
Coherent Closed Quasi-Clique Discovery from Large
Dense Graph Databases ∗

Zhiping Zeng†, Jianyong Wang† , Lizhu Zhou† , George Karypis‡

Tsinghua University, Beijing, 100084, P.R.China
†

University of Minnesota, Minneapolis, MN 55455, USA
‡

clipse.zeng@gmail.com, {jianyong,dcszlz}@tsinghua.edu.cn, karypis@cs.umn.edu

ABSTRACT
Frequent coherent subgraphscan provide valuable knowledge about
the underlying internal structure of a graph database, and mining
frequently occurring coherent subgraphs from large dense graph
databaseshas been witnessed several applications and received con-
siderable attention in the graph mining community recently. In this
paper, we study how to efficiently mine the complete set of coher-
ent closed quasi-cliques from large dense graph databases, which is
an especially challenging task due to the downward-closure prop-
erty no longer holds. By fully exploring some properties of quasi-
cliques, we propose several novel optimization techniques, which
can prune the unpromising and redundant sub-search spaces effec-
tively. Meanwhile, we devise an efficient closure checking scheme
to facilitate the discovery of only closed quasi-cliques. We also de-
velop a coherent closed quasi-clique mining algorithm, Cocain 1.
Thorough performance study shows that Cocain is very efficient
and scalable for large dense graph databases.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Data Mining

General Terms: Algorithms

Keywords: Graph mining, Quasi-clique, Coherent subgraph.

1. INTRODUCTION
Recently several studies have shown that mining frequent coher-

ent subgraphs is especially useful, where a coherent subgraph can
be informally defined as a subgraph that satisfies a minimum cut
bound (and the formal definition can be found in Section 2.1), as
the set of frequent coherent subgraphs mined from a graph database
usually reflects the density distribution of the relationships among
the objects in the database, and can provide valuable knowledge
about the internal structure of the graph database. Coherent sub-
graph mining has also been witnessed several applications such as

∗This work was supported by National Natural Science Foundation
of China (NSFC) under Grant No. 60573061 and Basic Research
Foundation of Tsinghua National Laboratory for Information Sci-
ence and Technology(TNList).
1Cocain stands for Coherent closed quasi-clique mining.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

highly correlated stock discovery[5], gene function annotation and
functional module discovery[3].

Several coherent subgraph discovery algorithms have been re-
cently developed [3, 4, 6, 5]. However, each of the previously pro-
posed algorithms has its own limitations. For example, the algo-
rithm proposed in [4] can only mine quasi-cliques with exact 100%
support threshold; the algorithms proposed in [6] can only work on
relational subgraphs, where vertex labels are distinct in each graph;
similarly, the CLAN algorithm [5] mines fully connected frequent
subgraphs (i.e., frequent cliques). In this paper, we study a more
general problem formulation: mining frequent quasi-cliques from
large dense graph databases, that is, we neither limit the minimum
support to be 100% nor require the input graphs to be relational.

While the problem becomes more general, it gets more tough.
As we will see later, the downward-closure property[1] no longer
holds, devising some effective search space pruning techniques is
especially challenging. By fully exploring some properties of quasi-
cliques, we propose several novel optimization techniques, mean-
while, we devise an efficient closure checking scheme to facilitate
the discovery of only closed quasi-cliques. We also develop an ef-
ficient coherent closed quasi-clique mining algorithm, Cocain.

The remaining of this paper is organized as follows. Section 2
introduces the problem formulation. In Section 3, we present algo-
rithm Cocain by focusing on several optimization techniques. The
empirical results are examined in Section 4. Finally, we conclude
our study in Section 5.

2. PROBLEM FORMULATION
In this section, we introduce some preliminary concepts, nota-

tions, and terms in order to simplify our discussion. We also for-
mulate the problem we study. Table 1 summarizes the notations we
use in this paper and their meanings.

Notations Description
V V = {v1, v2, ..., vk}, the set of vertices
E E ⊆ V × V , the set of edges
L the set of vertex labels
F F :V →L, the mapping function from labels to vertices
G G = (V,E,L, F), an undirected vertex-labeled graph
|G| |G| = |V |, the cardinality of G

G(S) the induced subgraph on S from G, S⊆V (G)
NG(v) NG(v) = {u|(v, u) ∈ E(G)}
degG(v) degG(v) = |NG(v)|

disG(u, v) the number of edges in the shortest path between u and v

Table 1: Notations used in this paper

2.1 Preliminaries
In this paper, we consider simple graph only, which does not

contain self-loops, multi-edges, and edge labels. An undirected

vertex-labeled graph transaction, G, can be represented by a 4-
tuple, G=(V, E, L, F). An induced subgraph of a graph G is a
subset of the vertices of V (G) together with any edges whose end-
points are all in this subset. In the following discussions, the term
“graph” means the undirected vertex-labeled graph, unless other-
wise stated.

DEFINITION 2.1. (γ-Quasi-clique) A k-graph(k≥1) G is a γ-
quasi-clique (0≤γ≤1) if ∀v∈V (G), degG(v)≥�γ·(k−1)�.

From the definition we can see that quasi-cliques are subgraphs
that satisfy a user-specifiedminimum vertex degree bound, �γ·(k−1)�.
Apparently, a γ-quasi-clique must be a fully connected graph when
γ = 1, and singleton graphs are considered as γ-quasi-cliques. If
∃v∈V (G) such that degG(v)=�γ·(k−1)� and �γ·(k−1)�	=�γ·k�,
v is called a critical vertex of G w.r.t γ.

Most of the existing frequent subgraph mining algorithms are
based on the downward-closure property. Unfortunately, this prop-
erty does not hold for quasi-clique patterns. An induced subgraph
of a γ-quasi-clique may not be a γ-quasi-clique. For instance, in
Figure 1, G2({v1,v3,v4,v5,u6}) is a 0.5-quasi-clique, but one of its
induced subgraphs, G2({v1,v3,v5,u6}) is not a 0.5-quasi-clique.

DEFINITION 2.2. (Edge Cut and Edge Connectivity) Given a
connected graph G = (V, E), an edge cut is a set of edges E c such
that G′=(V ,E−Ec) is disconnected. A minimum cut is the small-
est set among all edge cuts. The edge connectivity of G, denoted by
κ(G), is the size of the minimum cut.

As shown in [6], the minimum vertex degree can reflect the level
of connectivity to some extent in a graph, but they cannot guaran-
tee the graph is connected in a balanced way. However, the follow-
ing lemma gives a lower bound on the minimum cut when γ≥0.5,
which guarantees the coherency of γ-quasi-cliques.

LEMMA 2.1. (Minimum Edge Connectivity) Let n-graph Q =
(V, E) be a γ-quasi-clique (0.5≤γ≤1,n≥2). The edge connectiv-
ity of Q must be no smaller than
 n

2
�, i.e., κ(Q)≥
n

2
�.

PROOF. Let us divide V into two sets, V1 and V2, and suppose
V1 ≤ V2 and |V1|=k, 1≤k≤
n

2
� must hold.

Since Q is a γ-quasi-clique, ∀v∈V1, degQ(v)≥�γ·(n−1)�. How-
ever, v is at most adjacent to other k−1 vertices in V1, and k−1≤ n

2−
1< γ(n−1). Therefore, v must be adjacent to vertices belonging
to V2, and the number of edges which connect v and vertices in V 2

must be no smaller than �γ·(n−1)�−(k−1). There are k vertices
in V1, so there exist at least k·(�γ·(n−1)�−(k−1)) edges between
V1 and V2. Let f(k)=k·(�γ·(n−1)�−(k−1)), then

f(k) = −k2 + k · (�γ · (n − 1)� + 1) (1)

The second-order derivative of f(k) (i.e., d2f(k)
dk2 =−2) is neg-

ative, f(k) achieves the maximum at its sole stationary point k =
�γ·(n−1)�+1

2
. As there exists only one stationary point for quadratic

polynomial function f(k) and 1≤k ≤
 n
2
�, f(k) must get its mini-

mum either at k=1 or at k=
n
2 �. When k=1, f(1)=�γ·(n−1)�≥

�n−1
2 �=
n

2 �. While when k=
n
2 �, each vertex in V1 must be ad-

jacent to at least one vertices in V2, thus f(
n
2
�)≥
n

2
�. From the

above result, we can get that ∀k∈[1,
 n
2
�], f(k)≥
n

2
�. According

to the definition of edge connectivity, κ(Q)≥
 n
2
�.

Because we are more interested in mining tightly connected sub-
graphs, we do not expect that the edge connectivity of a subgraph
is too small in comparison with the minimum vertex degree. From
Lemma 2.1, if γ≥0.5 the vertices in the γ-quasi-clique are con-
nected tightly and relatively evenly. In this paper, a γ-quasi-clique

is said to be coherent if γ≥0.5, and if not explicitly stated γ by
default has a value no smaller than 0.5.

DEFINITION 2.3. (γ-Isomorphism) A graph G1={V1,E1,L1,F1}
is γ-isomorphic to another graph G 2 = {V2, E2, L2, F2} iff both
of them are γ-quasi-cliques, |G1|=|G2|, and there exists a bijec-
tion f :V1→V2 such that ∀v∈V1,F1(v)= F2(f(v)).

According to the above definition, we know that the γ-isomorphism
is quite different from the graph isomorphism in graph theory, which
is defined as a bijection f :V (G1)→V (G2) from a graph G1 to an-
other graph G2, such that (u, v)∈E(G1) iff (f(u),f(v))∈E(G2).
While the γ-isomorphism between two γ-quasi-cliques does not
imply an exact bijection edge mapping.

A multiset is defined as a bag of vertex labels in which the or-
der is ignored, but multiplicity is explicitly significant. Let M(G)
indicate the multiset of G. From the γ-isomorphism definition, we
can derive the following lemma directly: two γ-quasi-cliques, G1

and G2, are γ-isomorphic to each other iff M(G1)=M(G2).
For two γ-quasi-clique Q and Q′ , if M(Q)⊆M(Q′), Q is called

a subquasi-clique of Q′, while Q′ is called a superquasi-clique of
Q. We use Q�Q′ or Q�Q′ (i.e. Q�Q′ but Q	=Q′) to denote the
subquasi-clique or proper subquasi-clique relationship.

2.2 Problem Definition
A graph transaction database, D, consists of a set of input

graphs, and the cardinality of D is denoted by |D|. Figure 1 shows
an example of graph transaction database D, which consists of two
input graphs, G1 and G2.

a b

c e

d
3u

5u

2u

1u

G raph G 1

b

4u
c

d

a b

b

c

G raph G 2

6u

4v 2v

3v

5v

1v 6v

Figure 1: An example of graph database D

For two graphs G and G′ , let g be an induced subgraph of G, if
M(g)=M(G′), we call g an instance of G′ in G. If there exists
at least one instance of G ′ in G, we say that graph G roughly
supports G′. Meanwhile, if g is γ-isomorphic to another γ-quasi-
clique Q, we call g an embedding of Q in G. If there exists at least
one embedding of Q in G, G is said to strictly support Q.

The number of input graphs in graph database D that strictly (or
roughly) support a γ-quasi-clique Q (or a graph G) is called the ab-
solute strict-support (or absolute rough-support) of Q (or G) in
D, denoted by supD

s (Q) (or supD
r (G)), while the relative strict-

support rsupD
s (Q) (or relative rough-support rsupD

r (G)) is de-
fined as rsupD

s (Q)=supD
s (Q)/|D|(andrsupD

r (G)=supD
r (G)/|D|).

Given an absolute support threshold min sup and a graph trans-
action database D, a quasi-clique Q (or a subgraph g) is called
a frequent quasi-clique (or a vice-frequent graph) if supD

s (Q) ≥
min sup (or supD

r (g) ≥ min sup). If there does not exist any an-
other quasi-clique Q′ such that Q � Q′ and supD

s (Q)≤ supD
s (Q′),

Q is called a closed quasi-clique in D 2.
2Here the definition of a ‘closed’ pattern is a little different from
the traditional one, due to the absence of the downward-closure
property for quasi-clique patterns, and it is possible that a quasi-
clique’s strict-support is greater than that of its subquasi-cliques.
Also, in the case that Q�Q′ and supD

s (Q)≤supD
s (Q′), we say Q′

can subsume Q.

In this paper, given D and min sup, we study the problem of
mining the complete set of γ-quasi-cliques in D that are frequent,
closed, and also coherent (i.e., γ ≥ 0.5).

3. Cocain: EFFICIENTLY MINING CLOSED
COHERENT QUASI-CLIQUES

In this section, we describe our comprehensive solution to fre-
quent closed coherent quasi-clique mining, including an efficient
canonical representation of a coherent quasi-clique, a subgraph enu-
meration framework, several search space pruning techniques, and
a quasi-clique closure checking scheme. We also present the inte-
grated algorithm, Cocain.

3.1 Canonical Representation of Subgraphs
One of the key issues in graph mining is how to choose an ef-

ficient canonical form that can uniquely represent a graph and has
low computational complexity in order to facilitate the graph iso-
morphism testing. Some previously proposed solutions to this prob-
lem are designed for a general graph and may not be the most
efficient representation for a quasi-clique. According to the Sec-
tion 2.1, we can see that a multiset preserves much information
for a quasi-clique. Given a k-graph g, we call any sequence of
all elements in M(g) a graph string. Assume there is a total or-
der on the vertex labels, we define the following total order of any
two strings p and q with size |p| and |q| respectively. Let p i de-
note the i-th vertex label in string p, we define p<q if either of
the following two conditions holds: (1) ∃t (0<t≤min{|p|, |q|})
such that ∀ i ∈[1, t − 1], pi=qi and pt<qt, (2) (|p|<|q|) and ∀ i
∈[1, |p|], pi=qi; otherwise p≥q. A string Sa=a1a2...an is called a
substring of another string Sb=b1b2...bm, denoted by Sa�Sb (or
Sa�Sb if m>n), if there exist n integers 1≤i1<i2<... in≤m such
that a1=bi1 ,a2=bi2 ,..., an=bin .

DEFINITION 3.1. The canonical form of a graph G is defined
as the minimum string among all its strings and denoted by CF (G).

As we ignore the exact topology of a quasi-clique, it is evi-
dent that the above definition is a unique representation of a quasi-
clique. However, we note that it does not hold for a general graph.
After giving the definition of the canonical form of a graph and the
substring relationship, we can derive the following two lemmas to
facilitate γ-isomorphism checking and subquasi-clique relationship
checking.

LEMMA 3.1. Two γ-quasi-cliques Q1 and Q2 are γ-isomorphic
to each other iff CF (Q1) = CF (Q2).

LEMMA 3.2. Given two γ-quasi-cliques Q1 and Q2, Q1 � Q2

(or Q1 � Q2) iff CF (Q1) � CF (Q2) (or CF (Q1) � CF (Q2)).

The above two lemmas can be derived easily from the definition
of γ-isomorphism and subquasi-clique relationship respectively, here
we omit the proof.

3.2 Vice-Frequent Subgraph Enumeration
According to the definition of a vice-frequent graph, it is evi-

dent that any induced subgraph of a vice-frequent graph must be
also vice-frequent. Thus, the downward-closure property can be
exploited for vice-frequent subgraph enumeration.

Based on the definition of embedding and instance of a subgraph,
we can see that the embedding is a special type of the instance, an
embedding of a quasi-clique q must be an instance of q. Given
a γ-quasi-clique Q, as supD

s (Q)≤supD
r (Q) holds, if Q is fre-

quent, Q must be vice-frequent. Consequently, we can discover

the complete set of frequent γ-quasi-cliques from the set of vice-
frequent subgraphs. By conceptually organizing the vice-frequent
subgraphs into a lattice-like structure in the way we used in [5], the
problem of mining frequent quasi-cliques becomes how to traverse
the lattice-like structure to enumerate vice-frequent subgraphs and
discover frequent γ-quasi-cliques.

In our running example in Figure 1, assume the total order among
vertex labels is a≤b≤c≤d≤e, all the vice-frequent subgraphs are
organized into a structure as shown in Figure 2. Note that here
we use ‘canonical form:rough-support:strict-support’ to represent
a subgraph. In addition, all nodes with yellow color are vice-
frequent subgraphs but not frequent quasi-cliques, nodes with blue
color are non-closed frequent quasi-cliques, and nodes with orange
color are closed quasi-cliques. Figure 2 shows that among all the
vice-frequent subgraphs, only abd:2:2 and bcd:2:2 are closed quasi-
cliques. We also adopt the DFS search strategy as we used in [5] to
traverse the lattice-like structure. In this way, we can get a rudimen-
tary algorithm to discover frequent closed γ-quasi-cliques. How-
ever, due to a great deal of redundancy during the enumeration, this
rudimentary algorithm is too expensive and costs too much space
and runtime.

a:2:2 b:2:2 c:2:2 d:2:2

ab:2:1 ac:2:1 ad:2:1 bc:2:1 bd:2:2 cd:2:2

abc:2:1 abd:2:2 acd:2:1 bcd:2:2

abcd:2:0

abb:2:1

abbc:2:0 abbd:2:0

abbcd:2:0m in_sup= 2

Level

1

2

3

4

5

bb:2:0

bbc:2:0 bbd:2:0

bbcd:2:0

5.0=γ

φ

Figure 2: A lattice-like structure built from the vice-frequent
subgraphs of our running example

Structural Redundancy Pruning. As shown in [5], much re-
dundancy exists if we just simply use the DFS search strategy.
In order to eliminate the structural redundancy while maintaining
the completeness of the result set, we propose an efficient vice-
frequent subgraph enumeration method. Given an m-graph G and
CF (G)= a0a1...am, we require G can only be generated by grow-
ing the subgraph g with canonical form CF (g)=a0a1...am−1. In
this way, except the node φ, each node in the lattice-like structure
has only one parent, and this lattice-like structure would turn to
a tree structure. Let LAS(g) be the last element in CF (g) (i.e.,
LAS(g)=am), obviously, in the enumeration tree structure all de-
scendants of the node g would be in the form of CF (g) � b 0b1...bk,
where b0 ≥ LAS(g) and ∀ i ∈ [1, k], bi−1 ≤ bi .

3.3 Search Space Pruning
In this subsection, we propose several novel optimization tech-

niques to prune futile search subspaces based on some nice proper-
ties of quasi-cliques.

3.3.1 Preliminaries
Before we elaborate on the pruning techniques, let us first intro-

duce the following two important lemmas which form the founda-
tion of several pruning techniques.

LEMMA 3.3. If m+u<�γ · (k + u)� (where m, u, k≥0, and
0.5≤γ≤1), then m <�γ · k� and ∀i∈[0, u], m + i<�γ · (k + i)�.

PROOF. First, we assume m ≥ �γ · k�, then m+u ≥ �γ · k�+
u ≥ �γ · k� + �γ · u� ≥ �γ · (k + u)�, which contradicts with
the fact m+u<�γ · (k + u)�. Thus, m < �γ · k� holds. Second,
let t=u−i, then m+i=m+u−t < �γ · (k + u)�−t ≤ �γ · (k +
u)�−�γ · t� ≤ �γ · ((k + u) − t)� = �γ · (k + i)�.

LEMMA 3.4. (Maximal Diameter) If a graph Q is a γ-quasi-
clique, then ∀u, v ∈ V (Q), disQ(u, v) ≤ 2.

PROOF. Let |Q|=n (n≥2). ∀u, v∈ V (Q), if u and v are ad-
jacent to each other, then disQ(u, v)=1. While if u and v are not
adjacent, then |N Q(u)∪NQ(v)|≤(n − 2). Furthermore, as Q is a
γ-quasi-clique, |NQ(u)|≥�γ ·(n−1)� and |N Q(v)|≥�γ ·(n−1)�
hold. Therefore, NQ(u)∩NQ(v) 	=φ, otherwise |NQ(u)∪NQ(v)|=
|NQ(u)|+|NQ(v)|≥2�γ · (n − 1)�. Also, since γ≥0.5, we have
2�γ · (n − 1)�≥(n − 1). Thus, |NQ(u)∪NQ(v)|≥(n− 1) holds,
which contradicts with the fact |N Q(u)∪NQ(v)|≤(n − 2). As a
result, there must exist at least one vertex which is adjacent to both
u and v, and disQ(u, v)=2 must hold. Therefore, from the above
analysis, we can get ∀u, v∈V (Q), disQ(u, v)≤2.

3.3.2 Pruning Methods
From Lemma 3.4, we can derive the following lemma to help us

prune some futile branches.

LEMMA 3.5. (Diameter Pruning) Let G be a graph and S ⊆
V (G), if G(S) is a γ-quasi-clique, then ∀ u,v ∈ S, disG(u, v)≤2.

PROOF. As G(S) is a subgraph of G, disG(S)(u, v)≥disG(u, v)

holds. In addition, according to Lemma 3.4, we have dis G(S)(u, v)
≤ 2. Therefore, disG(u, v) ≤ 2 must hold.

Given a graph G, let S⊂V (G) and v∈V (G)−S, from Lemma 3.5
we know that if G(S) and v can form a “bigger” quasi-clique,
∀ u ∈ S, disG(v, u) ≤ 2 must hold. Accordingly, a straightfor-
ward and reasonable application of Lemma 3.5 is to discover the
extensible vertices of a subgraph which can be used to form quasi-
cliques later. First, we calculate the extensible vertex set E(u) for
each vertex u in G(S), then conjoin all E(u)’s to obtain the global
extensible vertex set. Obviously, E(u) can be divided into two sub-
sets. One is denoted by D(u), which consists of the vertices that are
adjacent to u, i.e., D(u) = {v|disG(u, v) = 1}; another subset is
denoted by I(u), where I(u) = {v|∃u′ ∈ D(u), disG(u′, v) = 1
and v /∈ D(u)}. The set D(u) can be obtained easily, and I(u) can
be computed from D(u) in the way of discovering vertices which
are adjacent to at least one vertex in D(u). In this way, we can
discover extensible vertex set for an instance of a subgraph G(S)
and can prune some unpromising vertices.

Combination Pruning. We can combine the structural redun-
dancy pruning with Diameter Pruning to further shrink the the ex-
tensible vertex set. As stated in structural redundancy pruning,
only those vertices whose labels are no smaller than LAS(g) can
be used to grow g, where g is the current prefix subgraph. There-
fore, when calculating E(u) we can remove the vertices whose la-
bels are smaller than LAS(g), and the removal of some vertices in
E(u) may make some vertices left in E(u) violate the condition
of an extensible vertex introduced in Lemma 3.4. For example,
suppose ∃v0 ∈ I(u) and there exists only one vertex v ′ such that
v′∈ D(u) and disG(v0, v

′)=1, if v′ /∈ V (g) and the label of v ′ is
smaller than LAS(g), then v′ will never appear in all descendants
of g, thus the descendant g ′ of g which contains vertex v0 cannot
be a quasi-clique, as disg′

(u, v0)>2 must hold. Therefore, we can

remove the vertex v0 from E(u) safely. In order to eliminate these
vertices efficiently, after getting D(u), we remove the vertices in
D(u) whose labels are smaller than LAS(g) and in the meantime
do not belong to V (g). After we compute the final set of extensible
vertices, E(u), for each vertex u in subgraph g, we can then con-
join all the E(u)’s to get the global extensible vertex set w.r.t. g.
We call an element in the global extensible vertex set an extensible
candidate w.r.t. g, and use V G

cad(g) to denote the set of extensible
candidates w.r.t. g in G.

In the following, we propose other three optimization techniques
based on Lemma 3.3 which can be used to prune the unpromising
search space effectively.

For v ∈ V G
cad(g), we define the internal set V g

in(v)=NG(v)∩V (g)
and external set V g

ex(v)=NG(v)∩V G
cad(g). Let indegg(v)=|V g

in(v)|
be the inner degree of v, and exdeg g(v)=|V g

ex| be the extern de-
gree of v. Take Figure 1 for an example, assume g=G 2({v5}),
V G2

cad(g)={v3, v4 } (note v1 and v6 have been pruned by Combi-
nation Pruning), indegg(v3)=0, exdegg(v3)=1.

LEMMA 3.6. (Vertex Connectivity Pruning) Suppose g is a
k-subgraph of G, if ∃ v ∈ V G

cad(g) such that indeg(v) < �γ · k�
and indegg(v) + exdegg(v)< �γ · (k + exdegg(v))�, there does
not exist a quasi-clique Q in G such that V (Q) ⊇ V (g)∪{v}.

PROOF. Assume there exists a quasi-clique Q such that V (Q)
⊇ V (g) ∪ {v}, and let |Q|=l. Since Q is a quasi-clique, V (Q)
⊆ V (g) ∪ V G

cad(g). We define R=V (Q) ∩ V g
ex(v) and denote |R|

by m, then l−k−1 ≥ m and m ≤ |V g
ex(v)|=exdegg(v). Because

indegg(v) < �γ · k� and indegg(v) + exdegg(v)< �γ · (k +
exdegg(v))�, according to the Lemma 3.3, we can get that ∀ i
∈ [0, exdegg(v)], indegg(v)+i<�γ · (k + i)�. Thus, degQ(v)=
indegg(v)+m<�γ · (k + m)�≤ �γ · (l − 1)�, i.e. degQ(v)<
�γ · (|Q| − 1)�. This contradicts with the assumption that Q is a
quasi-clique.

In the case of indegg(v) + exdegg(v)< �γ · (k+exdegg(v))�,
v is called an invalid extensible candidate, otherwise it is called a
valid extensible candidate. Obviously, the invalid extensible can-
didates do not make any contribution to the generation of “bigger”
quasi-cliques. Therefore, after getting the extensible candidate set
V G

cad(g), we could remove all invalid extensible candidates from
V G

cad(g). Due to the removal of these vertices, some originally valid
extensible candidates may turn to be invalid, so we can do this prun-
ing iteratively until no vertex can be removed from V G

cad(g). We
denote the remaining set by V G

vad(g). Hence, if G(S) is a quasi-
clique in G and S ⊃ V (g), S ⊆ V (g) ∪ V G

vad(g). Accordingly,we
only need to use the vertices in V G

vad(g) to grow g, which can fur-
ther improve the algorithm’s efficiency.

Assume g is a subgraph of a graph G, for a vertex u∈ V (g),
let V g

ext(u)=NG(u) ∩ V G
vad(g), and the extensible degree be the

cardinality of V g
ext(u), i.e., extdegg(u)=|V g

ext(u)|. If there exists
a critical vertex v in g such that extdegg(v) = 0, we call v a
failed-vertex of g.

LEMMA 3.7. (Critical Connectivity Pruning) If there exists
a failed-vertex v in a k-subgraph g of G, there will be no such
an induced subgraph Q of G that V (Q)⊃V (g) and Q is a quasi-
clique.

PROOF. We prove this by contradiction. Let Q be such an in-
duced subgraph of G and |Q| = m. Obviously m > k and
V (Q) ⊆ V (g)∪V G

vad(g). Since v is a critical vertex in g, degg(v) =
�γ · (k − 1)� and �γ · (k − 1)� < �γ · k�. Furthermore, be-
cause degQ(v) ≤ degg(v) + extdegg(v) and extdegg(v) = 0,
degQ(v) < �γ ·k� ≤ �γ · (m−1)�, which contradicts with the as-
sumption. Thus, there must exist no such an induced subgraph.

Given a k-subgraph g of a graph G, if ∃u ∈ V (g) such that
degg(u) < �γ · (k − 1)� and degg(u) + extdegg(u) < �γ · (k −
1 + extdegg(u))�, we call u an unpromising vertex in g.

LEMMA 3.8. (Subgraph Connectivity Pruning) If a k-subgraph
g of G contains an unpromising vertex u, there will be no induced
subgraph Q of G such that V (Q) ⊃ V (g) and Q is a quasi-clique.

PROOF. Let Q be such an induced subgraph and |Q| = l. Since
Q is a γ-quasi-clique, V (Q) ⊆ V (g) ∪ V G

vad(g) holds. Let V ′ =
V (Q) ∩ V g

ext(u) and |V ′| = m, then l ≥ m+|V (g)|=m+k. Be-
cause degg(u) < �γ · (k − 1)� and degg(u) + extdegg(u) <
�γ · (k − 1 + exdegg(u))�, from Lemma 3.3 we can get that
∀i ∈ [0, exdegg(u)], degg(u) + i < �γ · (k − 1 + i)�. Thus,
degQ(u) = degg(u)+|V ′| = degg(u)+m < �γ ·(k−1+m)� ≤
�γ · (l − 1)�, that is, degQ(u) < �γ · (|Q| − 1)�. This contradicts
with the assumption that Q is a γ-quasi-clique.

According to Lemma 3.7 and Lemma 3.8, if a subgraph contains
a failed-vertex or an unpromising vertex, it does not make any con-
tribution to the generation of quasi-cliques. Thereby, after getting
the valid extensible candidate set V G

vad(g), once we inspect the ex-
istence of failed-vertices or unpromising vertices in g, then there is
no hope to grow instance g to generate quasi-cliques, and thus we
can stop growing g.

3.4 Closure Checking Scheme
By integrating the pruning techniques proposed in this paper

with the vice-frequent subgraph enumeration framework, we can
discover the complete set of frequent quasi-cliques. How do we
discover the closed quasi-cliques? A straightforward approach is to
store all the frequent quasi-cliques that we have found, and when
inserting a quasi-cliqueq to the result, we do super-clique-detecting
which checks whether there already exists an element q ′ such that
can subsume the current q and sub-clique-detecting which checks
if there exists any already mined quasi-clique q ′ that can be sub-
sumed by q. Obviously, this naı̈ve approach is very costly, we will
introduce a more efficient closure checking scheme.

Given two subgraphs, G1 and G2, with canonical forms CF (G1)
= a1a2...an and CF (G2)=b1b2...bm (where n<m) respectively,
if CF (G1)�CF (G2), there must exist n integers 1≤i1<i2<...<
in≤m such that a1=bi1 , a2=bi2 , ..., an=bin . If in=n, the rela-
tionship of CF (G1) and CF (G2) in the enumeration tree can be il-
lustrated in Figure 3(a), that is, the node corresponding to CF (G1)
is an ancestor of the node corresponding to CF (G 2). Otherwise,
let k = min{j | ij 	=j}, then CF (G1) and CF (G2) have the same
prefix a1a2...ak−1(if k=1, the prefix is empty) and ak>bk (as
ak=bik ,ik>k, and bk<bik hold), thus CF (G1)>CF (G2) holds,
and this relationship in the enumeration tree is shown in Figure 3(b).

...

naaa ...21

mnnn bbbaaa 2121 ++

121 ... +nnbaaa

(a) Descendant

...

... ...

121 ... −kaaa

mkk bbaaa 121 −

(b) Non-descendant

...

kk aaaa 121 ... −kk baaa 121 ... −

...

naaa ...21

...

C F(G 1)

C F(G 2) C F(G 2) C F(G 1)

...

...

_

_ _

Figure 3: Two Cases of CF (G1) � CF (G2) in Vice-Frequent
Subgraph Enumeration Tree

One strategy to speed up the pattern closure checking is that we
postpone the closure checking for G 1 until all its descendants have

been processed. In this way, G2 must be discovered before G1 for
the first case shown in Figure 3(a), as the node CF (G 2) is a descen-
dant of CF (G1). In the second case as shown in Figure 3(b), it is
evident that G2 is also discovered before G1 according to the DFS
traverse strategy. In summary, if the current quasi-clique G1 can
be subsumed by another frequent closed γ-quasi-clique G 2 (i.e.,
CF (G1) � CF (G2) and supD

s (G1) ≤ supD
s (G2)), the insertion

of G2 into the result set will occur before the closure checking of
G1. Accordingly, when we check if a frequent quasi-clique q is
closed or not, there is no need to perform sub-clique-detecting, as
there does not exist any quasi-clique q ′ in the result set such that
CF (q′) � CF (q) and supD

s (q′) ≤ supD
s (q).

Although there is no need for sub-clique-detecting, we still have
to perform super-clique-detecting. As shown in Figure 3, there are
two cases for super-clique-detecting. In the first case, we need
to check if there exists a descendant quasi-clique G 2 of the cur-
rent quasi-clique G1 that can subsume G1 in the enumeration tree.
According to our strategy described above, we know G 1 must be
mined after all its descendants, the super-clique-detecting in this
case becomes relatively simple. After the processing of all de-
scendants of G1, we let the recursive mining procedure return the
maximum strict-support (denoted by r) of all frequent quasi-clique
nodes under the subtree rooted with CF (G1) (if there does not ex-
ist any frequent quasi-clique, then it returns value zero). If supD

s (G1)
≤ r, we know G1 is non-closed and will not insert G1 into the re-
sult set. However, if supD

s (G1)>r, we still need to check if there
exists any non-descendant super-clique of G 1 that can subsume G1

(i.e., the second case shown in Figure 3(b)).
In order to accelerate the non-descendant super-clique-detecting

process, we divide the elements in the result set into different groups
according to their absolute strict-support. In each group, we first or-
der them by the size of the quasi-cliques in descending order, and
among the quasi-cliques with the same size in the same group, we
then order them by their canonical form in descending order. This
processing can accelerate the comparison steps.

3.5 The Algorithm
In the following we describe the Cocain algorithm by integrating

various techniques discussed earlier. Let us first introduce the SUB-
ALGORITHM 1:Valid, which is called by Cocain in order to com-
pute the valid extensible candidates for an instance subgraph. For
each vertex u in current instance g, we scan the graph G in which g
resides to find the set D(u) (line 06), and refine D(u) based on the
combination pruning technique (line 07). Then we generate the set
I(u) from D(u), obtain the extensible candidate set T of u (lines
08-10), and conjoin each discovered extensible candidate set to get
the global extensible candidates rs (line 11). Finally, we apply the
vertex connectivity pruning (line 12), critical connectivity pruning,
and subgraph connectivity pruning (lines 13-14) to rs to generate
the final set of valid extensible candidates w.r.t. g.

Before running Cocain as shown in ALGORITHM 1, we first
compute the set of vice-frequent vertex labels and their correspond-
ing instances by scanning the original database, and remove from
the graph database the vertices with non-vice-frequent vertex la-
bels. This procedure can reduce the size of input graphs signifi-
cantly, especially when min sup is high. After this preprocessing,
we use Cocain to mine the complete set of frequent closed coher-
ent quasi-cliques. For the current prefix vice-frequent subgraph
g, we first use procedure Valid to get the set of valid extensible
candidates Vvad for each instance of g (lines 17-18), from which
we can further calculate the vice frequent extensible labels (line
19). For each vice-frequent extensible label, we invoke Cocain to
discover descendants of g (lines 21-23). After all recursive invo-

cations have returned, we can use the closure checking scheme to
determine whether or not to insert g to the final result set according
to the strict-support of g and the returned values of the recursive
invocations (lines 24-25).

SUBALGORITHM 1: Valid(g)

INPUT:

(1) g: an instance subgraph.
OUTPUT:

(1) rs: the set of valid extensible candidates w.r.t. g.
BEGIN
01. set rs = V (G)(G is the graph in which g resides);
02. For each vertex u in V (g)
03. If rs is empty
04. break;
05. set T = D = I = φ;
06. D = {v|disG(u, v) = 1};
07. Refine D using combination pruning;
08. I = {v | ∃ t ∈ D, disG(t, v) = 1 and v /∈ D};
09. T = D ∪ I;
10. Remove each element v ′∈T which satisfies L(v′) < LAS(g);
11. rs = rs ∩ T ;
12. Remove invalid extensible candidates from rs;
13. If there exists a failed or an unpromising vertex in g
14. rs = φ;
15. return rs;
END

ALGORITHM 1: Cocain(D, CF (g),INS(g),min sup,γ)

INPUT:

(1) D: the input graph database,
(2) CF (g): the canonical form of g,
(3) INS(g): the set of instances of g in the database D,
(4) min sup: the minimum support threshold,
(5) γ: the edge density coefficient.

OUTPUT:
(1) rs: the set of frequent closed γ-quasicliques,
(2) max: the maximum strict-support of all descendant quasi-cliques of g.

BEGIN
16. glbsup=0, rv=0;
17. For each instance ins ∈ INS(g)
18. Vvad(ins) = Valid(ins);
19. Calculate vice-frequent valid candidate label set V EX(g) according to each

Vvad(ins);
20. Sort the labels in V EX(g) in a certain order;
21. For each label l ∈ V EX(g)
22. rv = Cocain(D, CF (g) � l, INS(g � l), min sup, γ);
23. glbsup = max{glbsup, rv};
24. If (sups(g) ≥ min sup) and (sups(g) > glbsup)
25. Insert CF (g) into RS if g passes the non-descendant super-clique-detecting;
26. return max{sups(g), glbsup};
END

4. EMPIRICAL RESULTS
We conducted an extensive performance study to evaluate var-

ious aspects of the algorithm. We implemented the algorithm in
C++, and all experiments were performed on a PC running FC 4
Linux and with 1.8GHz AMD Sempron CPU and 1GB memory. In
the experiments, we used the US stock market series database [2],
which was converted to a set of graphs based on the same method
of [5]. Due to limited space, here we only report the results w.r.t. a
correlation coefficient of 0.99.

Efficiency Test. We implemented one baseline algorithm, Raw,
which excludes three pruning techniques, combination pruning, crit-
ical connectivity pruning, and subgraph connectivity pruning. By
comparing the runtime efficiency between Cocain and Raw, we can
get an idea about the effectiveness of the pruning techniques pro-
posed in this paper. Figure 4 shows the runtime comparison be-
tween Cocain and Raw by fixing γ at 1.0 and varying min sup, and
fixing min sup at 40% and varying γ respectively. We see that
Cocain is always faster than Raw. The high performance of Co-

cain in comparison with Raw also demonstrates that the pruning
techniques proposed for Cocain are extremely effective.

0.000

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

10000.000

30 40 50 60 70 80 90 100
Relative Strict-Support Threshold (%)

R
u
n
tim

e
(s

e
c)

Cocain

Raw

a) γ = 1.0

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Edge Density Coefficient

R
u
n
ti
m

e
(s

e
c
)

Cocain
Raw

b) min sup=40%

Figure 4: Efficiency Comparison (stock market data)

Scalability Test. Meanwhile, a comprehensive scalability study
was conducted in terms of the base size. The results show that
Cocain has linear scalability in runtime against the number of input
graphs in database.

5. CONCLUSION
In this paper we proposed a novel algorithm, Cocain, to mine fre-

quent closed coherent quasi-cliques from large dense graph databases.
By focusing on vertex labels, we first introduced a simple canoni-
cal form to uniquely represent a quasi-clique pattern. By exploring
some nice properties of quasi-clique patterns, we proposed several
effective search space pruning techniques, diameter pruning, com-
bination pruning, vertex connectivity pruning, critical connectiv-
ity pruning, and subgraph connectivity pruning, which could be
used to accelerate the mining process. We also introduced an ef-
ficient pattern closure checking scheme to speed up the discovery
of closed quasi-cliques. An extensive performance study with both
real and synthetic databases has demonstrated that Cocain is very
efficient and scalable.

6. ACKNOWLEDGEMENT
The authors are grateful to Vladimir L. Boginski, Panos M. Parda-

los, and Sergiy Butenko for providing us the US stock market database.
We thank Jasmine Zhou and Haiyan Hu for sending us the yeast
microarray database and Michihiro Kuramochi for sending us the
KEGG database. Thanks also go to Beng Chin Ooi, Anthony K. H.
Tung and Xifeng Yan for their kind help.

7. REFERENCES
[1] R. Agrawal, R. Srikant. Fast Algorithms for Mining

Association Rules in Large Databases. VLDB’94.
[2] V. Boginski, S. Butenko, P.M. Pardalos. On structural

properties of the market graph. In A. Nagurney (editor),
Innovations in Financial and Economic Networks, Edward
Elgar Publishers, Apr. 2004.

[3] H. Hu, X. Yan, Y. Hang, J. Han, X. Zhou. Mining coherent
dense subgraphs across massive biological network for
functional discovery. Bioinformatics, Vol. 21, Suppl. 1, 2005.

[4] J. Pei, D. Jiang, A. Zhang. On mining cross-graph
quasi-cliques. SIGKDD’05.

[5] J. Wang, Z. Zeng, L. Zhou. CLAN:An Algorithm for Mining
Closed Cliques From Large Dense Graph Databases.
ICDE’06.

[6] X. Yan, X. Zhou, J. Han. Mining closed relational graphs
with connectivity constraints. SIGKDD’05.

