc. of the Workshop on Research Issues on Data Mining
and Knowledge Discovery, pages 9–13, Tucson, Arizona,
1997.

0

20

40

60

80

100

0 20 40 60 80 100 120 140

S
pe

ed
up

Number of processors

Speedup curves for different sized datasets

0.8 million examples
1.6 million examples
3.2 million examples
6.4 million examples

12.8 million examples
25.6 million examples

Figure 7. Speedup of the hybrid approach
with different size datasets.

[9] M. Joshi, G. Karypis, and V. Kumar. ScalParC: A new scal-
able and efficient parallel classification algorithm for mining
large datasets. In Proc. of the International Parallel Process-
ing Symposium, 1998.

[10] R. Lippmann. An introduction to computing with neural
nets. IEEE ASSP Magazine, 4(22), April 1987.

[11] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scal-
able classifier for data mining. In Proc. of the Fifth Int’l
Conference on Extending Database Technology, Avignon,
France, 1996.

[12] J. R. Quinlan. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann, San Mateo, CA, 1993.

[13] J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable


