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Abstract

Hierarchical methods are well known clustering technique that can be potentially very useful for various data

mining tasks. A hierarchical clustering scheme produces a sequence of clusterings in which each clustering is nested

into the next clustering in the sequence. Since hierarchical clustering is a greedy search algorithm based on a local

search, the merging decision made early in the agglomerative process are not necessarily the right ones. One possible

solution to this problem is to refine a clustering produced by the agglomerative hierarchical algorithm to potentially

correct the mistakes made early in the agglomerative process. The problem of refining a clustering has many simi-

larities with that of refining a min-cutk-way partitioning of a graph. In this paper, we explore multilevel refinement

schemes for refining and improving the clusterings produced by hierarchical agglomerative clustering. This algorithm

combines traditional hierarchical clustering with multilevel refinement that has been found to be very effective for

computing min-cutk-way partitioning of graphs. We consider several clustering objective functions for the proposed

refinement step and investigate the usefulness of these objective functions. Our experimental results demonstrate

that this algorithm produces clustering solutions that are consistently and significantly better than those produced by

hierarchical clustering algorithms alone. Furthermore, our algorithm has the additional advantage of being extremely

fast, as it operates on a sparse similarity matrix. The amount of time required by our algorithm ranged from two

second for a data set with 358 items, to 80 seconds for a data set with 9133 items on a Pentium II PC.

1 Introduction

Hierarchical methods are commonly used for clustering in Data Mining [9, 17, 2]. A hierarchical clustering scheme

produces a sequence of clusterings in which each clustering is nested into the next clustering in the sequence. An
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agglomerative algorithm for hierarchical clustering starts withn points, and at each step it merges the two most similar

points [9]. Different measures have been proposed for computing similarities [6, 7, 11]. In some of these schemes, a

model of the cluster connectivity is used to compute similarities [9, 3, 7, 11].

Hierarchical clustering is a greedy search algorithm based on a local search. Hence the merging decision made

early in the agglomerative process are not necessarily the right ones. For example, for the data set in Figure 1 (a), the

similarity between data pointsA andF is 10, which is larger than the similarity among all other pairs shown in the

figure. Hence, hierarchical scheme will mergeA andF first in the agglomerative process (Figure 1 (b)). Eventually,

both A andF will become part of one of the two clusters, even though they really belong to different clusters.
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Figure 1: An example of data set in which the greedy merging decision leads to a wrong clustering solution.

One possible solution to this problem is to refine a clustering produced by the agglomerative hierarchical algorithm

to potentially correct the mistakes made early in the agglomerative process. For example, given the clusters in Figure 1

(c), the refinement could break up{A, F} and moveF to the cluster containing{G, H, I, J }, thus correct the mistake

made in the step of Figure 1 (b). In general, individual data points or collections of them could be moved from

one cluster to another to optimize some cluster quality objective. Many such cluster quality objectives have been

investigated [9, 7], and can potentially be used for such refinement.

The problem of refining a clustering has many similarities with that of refining a min-cutk-way partitioning of a

graph. Given a graph that has been partitioned intok parts, the refinement of thisk-way partitioning moves nodes

across partitions to minimize the weighted sum of the edges straddling the partition boundaries [15]. The problem

of refinement ofk-way partitioning of a graph has been studied extensively in the context of graph partitioning, and

efficient multi-level algorithms are available to solve this problem [15]. In multilevel graph partitioning algorithms, a

sequence of coarser graphs is constructed and ak-way partitioning of the coarsest graph is computed. In each ensuing

uncoarsening step, thek-way partitioning is successively refined using variations of the Kernighan-Lin (KL) [18]

refinement heuristic. Since this refinement is performed at many levels, even simple variations of KL become very

powerful [12].

Similar multi-level refinement schemes can be used to refine a clustering and potentially correct mistakes made

early. In fact, the agglomerative hierarchical clustering schemes have a great deal of similarity with the coarsening

phase of multilevel algorithms for finding a min-cut partitioning of graphs [8, 13]. Both schemes obtain successively

coarser representations of their original data sets and both schemes use a locally greedy approach to construct these

representations. However, conventional hierarchical clustering algorithms lack the refinement phase of the partitioning

algorithm. As the extensive experience with multilevel graph partitioning has shown, the refinement phase (especially

when applied in a multilevel fashion) is capable of significantly improving the overall quality of the solution [12]. A

similar multi-level refinement algorithm holds the potential to improve upon the locally greedy decisions used in the

agglomerative hierarchical scheme.

In this paper, we explore multilevel refinement schemes for refining and improving the clustering produced by

hierarchical agglomerative methods. We consider several clustering objective functions for the proposed refinement

step, and investiage the usefulness of these functions in the context of variety of data sets.
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The rest of this paper is organized as follows. We first discuss agglomerative hierarchical clustering in Section 2.

In Section 3, we present our clustering refinement algorithm. Section 4 provides an experimental evaluation of our

clustering algorithm and compares it with other hierarchical algorithms. Finally, we provide summary in Section 5.

2 Review of Agglomerative Hierarchical Clustering Algorithms

There are many different variations of agglomerative hierarchical algorithms [9]. These algorithms primarily differ in

how they update the similarity between existing clusters and the merged clusters. In some methods [9], each cluster

is represented by a centroid of the points contained in the cluster, and the similarity between two clusters is measured

by the similarity between the centroids of the clusters. These methods tend to fail on clusters of arbitrary shapes

and different sizes. Recently proposed algorithm CURE [6] remedies some of these drawbacks by representing each

cluster with a collection of representative centroids.

In many cases, pair-wise similarity is the only information available, making the use of centroid based hierarchical

scheme difficult or impossible. Many agglomerative schemes can work for data for which only pair-wise similarity

is available. In the single link method [9], each cluster is represented by all the data points in the cluster. The

similarity between two clusters is measured by the similarity of the closest pair of data points belonging to different

clusters. Unlike the centroid/medoid based methods, this method can find clusters of arbitrary shape and different

sizes. However, this method is highly susceptible to noise, outliers, and artifacts.

In some agglomerative hierarchical algorithms, the similarity between two clusters is captured by the aggregate

of the similarities (i.e., interconnectivity) among pairs of items belonging to different clusters. The rationale for this

approach is that subclusters belonging to the same cluster will tend to have high interconnectivity. But the aggregate

inter-connectivity between two clusters is a function of the size of the clusters involved, and in general, pairs of larger

clusters will have higher inter-connectivity. Hence, many such schemes normalize the aggregate similarity between a

pair of clusters with respect to the expected inter-connectivity of the clusters involved.

One often used method assumes that a cluster of sizen containsnθ edges, whereθ is between 1 and 2. LetA andB

be two clusters of sizen andm, respectively. IfA andB belong to the same natural cluster, then there will be a total of

(n + m)θ edges in the cluster. Of these,nθ andmθ edges will be internal to clustersA andB, and(n + m)θ − nθ − mθ

edges will be across clustersA andB. Hence the similarity betweenA andB is computed as the ratio

Aggregate similarity between items A and B

(n + m)θ − nθ − mθ

This is essentially the model described in [7]. Forθ = 2, this also becomes essentially equal to the group average

model [9]. We will refer to this as the generalized group average model.

Graph Sparsification Most of the algorithms discussed above work implicitly or explicitly with then × n sim-

ilarity matrix such that(i, j) element of the matrix represents the similarity betweeni th and j th data items. Some

algorithms derive a new similarity matrix using the original matrix [10, 5, 9, 7], and then apply one of the existing tech-

niques on this derived similarity matrix. In many cases, the new derived similarity matrix is just a sparsified version

of this original similarity matrix from which certain entries (e.g., those whose value is below a threshold) have been

deleted. In other cases, the derived similarity matrix has entirely different values [10, 5, 7]. The sparsified/derived

matrix can help eliminate/reduce noise from the data, and substantially reduce the execution time of many algorithms.

In some cases, it can also provide a better model of similarities for the problem domain. For example, mutual shared

method presented in [10] helps remove noise and outliers and is shown to provide a better model to capture similarities

among transactions in [7]. Two most common techniques for sparsifying dense graphs arek-nearest graph [10, 5, 9],
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shared nearest neighbor [10, 7], and their variations [5, 7]. In some cases, these sparsification techniques are so effec-

tive that the fragment the graph according to cluster boundaries. But in presence of outliers and noise, finding good

clusters of the resulting sparse graph is still quite challenging for most problems..

3 Cluster Refinement Algorithm

In order to refine a clustering solution, we must develop two major components. First, we need to develop schemes that

can capture the overall goodness of a clustering in the form of a clusteringobjective functionsuch that the optimization

of this function translates to an improvement of the overall clustering solution. Second, we need to develop effective

algorithms to find groups of items whose movement to different clusters will optimize the objective function.

In the remaining of this section we present two different ways of defining the clustering objective function and

present a cluster refinement algorithm that is based on the multilevel refinement paradigm.

3.1 Refinement Objective Functions

There is no single canonical method to capture/describe the clustering objective. Recently, Guha, Restogi, and Shim

[7] have proposed a function for measuring the goodness of a clustering solution. Given a similarity matrixS, and a

p-way clustering, they define the goodness of the clustering as

E p =
p∑

i=1

ni

∑
v,u∈Ci

S[v, u]
nθ

i

, (1)

whereCi denotes thei th cluster of sizeni . The rational of the above goodness function is as follows [7]. For a

particular clusterCi , the quantity
∑

v,u∈Ci
S[v, u] measures the degree of connectivity of the nodes in the cluster. Since

a good clustering should maximize the degree of connectivity for each cluster, a metric like
∑p

i=1

∑
v,u∈Ci

S[v, u] that

simply sums up the amount of similarity between nodes in the same clusters should have been sufficient. However,

such a metric gives the highest goodness to a clustering that puts all the data items into a single cluster. To address

this problem, Equation 1 divides the degree of connectivity among the nodes of each cluster with the quantitynθ
i , that

represents the expected degree of connectivity among the items of clusterCi . The value of parameterθ depends on

the data set as well as the kind of the clusters we are interested in. Finally, the goodness measure for each cluster is

weighted by the size of the cluster, so that large clusters contribute more to the overall goodness function.

To see the utility of the cluster objective function, consider the simple hierarchical clustering instance shown in

Figure 2 that shows a data set with six items. As easily seen, this example has two natural clusters, one containing

the set of items{A, B, C} and the other containing the set{D, E, F}. However, the hierarchical algorithm, starts by

combining itemsC and D together. Even though this is the best available choice in the beginning, it does not lead

to the optimal solution. Since the algorithm does not revisit these choices later, it can never correct its mistake. This

mistake can potentially be corrected if the final clustering of Figure 2 (e) is refined in the context of some objective

function.

If the objective function of Equation 1 is used to evaluate the two clusters found by the hierarchical algorithm on

the example of Figure 2, then the cluster consisting of{A, B, C, D} has a goodness of 70/42 = 4.375, whereas the

cluster{E, F} has a goodness of 18/22 = 4.5, leading to an overall goodness value of of 4∗ 4.375+ 2 ∗ 4.5 = 26.5.

If D is moved to the cluster containing{E, F}, then the resulting clusters{A, B, C} and{D, E, F} have an overall

goodness value of 3∗ (50/32) + 3 ∗ (50/32) = 33.3, which as expected, is better than that of the previous clustering.

There are number of potential problems with the above objective function. First, this function can lead to incorrect

information if the internal connectivity of clusters is sufficiently different than the one assumed. Given that cluster
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Figure 2: An example of the hierarchical clustering algorithm. Note that the locally greedy decisions performed by the algorithm
can lead to sub-optimal clustering solutions.

connectivity is often unknown, a wrong choice ofθ can lead to incorrect clustering even if the objective function is

maximized. Note that this becomes a serious problem when the data set contains clusters that have different levels

of interconnectivity, as no single level ofθ is valid for all clusters. Another problem with this scheme is that many

agglomerative hierarchical schemes work with sparsified graph. In fact, the multi-level refinement scheme presented

in this paper assumes the similarity graph to be sparse. For such sparse graphs, the value ofθ becomes quite sensitive

to cluster sizes.

Another possible objective is to minimize the external connectivity of the clusters. The external connectivity is

essentially minimized by min-cutk-way partitioning of the similarity graph. A key problem with the min-cut objective

is that it often gets optimized when there arek − 1 clusters containing just one data point each, and one large cluster

containing the remaining points. For example, for the data set shown in Figure 3 (a), the min-cut objective for three

cluster is optimized when one cluster containsA, the second cluster containsB, and the third cluster contains the

remaining data points (as shown in Figure 3 (b)).

(a) (b)

A B

Figure 3: An example of clusters in which min-cut objective leads to a wrong clustering solution.

This problem can be corrected if the edge weights are scaled according to the ratio-cut heuristic. That is, weight

w of an edge between two clusters is scaled by a factor of1
|A|×|B| (and is thus replaced by w

|A|×|B| ), and the objective

becomes one of minimizing this scaled weighted sum. For example, Figure 4 shows the new scaled edge weight when

the ratio-cut heuristic is used. The new scaled weights of the edges connecting the clusters in Figure 4 (a) is larger

than those of the edges connecting the clusters in Figure 4 (b). Hence, the clustering solution shown in Figure 4 (b) is

preferred over the clustering solution shown in Figure 4 (a).

This objective is very similar to the objective that drives the agglomeration step in the group averaging scheme, as

it effectively assumes full inter-connectivity between all pairs of data points across two clusters, and uses the expected

connectivity (|A| × |B|) to scale down the edge weight. A more general formulation will scale each edge betweenA

and B by (|A| + |B|)θ − |A|θ − |B|θ . This is similar to the agglomeration method used in ROCK. In this case, the

expected inter-connectivity is controlled by parameterθ .
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Figure 4: An example of clusters in which ratio-cut heuristic is useful.

This objective function is able to correctly refine the clustering of Figure 2. But this clustering objective function

can also be misleading in certain situations. Specifically, if the data contains clusters of widely different sizes, this

objective will tend to break larger clusters. For example, consider the clusters shown in Figure 5. Withθ = 2, the

scaling factor in the objective function is 2× |A| × |B| for two clustersA andB. Hence, the ratio cut of the cutX in

Figure 5 is 2
2×1×80 = 0.013, whereas the ratio cut of the cutY is 25

2×41×40 = 0.008. Hence the cutY is chosen and the

wrong clustering based on this cut is produced.
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Figure 5: An example of clusters in which ratio-cut objective leads to a wrong clustering solution. Note that numbers inside circle
represents number of data points in the subcluster and the numbers on the edge indicate the total number of edges between two
subclusters.

3.2 Refinement Algorithm

As discussed earlier, the goal of the cluster refinement algorithm is to find groups of items, such that by moving

them to different clusters it optimizes a certain objective function. One way of finding the desired groups, is to find

them a single item at a time, using a greedy scheme. That is, we can repeatedly move the item that will lead to the

greatest improvement of the objective function. Unfortunately, a scheme like that can easily be trapped into local

minima. This is because quite often, in order to substantially improve the objective function, we may have to move

entire sets of items between clusters. However, if we start moving thesedesiredsets of items single item at a time,

the objective function may initially become worse before it gets better. One way of addressing this problem is to

use much more sophisticated refinement algorithms that are capable of climbing out of local minima (e.g., simulated

annealing). However these type of algorithms can significantly increase the amount of time required to perform the

cluster refinement.

Recently, a new class of refinement algorithms have been developed in the context of graph partitioning, that have

small computational requirements and they are very effective in climbing out of local minima [16]. Thesemultilevel

refinement algorithmswork as follows. Given a graphG = (V , E), and a partitioning vectorP, they first obtain a

sequence of successivelycoarsergraphsG1, G2, . . . , Gk . GraphG1 is obtained from the original graphG, by finding
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a maximal matching of the vertices ofG subject to the constraint that each pair of matched vertices belongs to the

same partition, and collapsing the matched vertices together to form the vertices ofG1. Each successive graphGi+1

is obtained from the previous coarse graphGi in a similar fashion. Note that since each successive coarse graph does

not combine vertices that belong to different partitions, the original partitioning is preserved in the entire sequence of

graphs. Once this sequence of graphs has been constructed, then a greedy refinement algorithm is obtained to improve

the quality of the partitioning at the coarsest graphGk . The new partitioning is then projected to the next level finer

graphGk−1, and it is further refined using a greedy algorithm. This process of projecting and refining the partitioning

at each successive finer graph is performed until the original graph has been reached. Multilevel refinement algorithms

are very effective in climbing out of local minima, because they operate at different representation scales; thus, they

can easily identify groups of items to be moved together.

Our cluster refinement algorithm is based on this multilevel refinement paradigm. The input to our multilevel

cluster refinement algorithm is the sparse similarity graphG = (V , E) used by the clustering algorithm to represent

the similarity relations among the data items, and ap-way clustering vectorP produced by the clustering algorithm,

such thatP[i ] is the cluster that thei th item is assigned to. Starting from the original graph, our algorithm constructs

a sequence of successively coarser graphsG1, . . . , Gk , until we obtain a graph that has exactlyp vertices (one for

each cluster), and then applies a simple randomized greedy refinement algorithm at each successive finer graph. This

randomized greedy refinement algorithm consists of a number of passes. During each pass of the algorithm, the various

vertices in the graph (i.e., sub-clusters) are visited in a random order. For each vertexv, it computes the improvement

of the value of the objective function obtained ifv was to move from the cluster that it currently belongs to, to one

of the other clusters thatv is connected to. If some of these moves improve the objective function, then the one that

leads to the highest improvement is selected andv is assigned to this cluster. If all the moves worsen the value of

the objective function, thenv is not moved. The refinement algorithm stops either when after an entire pass not a

single vertex was moved to another cluster, or when a predetermined number of passes has been performed. In our

experiments, we allowed the refinement algorithm to perform a maximum of five passes. In our extensive experience

with multi-level partitioning of very large graphs (over 1 million nodes), we have found this limit to be quite sufficient,

as much of the improvement occurs in just a few iterations.

From the above description of the multilevel refinement algorithm and the clustering objectives discussed in Sec-

tion 3.1 we can define three distinct clustering refinement algorithms. The first algorithm tries to increase the internal

inter-connectivity of the items in the clusters by maximizing Equation 1. The second algorithm tries to reduce the

inter-connectivity between clusters by minimizing the ratio cut of the resultingp-way clustering. Finally, the third

algorithm tries to achieve both by selecting to move items if such moves improve both Equation 1 as well as the ratio

cut; that is, a move is performed if the resulting clustering has a higher quality as measured by Equation 1 and at the

same time it has a smaller ratio cut.

The multilevel cluster refinement algorithm can be used in many different ways. One possible approach is to use it

to refine the final clustering solution produced by the hierarchical clustering algorithm, as it is done in our experiments.

However, an alternate approach is to use it to periodically refine the current clustering solution as it is being computed.

3.3 Computational Complexity

The overall complexity of the multilevel clustering refinement algorithm depends on the rate in which the size of

successively coarser graphs is decreasing. In particular, if the size of successively coarse graphs decreases by a

constant factor, then the complexity of the algorithm is linear on the number of items and the number of edges in the

sparse similarity graph [14, 16]. Since successive coarse graphs are constructed by computing a maximal matching of

the vertices and collapsing together the vertices that were matched, the number of vertices of successive coarse graphs
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tends to decrease by a factor of two. In this case, if the sparse similarity graph was obtained using ak-nearest neighbor

approach [9], then the overall complexity is linear on the number of items (as the total number of edges is linear on

the number of nodes). In the worst case, when the size of successively coarse graphs decreases by just a few vertices

at a time, then the complexity of the refinement algorithm will be quadratic on the number of items.

In general, the overall complexity of a clustering algorithm that uses the multilevel refinement algorithm depends on

the amount of time required to compute the initial similarity matrix and the amount of time required by the clustering

algorithm. For most problems, the dense similarity matrix can be computed in time that is quadratic on the number of

items, and the initial clustering solution can be obtained in a similar amount of time.

4 Experimental Results

To evaluate the ability of our multilevel refinement algorithms to further improve the quality of a clustering, we used

them to refine the solutions produced by the hierarchical clustering algorithm described in Section 2 that is based on

the generalized group average model. We used five data sets to perform these comparisons. Two of these data sets

consist of points in two dimensions and were synthetically generated, one was obtained from Reuters newswire and

the other two were obtained from the TREC collection of documents [22].

For each one of the data sets we constructed ann × n similarity matrix, using techniques that are appropriate for

the nature of each particular data set. Details on how the similarity matrices were constructed are presented along

with the experimental results in the following sections. From each one of these five similarity matrices, a sparse graph

representation was obtained by using thek-nearest neighbor graph approach [10, 5]. In all the experiments presented in

Section 4.2 we selectedk to be equal to 10, and we studied the effectiveness of our refinement algorithms for different

values ofk in Section 4.3.

Recall from Sections 2 and 3, that both the hierarchical clustering algorithm that was used to obtained the clustering

solutions as well as the clustering objective functions that are used by our refinement algorithms, require that we

specify the value of the parameterθ that models the degree of inter-connectivity between the items in a cluster. In all

the experiments presented in Section 4.2 we keptθ to be equal to 1.8 for both the clustering as well as the clustering

refinement algorithms. The sensitivity of our refinement algorithms to different values ofθ is studied in Section 4.3 in

which we present an extensive experimental evaluation of our algorithms for different values ofθ .

In addition to the hierarchical clustering algorithm presented in Section 2 that operates on the sparsek-nearest

neighbor graph, we also compare the quality of the clusterings produced by our algorithms against two other algo-

rithms. In the case of point data sets, we compare our results against CURE [6], and in the case of the document data

sets, we compare our results against the standard hierarchical algorithm based on the group average method [9] that

operates on the dense similarity matrix.

For the rest of this section, we will useDH to denote the traditional hierarchical clustering algorithm that operates on

the dense similarity matrix,SH to denote the hierarchical clustering algorithm described in Section 2 that operates on

thek-nearest neighbor graph,rSH-RC to denote our multilevel refinement algorithm that uses the ratio-cut objective,

rSH-IRC to denote our multilevel refinement algorithm that optimizes both the internal connectivity as well as the

ratio cut, andrSH-I to denote our multilevel refinement algorithm that optimizes the internal connectivity. Finally, all

the experiments were performed on a 300Mhz Pentium II workstation.

4.1 Cluster Evaluation

One of the hardest problems in comparing different clustering algorithms is finding an algorithm-independent measure

to evaluate the quality of the clusters. This is especially true for data sets with many different categories. In general,
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if a cluster contains items that belong to only a single category, then it is a good cluster. However, evaluating clusters

that contain items from different categories is less clear.

We use entropy as a measure of quality of the clusters (with the caveat that the best entropy is obtained when each

cluster contains exactly one data point). LetC S be a clustering solution withm clusters. For each cluster, the class

distribution of data is calculated first. Then using this class distribution, the entropy of each clusterj is calculated

using the formulaE j = − ∑
Ci

pCi log pCi , wherepCi is the fraction of data within the cluster with the class labelCi ,

and the sum is taken over all classes,C1, C2, . . . , Ck . When a cluster contains data from one class only, the entropy

value is 0.0 for the cluster and when a cluster contains data from many different categories, then entropy of the cluster

is higher. The total entropy is calculated as the sum of entropies of the clusters weighted by the size of each cluster:

EC S = ∑
j

E j n j
n , wheren j is the size of clusterj andn is the total number of data points. We compare theEC S to that

of a random clustering solution with the same number of clusters. We use the entropy gain of the clustering solution

over the random clustering as the final goodness measure. In other words, the goodness of a clustering solutionC S is

defined asERS − EC S, whereRS is a random clustering solution withm clusters. Hence, the goodness measure is

high for a good clustering solution and low for a bad clustering solution.

4.2 Qualitative Comparisons

Two-Dimensional Data Sets Our first data set consists of two two-dimensional point data sets DS1 and DS2

shown in Figures 6(a) and (d), respectively. DS1 contains nine circular clusters arranged in a 3× 3 grid, and DS2

contains 10 ring-shaped clusters, pairs of which are concentric, with a line of outlier points cutting through all the

10 clusters and with some random outlier points. The DS1 data set contains 6,000 points, whereas the DS2 data set

contains 8,000 points. The similarity between two points was computed as the inverse of their Euclidean distance.

Figure 6(b) shows the nine clusters obtained by theSH algorithm withθ = 1.8 for DS1. The points in the different

clusters are represented using a combination of different colors and different glyphs. (Furthermore, we have drawn an

outline around each cluster to make it easier for people that do not have access to a color printout). As we can see

from the figure, even thoughSH is able to correctly cluster most of the data points, it does make a number of mistakes.

In particular, the middle cluster of the second row, contains points from both the left and the right clusters. Similarly,

the cluster middle cluster of the top row contains a good fraction of the points of the left top-row cluster, whereas the

right cluster at the top row contains some nodes from its cluster to the left and its cluster to the bottom. Figure 6(c)

shows the nine clusters obtained by applying our multilevel clustering refinement algorithmrSH-RC, on the output of

theSH algorithm with the same value ofθ (similar results were also obtained forrSH-IRC). As we can see from the

resulting clustering, our clustering refinement algorithm was capable to correct most of the mistakes made bySH. In

fact, six clusters are perfect, whereas the remaining three clusters contain a small number of errors.

Figure 6(e) shows the 10 clusters obtained by theSH algorithm withθ = 1.8 for DS2. TheSH algorithm was able

to find most of the clusters, but it made three mistakes. As Figure 6(e) illustrates, it merged the inner-ring with portion

of the outer-ring of the second and last pair of clusters (from left to right), and it merged portions of the outer rings

of the last two pairs of clusters. Figure 6(f) shows the 10 clusters obtained by applyingrSH-IRC on the clustering

solution obtained bySH with the same value ofθ (similar results were also obtained forrSH-RC). As we can see

from this figure,rSH-IRC was able to correct the three mistakes made bySH and obtain a perfect clustering solution.

Finally, Figure 6(g) shows the 10 clusters obtained by another hierarchical clustering algorithm, CURE [6], that is

especially suited for this type of data sets. As we can see from this figure, CURE was not able to find any of the 10

clusters.
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(b) Clusters found by SH (c) Clusters found by rSH-RC(a) DS1

(e) Clusters found by SH

(d) DS2

(f) Clusters found by rSH-IRC

(g) Clusters found by CURE

Figure 6: The two point data sets and the clusters produced by SH, rSH-RC, rSH-IRC, and CURE algorithms.

Los Angeles Times Data Sets The collection of the Los Angeles Times articles are part of the TREC 5 data

set [22]. The Los Angeles Times data set consists of two sets of documents LA1, and LA2 that were created by

selecting the articles published over two separate months (January and February of 1989) under certain sections of the

newspaper. We used the section name of the article as the category for this data set. The category distribution is shown

in Table 1.

We filtered the words using stop words and Porter’s suffix-stripping algorithm [20]. Even after this prunning, the

number of words in these documents was more than 31,000. In calculating similarity of two documents, we used the

cosine similarity measure after scaling the documents with TFIDF [21]. The cosine similarity between two document

X andY is defined as

cos(X, Y ) =
∑

w∈W xw × yw√∑
w∈W x2

w ×
√∑

w∈W y2
w

whereW is the collection of words appearing in the whole document set andxw is the TFIDF weighted value of word
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Category No. of items – LA1 No. of items – LA2
Financial 555 487
Foreign 341 301
National 273 248
Metro 943 905
Sports 738 759
Entertainment 354 375
Total 3204 3075

Table 1: The various categories of the LA1 and LA2 data set and the distribution of records to each category.

w in documentX . Note that this cosine measure gives value between 0.0 and 1.0, and 0.0 means that two documents

do not match any word and 1.0 means that these two documents match perfectly.

Table 2 shows the quality of the clusters (as measured by the entropy of the clustering solution) produced byDH,

SH, rSH-RC, andrSH-IRC for a 10-, 20-, 40-, and 80-way clustering. Comparing the various algorithms, we see

that both therSH-RC and rSH-IRC algorithms were able to improve the clustering solutions produced by theSH

algorithm, and achieve the overall best results. The clusters produced by the hierarchical scheme on the dense graph

are the worst for all cases. For the 10-way clustering,rSH-RC andrSH-IRC perform about 36% better thanSH for

both LA1 and LA2, for the 20-way clustering,rSH-RC andrSH-IRC perform 20% and 19% better thanSH for LA1

and LA2, respectively, for the 40-way clustering,rSH-RC andrSH-IRC perform 17% better thanSH for both LA1

and LA2, and for the 80-way clustering,rSH-RC andrSH-IRC perform 14% and 11% better thanSH for LA1 and

LA2, respectively. Also note that there is little variation between the two different refinement objectives used in the

rSH-RC andrSH-IRC algorithms.

LA1 LA2
No. Clusters 10 20 40 80 10 20 40 80
Algorithm
DH .01 .25 .30 .38 .01 .20 .36 .41
SH .33 .39 .43 .46 .37 .42 .45 .49
rSH-RC .45 .46 .51 .53 .51 .50 .53 .54
rSH-IRC .45 .48 .50 .52 .50 .50 .52 .55

Table 2: The quality of the clustering solution produced by DH, SH, rSH-RC, and rSH-IRC algorithms, for clustering the LA1 and
LA2 data sets for 10, 20, 40, and 80 clusters.

An interesting trend that can be observed from Table 2 (and also holds for other data sets) is that the relative

improvement achieved by our multilevel cluster refinement algorithms over SH as well as DH increases as the number

of clusters decreases. In other words, as the clustering problem requires the algorithm to correctly cluster the data set

using fewer clusters (and thus becomes harder), the multilevel refinement results in a greater degree of improvement in

the overall clustering solution. On the other hand, as the number of desired clusters increases, the clustering problem

becomes somewhat easier, which limits ability of our refinement algorithms to significantly improve upon an already

good solution. For example, for the 10-way clustering,rSH-IRC obtain a clustering solution that is 36% better than

SH, whereas for the 80-way clustering,rSH-IRC produces a clustering solution that is only 11% better.

Reuters Data Set The Reuters data set is from Reuters-21578 text categorization test collection Distribution

1.0 [19]. This data set contains 21,578 documents and each document is labeled with none, one, or many categories.
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From these 21,578 documents we selected only the ones that belonged to a single category. This resulted in 9133

documents, whose category distribution is shown in Table 3. The similarity between the various documents were

computed using the cosine measure after applying the same preprocessing steps as those used in the Los Angeles

Times data sets.

Category No. of items Category No. of items Category No. of items
earn 3923 acq 2292 commodity 535
economic index 892 energy 473 interest 271
metal 296 money 307 ship 144

Table 3: The various categories of the Reuter data set and the distribution of records to each category.

Table 4 shows the quality of the clusters produced by the four clustering algorithms for a 10-, 20-, and 40-way

clustering. As with other data sets, we see that the algorithms that use multilevel refinement produce the best clustering

solutions, whereasDH performs the worse. Compared toSH, we can see thatrSH-RC andrSH-IRC perform 14%,

13%, and 11% better for the 10-, 20-, and 40-way clusterings, respectively.

No. Clusters 10 20 40
Algorithm
DH .03 .27 .43
SH .50 .59 .65
rSH-RC .56 .68 .71
rSH-IRC .58 .67 .73

Table 4: The quality of the clustering solution produced by the DH, SH, and mlSH algorithms, for clustering the Reuter data sets
for 60 and 120 clusters.

4.3 Parameter Study

To study the sensitivity of our multilevel clustering refinement algorithms for different values ofθ , we performed a

sequence of experiments in which we variedθ from 1.1 up to 2.0 in increments of.1. Figure 7(a)–(f) shows the quality

of the produced clusterings for the LA2 and Reuters data sets for different number of clusterings and different values

of θ . Each plot of Figure 7 shows the quality of the clusterings produced by four schemes for different values ofθ . The

schemes shown are the following: (i) theSH algorithm which performs no refinement, (ii) therSH-RC algorithm that

refines the solution ofSH using the ratio-cut objective function, (iii) therSH-IRC algorithm that refines the solution

of SH using the combination of the inward looking objective and the ratio-cut, and (iv) therSH-I algorithm that refines

the solution ofSH using only the inward looking objective function.

A number of interesting observations can be made by looking at the various plots of Figure 7(a)–(f). First, irrespec-

tive of the value ofθ and the number of clusters, therSH-RC andrSH-IRC algorithms are able to further improve

the quality of the clustering produced bySH. Moreover, compared toSH, the quality of the clustering solution pro-

duced by therSH-RC andrSH-IRC algorithms are less sensitive to the value ofθ (their quality lines are flatter). For

example, looking at Figure 7(c), we can see that forθ < 1.3, SH produces clustering solutions that have poor quality.

However, therSH-RC and rSH-IRC algorithms are able to substantially improve these clustering solutions. Also,

similarly to the results presented in Section 4.2, therSH-RC andrSH-IRC schemes perform very similarly (at least

for these data sets).
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(a) LA2: 10 Clusters

(d) LA2: 80 Clusters

(f) Reuter: 40 Clusters(e) Reuter: 20 Clusters

(c) LA2: 40 Clusters

(b) LA2: 20 Clusters

(g) LA2: 20 Clusters (20 neighbors) (h) LA2: 40 Clusters (20 neighbors)

Figure 7: The quality of the clusters for different values of θ and different sparse graphs.

Figure 7 also compares the sensitivity of our multilevel clustering refinement algorithm on the degree of sparsi-

fication. In particular, Figures 7(b)–(c) and 7(g)–(h) shows the quality of a 20- and 40-way clusterings of LA2 for

two different sparse graphs. The first set of results were obtained using the 10-nearest-neighbor graph (that was used

throughout our experimental evaluation) whereas the second set of results were obtained using the 20-nearest-neighbor

graph. Comparing these two sets of results, we can see that our refinement algorithms are equally effective in further

refining the quality of the clusterings produced bySH.

Figure 7 also shows the sensitivity of therSH-I refinement algorithm on the value ofθ discussed in Section 3.1. As

we can see from the various experiments,rSH-I performs equally well to bothrSH-RC andrSH-IRC for small values

of θ ; however, asθ increases to a range above that of the underlying connectivity of the data set, the objective function

used byrSH-I becomes unstable and leads to poor clusters. Also note that as the graph becomes somewhat denser

(which is the case with the 20-nearest neighbor graphs shown in Figures 7(g) and (h))rSH-I performs reasonably well

for larger values ofθ .
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5 Conclusions and Directions of Future Research

In this paper we presented a new multilevel hierarchical clustering algorithm that builds upon recent advances in

clustering and graph partitioning. As our experimental results have demonstrated, our algorithm combines traditional

hierarchical clustering with multilevel refinement to produce clustering solutions that are consistently and significantly

better than those produced by hierarchical clustering algorithms alone. Furthermore, our algorithm has the additional

advantage of being extremely fast, as it operates on a sparse similarity matrix. The amount of time required by our

algorithm ranged from two second for a data set with 358 items, to 80 seconds for a data set with 9133 items on a

Pentium II PC.

Our work has demonstrated the value of refining the clustering solution in the multilevel context. Our current

algorithm uses a variation of the standard hierarchical clustering algorithm to obtain an initial clustering. However, the

multilevel refinement paradigm is independent of the particular choice of hierarchical algorithm, and other hierarchical

clustering algorithms (e.g., ROCK [7], CURE [6]) can also be used to obtain the initial clustering solution.

We believe that this paper represents the first attempt to develop a robust framework for refining clustering solutions

in a multilevel setting. However, a number of key questions remain to be addressed. In particular, the choice of proper

objective function is essential for the overall success of the multilevel refinement framework [6]. As our experiments

seem to indicate, the objective function based upon the ratio cut is quite robust for a wide range of values ofθ .

Nevertheless, it is important to determine the domains in which it has limited applicability or fails out-right.

Finally, our experimental results (as well as those of other researchers [10, 5, 9]) have indicated that the sparsifi-

cation of the similarity matrix often leads to better clustering performance. In the context of multilevel refinement,

sparsification of the similarity matrix is even more important, as the complexity of each refinement step is proportional

to the number of non-zeros in the similarity matrix.

In this paper, we ignored the issue of scaling to large data sets that cannot fit in the main memory. These issues are

orthogonal to the ones discussed here and are covered in [23, 1, 6, 4].
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