
Multi-Constraint Mesh Partitioning for Contact/Impact Computations∗

George Karypis

Department of Computer Science & Engineering/Army HPC Research Center
University of Minnesota

karypis@cs.umn.edu

Abstract

We present a novel approach for decomposing contact/impact

computations in which the mesh elements come in contact with

each other during the course of the simulation. Effective decom-

position of these computations poses a number of challenges as it

needs to both balance the computations and minimize the amount

of communication that is performed during the finite element and

the contact search phase. Our approach achieves the first goal

by partitioning the underlying mesh such that it simultaneously

balances both the work that is performed during the finite el-

ement phase and that performed during contact search phase,

while producing subdomains whose boundaries consist of piece-

wise axes-parallel lines or planes. The second goal is achieved

by using a decision tree to decompose the space into rectangular

or box-shaped regions that contain contact points from a single

partition. Our experimental evaluation on a sequence of 100

meshes, shows that this new approach can reduce the overall

communication overhead over existing algorithms.

1 Introduction

In order for mesh-based scientific simulations to be effec-
tively executed on a wide variety of parallel architectures
we need to distribute the underlying finite element meshes
among the processors so that (i) the computations are
balanced, (ii) the interprocessor communication is mini-
mized, and (iii) the cost of redistributing the mesh (in the
context of adaptive mesh computations) is minimized. It
has been recognized in recent years that this can be ef-
fectively achieved by using graph-partitioning and reparti-

∗This work was supported by NSF ACI-0133464, CCR-9972519,
EIA-9986042, ACI-9982274, and by the Army High-Performance Com-
puting Research Center under contract number DAAD19-01-2-0014.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SC’03, November 15–21, 2003, Phoenix, Arizona, USA
Copyright 2003 ACM 1-58113-695-1/03/0011...$5.00

tioning algorithms [28, 9, 8, 34], and a new class of parti-
tioning algorithms has been developed based on the mul-
tilevel paradigm [3, 11, 17, 19, 25, 35] that produce high-
quality partitionings, are very fast, and can scale to graphs
containing several millions of vertices [10, 19, 15, 17].
Moreover, efficient parallel formulations of these algo-
rithms have been developed for distributed-memory paral-
lel computers [22, 33, 18, 20], which are capable of scal-
ing to thousands of processors and partition meshes with
billions of elements.

In its simplest form, the graph-partitioning problem fo-
cuses on computing a k-way partition of a graph such that
the edge-cut is minimized and each partition has an equal
number of vertices (or in the case of weighted graphs, the
sum of the vertex-weights in each partition are the same).
The task of minimizing the edge-cut can be considered as
the objective and the requirement that the partitions will
be of the same size can be considered as the constraint.
In addition, more general multi-constraint [16] and multi-
objective [31] instances of the graph-partitioning prob-
lem have also been developed that can compute partition-
ings that simultaneously balance multiple weights asso-
ciated with the vertices while minimizing multiple ob-
jectives associated with the edges. Single-constraint and
single-objective graph partitioning is used to distribute
static mesh-based parallel scientific simulations, whereas
multi-constraint, multi-objective graph partitioning is used
to distribute (adaptive) multi-phase and multi-physics sim-
ulations [9, 8, 34].

Despite the success of multilevel partitioning algo-
rithms and the recent advances in multi-constraint and
multi-objective partitioning problem formulations, there
are still a number of important scientific problems that
cannot be effectively parallelized by these algorithms.
One such example are the scientific simulations in which
the mesh elements come in contact with each other and
are routinely performed in the context of simulations
that study vehicle crashes, material deformations, and
projectile-target penetration. Most of the existing mul-
tilevel partitioning algorithms cannot effectively decom-

1

pose these types of simulations as they ignore the un-
derlying geometry and produce subdomains that incur
high-communication overheads during the contact-search
phase of the computation. For this reason, an alterna-
tive approach has been developed that computes a differ-
ent, geometry-aware decomposition for the contact-search
phase [27, 2]. Even-though, this approach is effective
in reducing the communication overhead associated with
contact-search, it requires a rather expensive, all-to-all per-
sonalized communication step in order to transfer informa-
tion between the two decompositions.

In this paper we present a new approach for partitioning
and performing contact/impact computations on parallel
computers that reduces the communication overheads of
existing approaches while ensuring that the overall com-
putation remains well-balanced. Our algorithm computes
a multi-constraint partitioning that leads to subdomains
whose boundaries consist of piecewise axes-parallel lines
or planes, and uses a binary tree to partition the space
covered by the mesh into disjoint axes-parallel rectangles
or boxes whose leafs contain surface nodes from a single
subdomain. Our experimental evaluation on a real simu-
lation consisting of a sequence of 100 meshes shows that
the resulting algorithm leads to a substantial reduction in
the overall amount of data that needs to be communicated.

The rest of this paper is organized as follows. Section 2
provide some definitions and background information on
graphs, graph partitioning, and contact/impact computa-
tions. Section 3 surveys some related research on parti-
tioning contact/impact computations. Section 4 provides
an overview of the partitioning approach that we devel-
oped and describes the algorithms used for its different
phases. Section 5 provides an experimental evaluation of
the resulting algorithm and compares it against previously
developed schemes. Finally, Section 6 offers some con-
cluding remarks and describes directions along which our
approach can be further improved.

2 Background Information

Definitions Given a weighted undirected graph G =
(V, E) a decomposition of V into k disjoint subsets
V1, V2, . . . , Vk , such that

⋃
i Vi = V is called a k-way

partitioning of V . We will use the terms subdomain or
partition to refer to each one of these k sets. A k-way
partitioning of V is denoted by a vector P such that P[i]
indicates the partition number that vertex i belongs to. A
partitioning is said to cut and edge e, if its incident ver-
tices belong to different partitions. The edge-cut of a par-
titioning P, denoted by EdgeCut(P) is equal to the sum
of the weights of the edges that are cut by the partition-
ing. The partition weight of the i th partition, denoted by
w(Vi) is equal to the sum of the weights of the vertices

assigned to Vi . The total vertex weight of a graph, de-
noted by w(V) is equal to the sum of the weights of all
the vertices in the graph. The load-imbalance of a k-way
partitioning P, denoted by LoadImbalance(P) is the ratio
of the highest partition weight over the average partition
weight, i.e., maxi (w(Vi))/(w(V)/k).

The notions of partition weight, total vertex weight,
and load-imbalance can be extended to cases in which
each vertex v is assigned a vector of m weights, that is,
w(v) = (w1(v),w2(v), . . . , wm(v)). Specifically, the
partition weight of the i th partition with respect to the
j th component of the vertex-weight vectors, denoted by
w j (Vi) is equal to

∑
v∈Vi

w j (v). The total vertex weight
of a graph with respect to the j th component of the vertex-
weight vectors, denoted by w j (V) is equal

∑
v∈V w j (v).

The load-imbalance of a k-way partitioning P with respect
to the j th component of the vertex-weight vectors, denoted
by LoadImbalance(P, j), is maxi (w j (Vi))/(w j (V)/k).

Given a finite-element mesh, its corresponding nodal
graph is obtained by representing each node of the mesh
via a vertex and connecting two vertices via an edge, if
there is a corresponding edge in the mesh. Similarly,
its corresponding dual graph is obtained by representing
each element of the mesh by a vertex and connecting two
vertices together if their corresponding elements share an
edge (in 2D) or a face (in 3D).

Overview of Graph Partitioning Problems Three
distinct graph-partitioning problem formulations have
been used to map mesh-based computations onto the pro-
cessors of a parallel computer. These are the static graph
partitioning, the graph repartitioning, and the multi-
constraint, multi-objective graph-partitioning [9, 8, 34].

The input to the static graph-partitioning algorithms is
a weighted undirected graph G = (V, E). The weight on
the vertices correspond to the (relative) amount of compu-
tation required by the corresponding mesh node/element,
whereas the weight on the edge corresponds to the (rela-
tive) amount of data (or communication time) that needs
to be exchanged in order for the computation at each
mesh node/element to proceed. The goal of the static
graph-partitioning problem is to compute a k-way par-
titioning P, such that for a small positive number ε,
LoadImbalance(P) ≤ 1 + ε and EdgeCut(P) is mini-
mized. Static graph partitioning is used to map traditional
static single-phase simulations onto the processors of a
parallel computer.

The input to the graph repartitioning algorithms is sim-
ilar to that for static graph-partitioning algorithms, but as
their name suggest, there already exists an initial parti-
tioning of the graph P0. However, this partitioning may
not be balanced or it may have a very high edge-cut. The
goal of the graph repartitioning problem is to compute a k-

2

way partitioning P such that LoadImbalance(P) ≤ 1 + ε,
EdgeCut(P) is minimized, and the overlap between the
old and the new partitioning is maximized, i.e., maximize
the number of vertices v for which P[v] = P0[v]. The
second objective of the graph repartitioning problem is
to ensure that adaptive computations do not spend a pro-
hibitively large amount of time in redistributing the data in
order to adhere to the new partitioning.

The input to the multi-constraint multi-objective graph-
partitioning algorithms is a graph whose vertices and
edges have a vector of weights associated with them.
That is, each vertex v has a weight-vector w(v) of
size q, i.e., w(v) = (w1(v),w2(v), . . . , wq(v)), and
each edge e has a weight-vector w(e) of size r , i.e.,
w(e) = (w1(e),w2(e), . . . , wr (e)). The goal of the multi-
constraint multi-objective graph partitioning problem is to
compute a k-way partitioning of the graph P such that
LoadImbalance(P, j) ≤ 1 + ε for j = 1, . . . , q, while
minimizing an objective function that is defined over the r
components of the edge-weight vectors of the edges that
are being cut by the partitioning. This multi-constraint
multi-objective partitioning problem formulation can be
used to balance multi-phase and multi-physics simulations
in which during each iteration the actual computation is
performed in a number of phases with an explicit synchro-
nization step between each phase, or compute partition-
ings that simultaneously balance the amount of computa-
tions assigned to each partition and the amount of memory
that is required by the corresponding elements.

Our discussion on partitioning problem formulations
has been primarily focused on edge-cut based objectives.
However, other objectives such as the total communication
volume [7] can also be used without affecting the algorith-
mic issues involved, and they can be easily incorporated in
existing multilevel partitioning algorithms [15].

Overview of Contact/Impact Computations Each
iteration of contact/impact simulations is usually com-
posed of two phases. During the first phase, traditional fi-
nite difference/element/volume methods are applied on the
entire domain and in the second phase, there is a search to
determine whether or not the surface elements of the mesh
have come in contact and penetrated each other. Once
such contacts have been determined, the positions of the
affected mesh elements are corrected, the elements are de-
formed, and the overall simulation progresses to the next
iteration.

The actual contact detection is usually performed in
two steps [36, 6, 26, 4, 5]. In the first step, the pairs of
surface-elements that are sufficiently close to each other
so that they can potentially be in contact are determined,
whereas in the second step, the exact locations of the con-
tacts/penetrations (if any) between these candidate con-

tacting surfaces are determined. These two steps are often
called global search and local search. A number of differ-
ent algorithms have been developed for local search and
are in use in different production codes. In this paper we
only focus on the global search phase as it is critical for
ensuring the overall parallel scalability of these methods.
Note that the exact details of the local search phase do not
affect the approach used to perform the global search.

For the discussion in the rest of this paper we will use
the terms surface elements or contact elements to refer to
the set of elements that need to be searched for contacts
and we assume that these elements have been identified
as such by the application. We will use the terms contact
nodes, contact points, or surface nodes to refer to the set
of mesh nodes that belong to surface elements. We will
assume that during contact search we are only interested
in identifying contacts between surface elements and not
contacts between surface and non-surface elements.

3 Related Research

A number of different approaches have been developed
for partitioning contact/impact computations. These ap-
proaches can be broadly categorized into two groups based
on the type of problem that they are solving. The first
group contains methods that are designed to address prob-
lem instances in which the portions of the meshes that will
end-up getting in contact with each other are known a pri-
ori (or can be accurately estimated), whereas the second
set of approaches are designed to handle cases in which
no a priori knowledge about contacting surfaces is known.
The second class of contact/impact problems are more
general and are the type of problem instances that this pa-
per is focusing on.

Most of the methods for the first type of contact prob-
lems, partition the underlying mesh such that the portions
of the mesh that contain the to-be-contacting surfaces are
assigned to the same (or a small number of) processors.
This partitioning is usually done by using a graph to model
the mesh and the sets of contacting surfaces by creating
additional edges between the surface elements that can po-
tentially come in contact. Using such a graph model, then
the desired partitioning is obtained by using a traditional
two-constraint graph partitioning algorithm that balances
both the mesh- and the surface elements assigned to each
processor. Since the resulting partitioning minimizes the
edge-cut, such an approach tends to place contacting sur-
face elements on the same processor [12].

Probably, the most efficient method to deal with the sec-
ond class of contact problems is that developed by [27, 2].
This approach distributes the overall computations by per-
forming two different partitionings. In the first partition-
ing, a traditional multilevel graph partitioning algorithm

3

is used to evenly distribute the entire mesh, whereas in
the second partitioning, a recursive coordinate bisection
(RCB) algorithm is used to evenly distribute only the sur-
face elements. Using these two partitionings, this ap-
proach ensures that the overall computation will be bal-
anced. Moreover, since the surface-elements are parti-
tioned using a geometric algorithm, the communication
overhead during the contact-search phase of the algorithm
is reduced, as it is proportional to the number of ele-
ments along the partition boundaries. Also, since during
the course of the simulation, the positions of the contact
nodes changes, the above algorithm recomputes the RCB-
based partitioning of the contact points at each iteration
and moves the contact points accordingly. To minimize the
cost of this redistribution overhead, these follow-up par-
titionings are computed by modifying the previous RCB
partitioning along the same spirit of the graph repartition-
ing algorithms described in Section 2. In the remainder
of this paper, we will refer to the above method as the
ML+RCB algorithm.

The key to the effectiveness of the ML+RCB algorithm
is the fact that it uses the best possible partitioning for each
one of the two phases. However, because these two parti-
tionings are de-coupled, the same surface node can reside
at two different processors. That is, the processors respon-
sible for performing the finite element-based computations
and the contact-detection-based computations of a particu-
lar surface node can be different. As a result, prior to each
one of the two computational phases, an all-to-all commu-
nication operation is required to send the updated informa-
tion for each surface node between the two partitionings.
Depending on the relative size of the surface mesh to the
rest of the subdomain, such a scheme may incur a high
communication overhead.

4 Partitioning for Contact/Impact Com-
putations

From the nature of the computations performed in the
course of numerical simulations involving contact and im-
pact (described in Section 2), we can see that their overall
structure is similar to a two-phase computation, in which
the first phase involves the entire domain and the sec-
ond phase involves only the surface elements and their
nodes. Consequently, if we model this mesh as a graph
with two vertex weights—the first weight modeling the
computations performed during the first phase and the sec-
ond weight modeling the computations performed during
the second phase—then the existing multi-constraint par-
titioning algorithms described in Section 2 can be used
to load-balance the overall computation. This is the key
idea behind our approach for effectively parallelizing con-
tact/impact computations and as such, it eliminates the

need to transfer nodal information between the two dif-
ferent partitionings, as is required by ML+RCB.

However, even though this multi-constraint based ap-
proach will achieve the desired load balance, care must
be taken to ensure that the overall approach does not lead
to excessive communication overheads during the global
search phase of contact detection. On serial computers,
global search is done efficiently by representing each con-
tact surface by its bounding box and using various volume
partitioning (or spatial indexing) techniques to quickly
narrow down the search space. In the case of a paral-
lel system and a partitioned mesh, the global search is
usually accelerated by using a similar technique as fol-
lows [23, 24, 2]. Each subdomain is represented by its
bounding box and every processor receives a copy of all
the bounding boxes of the various subdomains. Then for
each surface element that a processor stores, it determines
the subdomain bounding-boxes that it intersects with or is
fully contained in it, and sends the elements to all of these
processors. Finally, each processor proceeds to perform
global search using the surface elements that it stores and
the surface elements that it received in the previous step.
Essentially this approach uses the bounding boxes of the
subdomains as a filter to determine whether or not a partic-
ular surface element can come in contact with the elements
that are stored at another subdomain. The overall number
of elements that need to be communicated is proportional
to the number of surface elements that are at the intersec-
tion of the various subdomain bounding-boxes. Since the
mesh is partitioned using a two-constraint partitioning al-
gorithm that does not take into account the underlying ge-
ometry, there are no guarantees on the degree of overlap of
the various subdomains, which can lead to excessive com-
munication. Also note that most of the excessive commu-
nication overhead are due to false-positives, i.e., a partic-
ular surface element is sent to a processor, even though
none of the locally stored elements of that processor will
identify it as a “hit” for its global search phase.

In principle there are two ways that can be used to ad-
dress the above problem. First, we can develop multi-
constraint graph partitioning algorithms that take into ac-
count the underlying geometry and lead to subdomains
whose corresponding bounding boxes have as small of an
overlap as possible. Second, we can develop better par-
allel global search algorithms that reduce the number of
false-positives. This can be done by using different geo-
metric descriptors for the area/volume that is covered by
the elements assigned to a particular subdomain than just
its bounding box. In particular, if the area/volume that
is covered by these descriptors asymptotically approaches
the area/volume of the actual subdomain, then the overlap
between the different subdomains will be asymptotically

4

reduced to zero, and thus minimize the number of false-
positives.

Our algorithm uses both of these approaches to reduce
the amount of communication that is required during the
global search phase of contact detection. It computes
a multi-constraint partitioning that leads to subdomains
whose boundaries consist of piece-wise axes-parallel lines
or planes, and uses a binary tree to partition the space cov-
ered by the entire mesh into disjoint axes parallel rectan-
gles or boxes whose leafs contain surface elements from a
single subdomain. Details on how the geometric descrip-
tors are constructed, how the multi-constraint partitioning
is computed, and various issues involved with incremen-
tally updating this information are provided in the rest of
this section.

Note that our partitioning algorithm operates on the
nodal graph of the mesh and for this reason our discussion
throughout this section will focus on the problem of parti-
tioning the nodal graph of the mesh. However, the actual
global search is done with respect to the surface elements
of the mesh and details on how the nodal partitioning is
used to perform that search is also provided.

4.1 Subdomain Geometric Descriptors

The best way to describe the method that we use to repre-
sent the area/volume occupied by each subdomain is via an
example. Figure 1(a) shows such a hypothetical example
of a 2D problem in which 45 contact points have been par-
titioned into three subdomains. The subdomain that each
point belongs to is represented by the shape of each point
(i.e., triangle, circle, and square). Given this partition-
ing, our algorithm then proceeds to partition the underline
space into rectangular regions as depicted in Figure 1(b).
The property of these regions is that each one of them
contains points from only a single partition. Given such
a space partitioning, then for contact search purposes, we
assume that each subdomain occupies the area consisting
of the rectangles containing its points. For example, in the
case of the “triangle” subdomain, its geometric descrip-
tion will consist of the (A) and (B) rectangles, whereas
for the “square” subdomain, its corresponding description
contains rectangles (F), (H), (I), and (J).

Note that this space partitioning is not arbitrary but is
obtained by performing a sequence of recursive bisections
along either the x or the y axis. This sequence is depicted
in Figure 1(c) using a binary tree. The interior nodes of
this tree represent bisections along a particular point of the
x or y axis and the leaf nodes represent rectangles that con-
tain only points from a single partition. For example, the
root corresponds to the bisection that is performed along
the y-axis at point 4.75. This tree can be also used to locate
the rectangles that a particular point (x i , yi) belongs to by

starting from the root and going to the left or to the right,
depending on whether or not x i or yi satisfies the test that
is depicted at that node. In particular, if the point satisfies
the test, then it will traverse the left subtree (i.e., the yes
branch), otherwise it will traverse the right subtree (i.e.,
the no branch). These types of trees are extensively used
in the machine learning community, and they are called
decision trees; whereas, the splitting points at each node
are called the decision hyperplanes.

The resulting decision tree can also be used to perform
the global search and identify the partitions that contain
contact points with which each surface element can poten-
tially come in contact with. In that case, the input is the
surface element’s geometry (or a bounding-box approxi-
mation of it), and the global search algorithm will start
from the root of the tree and traverse either the left, right,
or both branches depending on whether or not the sur-
face element is on the left, right, or intersects the decision
hyperplane. In general, the average complexity of each
search will be proportional to the average height of the
tree. Since each subdomain will be in general described
by more than one leaf node, the complexity of the search
will tend to be somewhat higher than the complexity of
the search required by ML+RCB. However, since for each
surface element, the decision tree based approach identi-
fies a subset of the contact points stored by a processor
that it can come in contact with, this information can be
used to speedup the follow up contact search that is per-
formed by each processor. Thus, it does not significantly
affect the overall complexity of contact search.

Note that the above space partition only focuses on
the contact points and it entirely ignores the non-contact
points. As a result, depending on the complexity of the
underlying geometry, contact surfaces, and partitioning,
each of these rectangular boxes may actually contain non-
contact points from multiple partitions. However, since the
contact search involves only surface elements and contact
points, this does not create any correctness or complete-
ness problems.

4.1.1 Constructing the Decision Tree
Our discussion so far has focused on the properties of the
space partitioning obtained by the decision trees but we
have not yet described how the decision tree is obtained
in the first place. Specifically, the problem that we need
to address is the following. Given a k-way partitioning
of a set of points in either 2D or 3D, construct a decision
tree that partitions the space into rectangles or boxes each
of which contain points from only one partition. More-
over, since the decision tree needs to be built in parallel
and communicated to all the processors (in order to per-
form the contact search), reducing the overall number of
nodes in the resulting tree is an additional objective that

5

1

9

8

7

5

6

4

3

2

1 2 3 4 5 6 7 8 9

x < 6.00x < 5.00

y < 3.25 y < 8.25 x < 7.00

y < 7.50x < 2.50

y < 6.25

y < 4.75
yes no

X−axis
Y

−
ax

is
(b) Partitioning of the space. (c) Associated Decision Tree(a) Partitioning of the contact points.

(A)
(B)

(C)

(D) (E) (F) (G)

(H)

(I) (J)

Figure 1: An example three-way partitioning of 45 contact points. (a) Shows the partitioning of the 45 contact points into
three partitions. (b) Shows the description of the various subdomains as a set of axes-parallel rectangles. (c) Shows the
underlying decision tree description of these descriptors.

needs to be taken into account while building the tree.
Fortunately, the problem of building a decision tree that

has the above characteristics has been extensively studied
by the machine learning community (under the name of
tree induction) and a number of different heuristic algo-
rithms have been developed [1, 29]. For our problem, we
decided to use the C4.5 algorithm [30] as it leads to small
trees, is computationally efficient, and as part of our ear-
lier work, have developed efficient and scalable parallel
formulations for it [14].

Given a set of points A, each belonging to one of the
k partitions, the C4.5 algorithm identifies the hyperplane
that bisects the points into two sets A1 and A2 such that
both A1 and A2 are as pure as possible. A set is considered
to be completely pure, if it contains only points from one
of the k partitions. Since A can contain points from up
to k partitions, it may be impossible to find a bisecting
hyperplane that results in both A1 and A2 being pure. In
such cases, C4.5 tries to find a hyperplane such that the
points of each one of the k partitions is assigned primarily
to either A1 or A2. This is usually done by computing
a splitting index that measures the purity of the resulting
bisection, and selecting the hyperplane that maximizes the
value of that index. For our purposes, we used a modified
version of the gini index [1] given by

splitting index =
√√√√ k∑

i=1

|A1,i |2 +
√√√√ k∑

i=1

|A2,i |2, (1)

where A1,i and A2,i are the number of points of partition
i that were assigned to sets A1 and A2, respectively. In
the simple case in which k = 2, and A contains an equal
number of points from the two partitions, the above func-
tion achieves its maximum value when each set is assigned
points from a single partition. Analyzing the properties of

this function for a general distribution is beyond the scope
of this paper, and the reader should refer to [1, 30].

Once the best splitting hyperplane has been identified,
the original set is partitioned into A1 and A2, and each
set that contains points from more than one partition is
further split by applying the same procedure recursively.
The reader should refer to [30] for further details. The
computational complexity for splitting a set A is linear on
the size of the set, assuming that the points in A have been
sorted along each one of their dimensions. This is because
the algorithm needs to try only each hyperplane that passes
between successive points along each of the dimensions (a
total of 3|A| possible points), and at each successive point,
Equation 1 can be computed incrementally in O(1) time.
Also, the required sorting can be done once for the the
entire set and maintained by properly splitting the various
sets during the bisection steps.

4.2 Computing a Contact-Friendly Multi-
Constraint Partitioning

We partition the mesh using a multi-constraint graph par-
titioning algorithm [16] whose goal is to decompose the
mesh among the k processors such that it balances the
computations that are performed during each one of the
two phases. Specifically, let G = (V, E) be the nodal
graph of the underlying mesh. Let w(v) = (w1(v),w2(v))

be a two-element vector assigned to each vertex v, such
that w1(v) is set equal to a value that reflects the (relative)
amount of computation that it performs during the first
phase of the calculation, and w2(v) is set to a value that
reflects the (relative) amount of computation that it per-
forms during the contact search phase. In general, w 2(v)

will be non-zero when v corresponds to a contact point,
otherwise it will be equal to zero. Note that our above
weight definitions reflect the most general case in which

6

the computations associated with the different nodes are
different. In cases in which this is not true, then all of the
non-zero values will be set to one.

The above graph model can be further improved by
adding weights to the different edges. The are two inher-
ently different types of edges in the above graph. These are
(i) the edges whose incident vertices correspond to contact
points, and (ii) the remaining edges. If a partition cuts an
edge of the first type, then it will lead to a communica-
tion step both during the first phase and (in most cases)
during the second phase of the computation. On the other
hand, cutting edges of the second type will in general lead
to communication only during the first phase. Thus, we
can reduce the overall communication cost by assigning a
higher weight to the edges between contact points.

Using this graph G, we can then use the multi-
constraint partitioning algorithm [16, 32] to obtain the k-
way partitioning P that balances the two computational
phases. In principle, this partitioning P can then be given
directly to the decision tree induction algorithm described
in Section 4.1.1 to build the necessary geometric descrip-
tors for contact search. However, depending on the ge-
ometry of the boundaries of the various subdomains, the
decision tree induced consistent with P may have a large
number of nodes. For instance, consider the very simple
case of a two-way partitioning of a 2D mesh in which the
contact points of the two subdomains are along a diago-
nal line, as illustrated in Figure 2(a). Then, as shown in
Figure 2(b), the resulting decision tree will need to com-
pute a fine-grain space partitioning in order to ensure that
each leaf node contains points from only one subdomain.
This happens because there is a miss-match between the
geometry of the subdomain boundaries that decision trees
can model concisely and the geometry produced by the ac-
tual partitioning. Since decision trees partition the space
by performing axes parallel bisections, they are ideal for
boundaries that consist of axes-parallel lines or planes, and
they are less effective the further the subdomain bound-
aries deviate from this model.

For this reason, we developed an algorithm that mod-
ifies the initial partitioning obtained from the tradi-
tional multi-constraint partitioning algorithm to generate
a decision-tree friendly partition. We achieve that by in-
ducing a decision tree on the entire set of vertices of the
graph (i.e., both those corresponding to contact points and
those that do not), and then using this tree to guide the
modification. The decision-tree induction algorithm that
we used is similar to that described in Section 4.1.1 but
instead of terminating the tree induction when it reaches
a pure node, it terminates when (i) it reaches a node that
is pure and contains less than max p points, or when (ii) it
reaches a node that is impure and contains less than max i

points. The first condition forces the tree induction to con-
tinue even for pure tree-nodes when these nodes contain a
large number of points, whereas the second condition ter-
minates the tree induction when an impure tree-node has a
small number of points.

Now, given this tree, our algorithm computes a new par-
titioning P ′ from P, by assigning all the points that are
covered by a particular leaf node to the majority partition
of these points. As a result of this policy, the points that
belong to pure leaf nodes will not change partitions; how-
ever, the points that belong to impure leaf nodes may be as-
signed to a different partition. By construction, this vertex
reassignment leads to a partitioning P ′ whose boundaries
consist of piecewise axes-parallel lines or planes. How-
ever, P ′ may not necessarily satisfy the balancing con-
straints and as such, it is not an acceptable solution.

To correct this we perform a multi-constraint k-way
partitioning refinement operation whose goal is to mod-
ify P ′ such that the resulting partition P ′′ does satisfy
the constraints. However, in order to ensure that subdo-
main boundaries of P ′′ retain their nice geometric prop-
erties, we do not perform that refinement on the original
graph G, but on a much smaller graph G ′ that is obtained
by collapsing together all the vertices belonging to each
leaf-node of the decision tree into a single vertex. Thus,
the refinement algorithm moves between partitions these
rectangular- or box-shaped regions, and as a result P ′′
is guaranteed to retain its nice geometric characteristics.
Note that both the initial multi-constraint partitioning, the
construction of G ′, and the multi-constraint k-way parti-
tioning refinement can be done effectively in parallel [32],
and these algorithms are already available in the latest re-
lease of PARMETIS [21].

The maxp and maxi parameters of the above scheme
play an important role in determining the extent to which
this scheme leads to effective solutions. Specifically, if
maxp and maxi are set to very small values, then it will
be relatively easy for the post-refinement step to correct
any load-imbalances and lead to high-quality solutions in
terms of the cut. However, the resulting subdomains may
consist of a large number of regions, and as such they can
still lead to large decision trees. If max p and/or maxi is set
too high, then it may be difficult for the post-refinement al-
gorithm to balance the constraints, as G ′ will contain ver-
tices with high vertex weights (i.e., will correspond to a
large number of vertices of G), that cannot be moved for
balancing purposes. Moreover, high values of max i may
lead to an intermediate partition P ′ that significantly vio-
lates the balancing constraints and has a high cut—both of
which will make the post-refinement task quite difficult.

Our experimental study on the sensitivity of our ap-
proach to these parameters has shown that if n is the to-

7

1

9

8

7

5

6

4

3

2

1 2 3 4 5 6 7 8 9

X−axis

Y
−

ax
is

(a) Partitioning of the space.

y < 7.25

y < 6.90

x < 4.50

y < 4.00

x < 1.75

y < 3.10

x < 0.80

y < 5.00

x < 3.25

y < 2.45

x < 7.25

y < 6.10

x < 5.50

y < 6.25

x < 8.75

yes no

(b) Associated Decision Tree

Figure 2: An example two-way partitioning of 28 contact points. (a) Shows the description of the various subdomains as
a set of axes parallel rectangles. (b) Shows the underlying decision tree description of these descriptors.

tal number of vertices in the graph and k is the number of
partitions, then good choices for max p and maxi are within
the following ranges:

n

k1.5 ≤ maxp ≤ n

k
and

n

k2.5 ≤ maxi ≤ n

k2

Note that the fact that maxi < maxp , does make an in-
tuitive sense, since high values of maxi degrades the P ′
partitioning solution both in terms of balance and in terms
of cut.

4.3 Updating the Information

A key element of contact/impact simulations is that during
successive time-steps, as parts of the mesh come in contact
with each other, the position of the nodes in the underlying
mesh change, and depending on the actual characteristics
of the numerical simulation algorithm, some existing ele-
ments disappear; thus, changing the topology of the under-
lying nodal graph. As a result, the partitioning of the mesh
and the information used to search for contacts need to be
updated periodically.

Within the context of our algorithm, there are two dif-
ferent ways of performing these updates. One approach
will recompute a multi-constraint partitioning of the graph
and set up the associated geometric subdomain descrip-
tors during each time-step of the simulation. To ensure
that there is a high degree of overlap between succes-
sive partitionings, the updated multi-constraint partition-
ing will be computed using a multi-constraint repartition-
ing algorithm [32]. The second approach will leave the
multi-constraint partitioning unchanged but just use the
tree-induction algorithm to compute the new geometric
subdomain descriptors that take into account the new lo-
cation of the contact points.

The second approach has the advantage of being faster,
as it does not perform the multi-constraint partitioning,
and there is no need for dynamic data redistribution in or-

der to adhere to the new partitioning. Moreover, as long
as the underlying topology and the contact points do not
change dramatically, this approach still ensures that the
overall computation is load-balanced. However, its draw-
back is the fact that as the simulation progresses, the algo-
rithm is required to build the decision tree on a partitioning
whose subdomain boundaries are not any more piecewise
axes-parallel lines or plane. As a result, the number of
nodes in the induced decision tree may increase.

The above discussion suggests that a hybrid approach
may be the optimal choice. That is, in the course of the
simulation, the mesh will be infrequently repartitioned us-
ing the first approach (so that to ensure that the work re-
mains load-balanced and that the geometry of each subdo-
main is “nice”), and between these repartitioning steps, it
will be updated by simply inducing a new decision tree on
the contact points.

5 Experimental Evaluation

We experimentally evaluated the performance of our
multi-constraint-based partitioning algorithm for con-
tact/impact computations on a sequence of meshes corre-
sponding to an actual numerical simulation. The simula-
tion corresponds to a projectile penetration through two
plates, as illustrated in Figure 3. The initial mesh con-
tains 156,601 nodes, 701,952 elements, 40,512 contact
surfaces, and 20,262 contact nodes. The simulation was
performed using the EPIC code [13] and required a total
of 3,768 time steps to finish. Due to the relative large num-
ber of time steps, we instrumented the code to output the
mesh and the associated contact surface information ap-
proximately every 37 time steps, resulting in a total of 100
successive snapshots of the mesh. We then used this se-
quence of meshes to evaluate our algorithm and compare
it against ML+RCB. In order to simplify the presenta-
tion, we will refer to our approach for partitioning con-
tact/impact computations as the MCML+DT algorithm.

8

(a) (b) (c)

Figure 3: Various stages of the simulation.

MCML+DT has a number of tunable parameters that
can affect its performance. However, due to space con-
straints, we only present the results that we obtained by us-
ing a single set of parameters that was kept constant over
all 100 meshes. Specifically, the multi-constraint nodal
graph was obtained by setting the various vertex weights
to one (i.e., we assume that all the mesh nodes and all the
contact points perform the same amount of computation
during the first and the second phase of the computation,
respectively), and we set the weights of the edges connect-
ing contact points to five while we kept the weight of the
remaining edges to one. For updating the contact search
information in successive iterations we followed the ap-
proach that keeps the partitioning of the mesh fixed but
only updates the geometric descriptors of the various sub-
domains by inducing a new decision tree. Finally, the
contact search for both MCML+DT and ML+RCB was
performed by approximating each surface element by its
bounding box.

5.1 Performance Metrics

We evaluated the performance of MCML+DT and
ML+RCB using six different metrics whose meaning is as
follows.

FEComm is the total communication volume resulted
from partitioning the entire mesh and represents the
communication overhead of the first phase of the
computations performed during each time-step. Note
that for ML+RCB, we used METIS’s [15] multilevel
algorithm to compute the k-way partitioning of the
mesh.

NTNodes is the total number of nodes in the decision
tree induced by MCML+DT that is used to obtain the
geometric descriptors of each subdomain. It repre-
sents the cost of setting up the contact-search data
structures.

NRemote is the total number of surface elements that
need to be sent to the different partitions so that they
can be searched for contact. It represents the commu-
nication cost that is incurred during the global search
phase of contact detection.

M2MComm is the total number of contact points that be-
long to partitions that are different from the partitions
that were assigned for the first phase. It represents
the communication cost associated with mapping in-
formation between the two meshes in the ML+RCB
algorithm. Note, in order to ensure that the communi-
cation overhead of transferring information between
the two partitions is minimized as much as possible
we used a maximal weight matching algorithm to op-
timized the mapping between the two partitions.

UpdComm is the number of contact points that end up
being assigned to different partitions as a result of the
mesh-updating strategy used by ML+RCB.

5.2 Results

Table 1 shows the performance of the two algorithms in
terms of the different metrics for 25 and 100 partitions.
These values were obtained by averaging the various ma-
trices over the entire set of 100 meshes.

From these results we can see that the ML+RCB
algorithm leads to partitionings whose FEComm cost
is smaller than that of MCML+DT. This should not
be surprising, as the k-way partitioning computed by
MCML+DT has to balance two different constraints,
whereas ML+RCB’s partitioning needs to balance only
one. However, this savings in terms of FEComm, comes
at the expense of the M2MComm cost that ML+RCB has
to perform but MCML+DT does not. Since in general,
information needs to be transfered both from the first to
the second partitioning and then back to the first, the com-
munication cost incurred by ML+RCB will be twice that

9

MCML+DT Algorithm ML+RCB Algorithm
FEComm NTNodes NRemote FEComm M2MComm UpdComm NRemote

25-way 28101 1206 5103 23961 12205 553 4972
100-way 65979 2144 9915 59688 12582 1125 11078

Table 1: The performance achieved by the MCML+DT and ML+RCB algorithms for partitioning the sequence of 100
meshes. These results correspond to averages over the 100 meshes.

of the M2MComm value shown in the table. Thus, if we
take this into account and if we assume that each com-
munication operation involves data elements of the same
size, ML+RCB requires 72% and 29% more communica-
tion than MCML+DT for the 25- and 100-way partitions,
respectively. Note that these figures correspond to com-
parisons that do not include any contact search related op-
erations.

Comparing the performance of the two approaches in
terms of the NRemote metric, we can see that for the 25-
way partitioning, MCML+DT and ML+RCB lead to com-
parable performance, with MCML+DT doing 2.6% worse,
whereas for the 100-way partitioning, the MCML+DT
scheme outperforms ML+RCB as the latter needs to com-
municate 12% more surface elements. These results sug-
gest that MCML+DT’s approach of describing each sub-
domain as a set of box-shaped regions is quite effective
in eliminating most of the false positive contacts, and that
the initial multi-constraint partitioning was quite effective
in reducing the number of adjacent contact points that span
partition boundaries.

Finally, comparing the remaining two performance
metrics, NTNodes and UpdComm we can see that both
of them increase with the number of processors, but they
are relatively small compared to the other overheads.

6 Conclusions and Directions for Fu-
ture Research

In this paper we presented a new approach for partitioning
contact/impact numerical simulations in the context of par-
allel processing. This approach combines recent advances
in multi-constraint graph partitioning with ideas borrowed
from the machine learning community and leads to an al-
gorithm that has a lower communication overhead than the
current state-of-the-art ML+RCB approach. Moreover, its
overall simpler structure makes its incorporation in various
production contact/impact codes easier.

The approach presented in this paper can be improved
in a number of ways. We believe that better tree induc-
tion methods can be developed that besides the purity of
the bisection they also take into account how far away the
various contact points are from the decision hyperplane.
Specifically, hyperplanes that go through a sparsely popu-
lated region of the space or are far away from their near-

est points should be preferred, as they will tend to reduce
the number of false-positives during contact search. In ad-
dition, the development of better geometry-aware multi-
constraint partitioning algorithm can greatly improve the
performance of this approach. Finally, before this ap-
proach can be incorporated in simulation codes, a parallel
version of it needs to be developed. Fortunately, efficient
parallel formulations of the multi-constraint graph parti-
tioning, multi-constraint partitioning refinement, and de-
cision tree induction already exist, making the paralleliza-
tion task straightforward.

Acknowledgments

I will like to thank Andrew Johnson from making available
the EPIC datasets.

References
[1] Leo Breiman, Jerome H. Friedman, Richard A. Olshen,

and Charles J. Stone. Classification and Regression Trees.
Chapman & Hall, New York, 1984.

[2] K. Brown, S. Attaway, S. Plimpton, and B. Hendrickson.
Parallel strategies for crash and impact simulations. Com-
putational Methods in Applied Mechanics & Engineering,
184:375–390, 2000.

[3] T. Bui and C. Jones. A heuristic for reducing fill in sparse
matrix factorization. In 6th SIAM Conf. Parallel Processing
for Scientific Computing, pages 445–452, 1993.

[4] G. Camacho and M. Ortiz. Adaptive langrangian modeling
of ballistic penetration of metalic targets. Computational
Methods in Applied Mechanical Engineering, 147:269–
301, 1997.

[5] R. Diekmann, J. Hungershofer, M. Lux, L. Taenzer, and
J. Wierum. Efficient contact search for finite element anal-
ysis. In European Congress on Computational Methods in
Applied Sciences and Engineering, 2000.

[6] M. Heinstein, S. Attaway, F. Mello, and J. Swegle. A
general-purpose contact detection algorithm for nonlinear
structural analysis codes. Technical Report SAND92-2141,
Sandia National Laboratories, 1993.

[7] B. Hendrickson. Graph partitioning and parallel solvers:
Has the emperor no clothes? In Proc. Irregular’98, pages
218–225, 1998.

[8] B. Hendrickson and K. Devine. Dynamic load balancing
in computational mechanics. Computational Methods in
Applied Mechanics & Engineering, 184:485–500, 2000.

10

[9] B. Hendrickson and T. Kolda. Graph partitioning models
for parallel computing. Parallel Computing (to appear),
2000.

[10] Bruce Hendrickson and Robert Leland. The chaco user’s
guide, version 1.0. Technical Report SAND93-2339, San-
dia National Laboratories, 1993.

[11] Bruce Hendrickson and Robert Leland. A multilevel algo-
rithm for partitioning graphs. Technical Report SAND93-
1301, Sandia National Laboratories, 1993.

[12] C. Hoover, A. DeGroot, J. Maltby, and R. Procassini.
Paradyn: Dyna3d for massively parallel computers, 1995.
Presentation at Tri-Laboratory engineering Conference on
Computational Modeling.

[13] G. Johnson, R. Stryk, and S. Beissel. User Instructions for
the 2001 Version of the EPIC code. Alliant Techsystems,
Inc., Hopkins, Minnesota, April 2001.

[14] M.V. Joshi, G. Karypis, and V. Kumar. ScalParC: A new
scalable and efficient parallel classification algorithm for
mining large datasets. In Proc. of the International Parallel
Processing Symposium, 1998.

[15] G. Karypis and V. Kumar. METIS 4.0: Unstructured graph
partitioning and sparse matrix ordering system. Techni-
cal report, Department of Computer Science, University
of Minnesota, 1998. Available on the WWW at URL
http://www.cs.umn.edu/˜metis.

[16] G. Karypis and V. Kumar. Multilevel algorithms for
multi-constraint graph partitioning. In Proceedings of Su-
percomputing, 1998. Also available on WWW at URL
http://www.cs.umn.edu/˜karypis.

[17] G. Karypis and V. Kumar. Multilevel k-way partitioning
scheme for irregular graphs. Journal of Parallel and Dis-
tributed Computing, 48(1):96–129, 1998. Also available on
WWW at URL http://www.cs.umn.edu/˜karypis.

[18] G. Karypis and V. Kumar. A parallel algorithm for
multilevel graph partitioning and sparse matrix order-
ing. Journal of Parallel and Distributed Computing,
48(1):71–95, 1998. Also available on WWW at URL
http://www.cs.umn.edu/˜karypis. A short version appears in
Intl. Parallel Processing Symposium 1996.

[19] G. Karypis and V. Kumar. A fast and highly quality multi-
level scheme for partitioning irregular graphs. SIAM Jour-
nal on Scientific Computing, 20(1), 1999. Also available
on WWW at URL http://www.cs.umn.edu/˜karypis. A short
version appears in Intl. Conf. on Parallel Processing 1995.

[20] G. Karypis and V. Kumar. Parallel multilevel k-way parti-
tioning for irregular graphs. SIAM Review, 41(2):278–300,
1999.

[21] G. Karypis, Kirk Schloegel, and V. Kumar. PARMETIS 3.0:
Parallel graph partitioning and sparse matrix ordering li-
brary. Technical report, Department of Computer Science,
University of Minnesota, 2002. Available on the WWW at
URL http://www.cs.umn.edu/˜metis.

[22] George Karypis and Vipin Kumar. A coarse-grain paral-
lel multilevel k-way partitioning algorithm. In Proceedings
of the eighth SIAM conference on Parallel Processing for
Scientific Computing, 1997.

[23] G. Lonsdale, J. Clinckemaillie, S. Vlachoutsis, and
J. Dubois. Communication requirements in parallel crash-
wirthiness simulation. In Proceedings of the HPCN 94,
pages 55–61, 1994.

[24] J. Malone and N. Johnson. A parallel finite element
contact/impact algorithms for non-linear explicit transient
analysis: Part II – parallel implementation. Intl. J. Num.
Methods Eng., 37:591–603, 1994.

[25] B. Monien, R. Preis, and R. Diekmann. Quality matching
and local improvement for multilevel graph-partitioning.
Technical report, University of Paderborn, 1999.

[26] M. Oldenburg and L. Nilsson. The position code algorithm
for contact searching. International Journal for Numerical
Methods in Engineering, 37:359–386, 1994.

[27] S. Plimpton, S. Attaway, B. Hendrickson, J. Swegle,
C. Vaughan, and D. Gardner. Transient dynamics sim-
ulations: Parallel algorithms for contact detection and
smoothed particle hydrodynamics. Journal of Parallel and
Distributed Computing, 50:104–122, 1998.

[28] A. Pothen. Graph partitioning algorithms with applica-
tions to scientific computing. In D. Keyes, A. Sameh,
and V. Venkatakrishnan, editors, Parallel Numerical Algo-
rithms. Kluwer Academic Press, 1996.

[29] J. Ross Quinlan. Induction of decision trees. Machine
Learning, 1:81–106, 1986.

[30] J. Ross Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA, 1993.

[31] K. Schloegel, G. Karypis, and V. Kumar. A new algorithm
for multi-objective graph partitioning. In Proceedings of
Europar 1999, September 1999.

[32] K. Schloegel, G. Karypis, and V. Kumar. Parallel multilevel
algorithms for multi-constraint graph partitioning. In Pro-
ceedings of Europar 2000, September 2000. Distinguished
Paper Award.

[33] Kirk Schloegel, George Karypis, and Vipin Kumar. Mul-
tilevel diffusion algorithms for repartitioning of adaptive
meshes. Journal of Parallel and Distributed Computing,
47(2):109–124, 1997. Also available on WWW at URL
http://www.cs.umn.edu/˜karypis.

[34] Kirk Schloegel, George Karypis, and Vipin Kumar. Graph
partitioning for high-performance scientific simulations. In
Jack Dongara, Ian Foster, Geoffrey Fox, William Gropp,
Ken Kennedy, Linda Torczon, and Andy White, editors,
Sourcebook on Parallel Computing, chapter 18, pages 491–
541. Morgan Kaufmann, San Francisco, CA, 2002.

[35] C. Walshaw and M. Cross. Parallel optimisation algo-
rithms for multilevel mesh partitioning. Technical Report
99/IM/44, University of Greenwich, London, UK, 1999.

[36] Z. Zhong and L. Nilsson. A contact searching algorithm for
general contact problems. Comp. & Struct., 33:197–209,
1989.

11

