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Abstract

Contact map prediction is of great interest for its appli-
cation in fold recognition and protein 3D structure determi-
nation. In this paper we present a contact-map prediction
algorithm that employs Support Vector Machines as the ma-
chine learning tool and incorporates various features such
as sequence profiles and their conservation, correlated mu-
tation analysis based on various amino acid physicochem-
ical properties, and secondary structure. In addition, we
evaluated the effectiveness of the different features on con-
tact map prediction for different fold classes. On average,
our predictor achieved a prediction accuracy of 0.2238 with
an improvement over a random predictor of a factor 11.7,
which is better than reported studies. Our study showed
that predicted secondary structure features play an impor-
tant roles for the proteins containing beta structures. Mod-
els based on secondary structure features and CMA features
produce different sets of predictions. Our study also sug-
gests that models learned separately for different protein
fold families may achieve better performance than a unified
model.

1 Introduction
Proteins are the molecular devices of life. With the contin-
ued completion of genome projects their sequences become
known at an ever-increasing rate. The determination of the
structure of proteins is deemed as a key step toward under-
standing the behavior of proteins and initiating knowledge-
based, rational approaches for engineering molecular solu-
tions. Experimental efforts, such as x-ray crystallography
and NMR techniques are not efficient enough to allow for
rapid structural determination of the ever increasing number
of newly discovered sequences. Hence, computational tech-
niques are becoming an indispensable tool for determining
the relations between protein sequence and structure.

∗This work was supported by NSF CCR-9972519, EIA-9986042, ACI-
9982274, ACI-0133464, and by Army High Performance Computing Re-
search Center contract number DAAH04-95-C-0008.

Although the mechanism of protein folding is not yet
generally known, it can be reasonably assumed that non-
local interactions are necessary for secondary structural ele-
ments to result in a cohesive native structure. Whereas local
interactions are responsible for secondary structural char-
acteristics, non-local interactions are crucial for proteins to
attain their native state. Numerous experimental and the-
oretical studies have demonstrated this importance of non-
local interactions in protein fold attainment and fold stabil-
ity [12, 1, 6, 5, 20]. Hence, the prediction of non-local inter-
actions is of great interests for its use in protein fold recog-
nition and 3D structure recovery. Specifically, identifying
pairs of non-sequential amino acid residues that interact in
3D space provides a set of topological constraints that can
be utilized in protein fold recognition.

Over the years, a variety of different approaches have
been developed for contact map prediction [4, 13, 21, 24,
15], in which various machine learning tools as well as
various features have been employed. The various learn-
ing mechanisms include Neural Networks [4, 15], statis-
tical approaches based on correlated mutation [13, 21],
and association rule based classification [24]. Whereas,
the various features include sequence profiles derived from
multiple sequence alignment [4, 24, 15], correlated muta-
tion [4, 13, 21], predicted secondary structures [4, 15] and
folding initiation sites (I-sites) [24]. However, the accuracy
of contact map prediction is still far from satisfactory. The
current state-of-art contact map predictor reported at CASP4
achieved an average accuracy of 0.21 (a 6-fold improvement
over a random predictor).

One of the interesting outcomes of previous research has
been the observation that adding predicted secondary struc-
ture information is very helpful for contact map predic-
tions [15, 4], even more useful than sequence profiles [15].
However, all previous approaches did not differentiate pro-
teins of different fold families, i.e., the importance of vari-
ous features was studied based on their performance on all
proteins from different fold families. On the other hand,
Reva and Topiol [19] recently found that beta-structures
contribute more significantly to fold recognition than alpha-
structures, which raises the question whether beta-structures
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also contribute more significantly than alpha-structures to
contact map prediction. The available knowledge of pro-
tein fold families (CATH [14]) enables us to answer this
question by testing the effectiveness of predicted secondary
structures in contact map prediction for various protein fold
families. Especially, we focused on the class level from
CATH and tested whether the predicted secondary struc-
ture features are equally important for proteins with mainly
alpha-structures, mainly beta-structures, and both alpha and
beta structures. Furthermore, we would like to address an
even broader problem, which is how effective are the differ-
ent features (i.e., correlated mutation, sequence profiles and
predicted secondary structures) in predicting contact maps
for proteins of different fold classes. In addition, we em-
ployed Support Vector Machine (SVM) as the classification
tool and incorporated AAindex [9] to extract correlated mu-
tation and sequence profile features.

On average, our predictor achieved a prediction accuracy
of 0.2238 with an improvement over a random predictor of a
factor 11.7, which is better than reported studies. Our study
showed that predicted secondary structure features play an
important role for the proteins containing beta structures.
Models based on secondary structure features and CMA fea-
tures produce different sets of predictions. Our study also
suggests that models learned separately for different protein
fold families may achieve better performance than a unified
model.

The rest of this paper is organized as follows. Section 2
provides some background information on contact maps,
non-local interactions, and CATH. Section 3 describes our
approach of predicting contact maps, including the features
and models we studied. Section 4 provides the detailed ex-
perimental evaluation of various models for different protein
fold groups and length groups. Section 5 discusses some im-
portant observations from the experimental results. Finally,
Section 6 provides some concluding remarks.

2 Background Material
Contact Maps Contact maps are two-dimensional, bi-
nary representations of protein structures. For a protein with
N residues, the contact map for each pair of amino acids
k and l, (1 ≤ k, l ≤ N), will have a value C(k, l) = 1,
if a suitably defined distance d(k, l) < dthr , where dthr is
a user-defined threshold distance between the amino acids,
and C(k, l) = 0 otherwise. Appropriate distances between
amino acid residues can be, for example, the one between
the center of mass, the Cα atoms, or the minimum one. A
contact map is simply a convenient binary representation of
a distance matrix D, defined as D = [|rkl |], where |rkl | is
the distance between the residues k and l. A particular cut-
off distance, dthr , is chosen and we assign C(k, l) = 1 for
all D(k, l) < dthr . In our study, we adopted the definition of
distances to be the distances between the Cα atoms of two

amino acids and the distance threshold to be 8 Å.

Non-local Contacts In our study, we focused on the off-
diagonal regions of the contact maps, (i.e., non-local con-
tacts). Consider a protein sequence [a1, a2, . . . , aN ] where
N is the number of amino acid residues. We define as non-
local any pairwise interactions between amino acids ai and
a j with the sequence separation |i − j | > 6. Interactions
between amino acids with sequence separations |i − j | ≤ 6
we define as local, including intra-loop and intra-helix inter-
actions between any residues i and i + 5. Non-local interac-
tions are necessary for protein secondary structural elements
to result in a cohesive native structure, which is favored en-
ergetically over alternative conformations. The significance
of non-local interactions in the foldability, the stability, and
the functionality of protein molecules results in a distinct
signature of amino acid residue conservation and covaria-
tion during evolutionary processes.

CATH Currently, CATH [14] is one of the two major
(SCOP [11] being the other) and widely used fold taxon-
omy for the proteins with known structure. CATH stands
for Class, Architecture, Topology, and Homologous super-
family, the four levels of protein hierarchical classification
used. The secondary structure elements and their packing
are used to determine the Class. The Architecture level de-
scribes the global shape of the protein incorporating the ori-
entation of secondary structure elements, but ignoring the
specific connectivities. In the level of Topology, proteins
are grouped based on shape and connectivity. Finally, sets
of protein folds are grouped depending on their evolutionary
relationships.

Three major classes are recognized; mainly-alpha,
mainly-beta and alpha-beta. This last class (alpha-beta) in-
cludes both alternating alpha/beta structures and alpha+beta
structures, as originally defined by Levitt and Chothia
(1976). A fourth class is also identified which contains pro-
tein domains which have low secondary structure content.
In our study, we focused on the class level only, i.e., we
differentiated the proteins by the types of their secondary
structure elements.

3 Contact Map Prediction
The problem of contact map prediction can be stated as a
classification problem. Given a set of proteins with known
structures, contact residues and non-contact residues are
separated as positive instances and negative instances. For
each instance, various features are collected to capture use-
ful information of the pair of residues, including amino acid
content, physicochemical environment, secondary struc-
tures, evolutionary correlation, and other information that
can discriminate contacts from non-contacts. Then, these
feature vectors of both positive instances and negative in-
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stances are used as the input to a classification tool to learn
a classifier (i.e., predictor). Given a sequence with un-
known structures, the resulting predictor classifies the pairs
of residues of the sequence to be contacts and non-contacts
based on their feature vectors.

In our approach, we employed Support Vector Machines
(SVMs) [23] as the classification tool and collected vari-
ous features based on primary sequences, multiple sequence
alignments, predicted secondary structures and correlated
mutation analysis. For the rest of this section, we will de-
scribe in detail how we extracted various features and de-
signed learning models.

Correlated Mutations Analysis (CMA) and Sequence
Conservation
A variety of correlated mutations analysis (CMA) tools
have been proposed to predict non-local contacts [13, 16,
17, 18, 4]. The correlated mutations analysis (CMA) uti-
lizes evolutionary information. In evolutionary times, the
significance of non-local contacts is manifested in the ob-
served conservation patterns and the covariation of amino
acid residues in multiple sequence alignments of homolo-
gous proteins. Pairs of distant sequence positions that are
proximal in three-dimensional space appear to be conserved
or mutated in a correlated fashion, i.e., the frequencies of
particular amino acid appearances in one position are depen-
dent on the amino acid residue in the other position. In prin-
ciple, positions with high correlation coefficients in families
of homologous proteins, can be inferred to be proximal in
3D.

Instead of following the simple employment of a few
physicochemical vectors, such as the volume or the hy-
drophobicity, as was done in previous literature work, we
used the ten first principal components that resulted from a
principal component analysis on 142 physicochemical vec-
tors in AAindex, a database of published amino acid prop-
erties [9].

Given a multiple sequence alignment (MSA) of a pro-
tein, for each pair of amino acids of the protein, the extent
of covariation in mutations was calculated using a simple
correlation coefficient

ri j = 1

NM S A
2

NM S A∑

l=1

(ql
i − mi )(ql

j − m j )

si s j
, (1)

where ql
i and ql

j are the values for some amino acid physico-
chemical vector (volume, hydrophobicity, etc.) for sequence
l at positions i and j ; mi , m j , si and s j are the mean val-
ues and the standard deviations of the amino acid properties
at i and j . The sum runs over all the NM S A sequences in
the multiple sequence alignment. We also calculated corre-
lated mutations as defined in [13] that also employ similar
correlation coefficient measure, but use pairwise amino acid

scoring matrix of McLachlan [10] instead of physicochemi-
cal vectors. The positions that are completely conserved or
contain more than 10% gaps in MSAs are not included for
CMA calculation.

The conservation of each position in the sequence is also
calculated based on the Entropy value of the amino acids
appearing at the position in the multiple sequence alignment
as follows,

Con(i) = −
20∑

k=1

P(ak |i) log P(ak |i) (2)

where ak is one of the 20 amino acids and P(ak |i) equals the
number of sequences containing ak at the position i divided
by the total number the sequences in the multiple sequence
alignment.

Features
For each pair of positions in a protein sequence, we identi-
fied five sets of features that capture different aspects of the
amino acids and the locations i and j : sequence conserva-
tion (Con), sequence separation (Sep), correlated mutations
analysis (CMA), predicted secondary structures (PSS) and
sequence profiles (SP).

Sequence Conservation (Con) Sequence conservation
values based on multiple sequence alignment were calcu-
lated for positions i and j by using Equation 2.

Sequence Separation (Sep) Sequence separation is the
distance between two amino acids in the sequence and de-
fined by |i − j |.
Correlated Mutations Analysis (CMA) For positions i
and j , we extracted three sets of Correlated Mutations Anal-
ysis (CMA) features. First, we calculated the correlated mu-
tation value defined in [13] and refer this feature as CMA
(McLachlan). Second, we used the ten first principal com-
ponents that resulted from a principal component analysis
on 142 physicochemical vectors in AAindex [9] as the prop-
erty vectors. Then, for each one of the ten vectors, we calcu-
lated the correlated mutation value by using Equation 1. We
refer these ten features as CMA (PCA10). Finally, AAin-
dex [9] provided a six-way clustering of all the 142 physic-
ochemical vectors (alpha and turn propensities, beta propen-
sity, Physicochemical properties, composition, hydropho-
bicity and other properties). From each cluster, five vectors
were selected and used in correlated mutation calculation.
We refer these 30 features as CMA (30). We also refer CMA
to all the 41 correlated mutation analysis features.

Predicted Secondary Structures (PSS) For each residue,
we used three values to represent whether it belongs to an
alpha helix, beta strand or coil. If the residue belongs to one
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of the three secondary structures, we set the corresponding
value to be 1, and 0 otherwise. For each residue pair (i, j),
we considered a window of width three, (i.e., we considered
positions i − 1, i , i + 1, j − 1, j , and j + 1). Hence, we
have 18 secondary structure features in total.

Sequence Profiles (SP) The use of sequence profiles,
which are derived from a multiple sequence alignment of
homologous sequences, have been shown to be able to im-
prove the prediction of contact maps [4, 15]. We adopted
the three-neighborhood approach in [4]. For positions i
and j , the occurrence frequencies of all the possible amino
acid pairs (210) were calculated from the multiple sequence
alignment. Besides (i, j), we also calculated the profiles of
(i −1, j −1), (i +1, j +1), (i −1, j +1) and (i +1, j −1)

and we refer these 1050 (210 ∗ 5) features as SP (Amino
Acids). In addition to using amino acid pair frequencies to
represent the profile, we also used twelve physicochemical
vectors from AAindex [9] to describe the physicochemical
environment around positions i and j . Again, we considered
a window of width three around i and j . For each position,
the average of one physicochemical property was calculated
by averaging the physicochemical property values for all the
amino acid that appeared at that position in the multiple se-
quence alignment. We refer these 72 (12 ∗ 6) features as
SP (AAindex) and all sequence profile related features (SP
(Amino Acids) + SP (AAindex)) as SP.

Models
We trained 15 SVM models by using different sets of fea-
tures. Table 1 shows various models and the set of features
used in each model. Besides the features showed in the ta-
ble 1, all the 15 models contain the sequence conservation
(Con) features for positions i and j . The 15 models can be
grouped into four sets, predicted secondary structure (PSS)
based, CMA based, Sequence Profile (SP) based, and com-
bined models. We evaluated the different ways of extract-
ing CMA features and SP features by comparing the various
CMA based models and SP based models. Finally, we com-
bined the five sets of features (Con, Sep, PSS, CMA, and
SP) in various ways to evaluate their effectiveness.

Support Vector Machine (SVM) Training
We adopted a three-way across-validation process for train-
ing and testing each model. The dataset was divided into
three subsets randomly, out of which the model was trained
with two subsets as the training set and tested on the other
subset as the testing set. The splitting of the dataset was the
same for each one of the 15 models.

Given a training set, the input for SVM training is a col-
lection of feature vectors of all the position pairs from all the
sequences in the training set. We call each feature vector as
a instance. We also input the true class label (positive for
contacts and negative for non-contacts) of each instance for

SVM training. Since there are much more non-contacts than
contacts, we randomly sampled non-contact instances, so
that the number of contact instances and the number of non-
contact instances are the same approximately. Again, the
negative instance sampling is the same for each one of the 15
models. All the 15 models were trained using SV Mlight [7]
with a linear kernel and the default C value.

Prediction of Contacts
Given a testing sequence, the input for a predictor (i.e., one
of the 15 models) is also a collection of feature vectors of
all the position pairs from that sequence. The predictor will
return a score for each instance. If we assign contact to be
the positive class and non-contact to be the negative class,
then the higher the score is, the more likely the pair of amino
acids is in contact. Hence, the returned scores can be sorted
into a list, from which the top pairs are predicted as contact
points. Finally, the contacts can be predicted by either set-
ting a value threshold or the number of predicted contacts.

4 Experimental Results
4.1 Data Preparation
Dataset
The dataset we use in training and testing our predictors
contains 177 proteins with known 3D structure from Pro-
tein Data Bank (PDB [2]). The proteins whose chains are
not interrupted and contain no more than two domains were
selected. The list of proteins was further reduced to only
contain the proteins with pairwise sequence identity lower
than 25%. Finally, we excluded the proteins that have less
than 15 homologous proteins returned by PSI-BLAST when
searching against non-redundant protein database (NR).

Multiple Sequence Alignment and Predicted Secondary
Structure
To obtain multiple sequence alignments (MSAs), we first
collected homologous sequences for each protein by us-
ing PSI-BLAST searching against non-redundant protein
database (NR). We used the default parameters of PSI-
BLAST and only kept sequences with more than 20% and
less than 80% sequence identity. Then, we used ClustalW
[22] to generate the final MSAs of the target protein and
its homologous sequences. The predicted secondary struc-
tures for each proteins were obtained by using PSIPRED [8],
a two-stage neural network predictor based on the position
specific scoring matrices generated by PSI-BLAST.

4.2 Experimental Methodology and Metrics
Evaluation Metrics
To compare the results with other approaches [4], we predict
the top L p/2 pairs to be contact points, where L p is the
length of the protein. This cutoff is also based on the fact
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Table 1. Features used in various models

Secondary Structure based Sequence Profile based Combined
Model Features Model Features Model Features

1 PSS 6 SP (AAindex) 9 Sep + PSS
7 SP (Amino Acids) 10 Sep + CMA

CMA based 8 SP 11 Sep + PSS + CMA
2 CMA (McLachlan) 12 PSS + SP
3 CMA (PCA10) 13 CMA + SP
4 CMA (30) 14 PSS + CMA + SP
5 CMA 15 Sep + PSS + CMA + SP

that in general the number of contacts increases linearly with
the length of the protein [13].

We evaluated the prediction by calculating the accuracy
and the improvement over a random predictor. The accuracy
of the prediction is defined by the ratio of the number of
correct predictions and the total number of predictions,i.e.,
Acc = Ncp/Np , where Ncp is the number of correct pre-
dictions and Np is the total number of predictions, which is
also equal to L p in our experiments. A random predictor
will place contact pairs randomly on the list. Hence the ac-
curacy of the top L p/2 pairs is equal to the accuracy of the
overall list (i.e., the density of contacts of the proteins) and
is defined as R Acc = Nc/N , where N is the total number
of amino acid pairs with sequence separation greater than
6, and Nc is the number of observed contacts. Finally, the
improvement over a random predictor is defined by the ratio
between Acc and R Acc.

Methodology
Recall from Section 3, each model was learned by using a
three-way cross-validation. Each protein appeared in one
and only one testing set. Hence, the prediction accuracies
of all the proteins were obtained after the three-way cross-
validation process. Since we are interested in the differ-
ence of prediction effectiveness for proteins of different fold
families, we grouped the proteins according to their CATH
codes as well as their lengths. For example, the CATH1
group contains the proteins with CATH class code 1, (i.e.,
mainly-alpha class). Since the proteins may contain two do-
mains, we have combinations of single CATH classes. For
example, the CATH1 & CATH3 group contains the proteins
that have two domains, of which one belongs to CATH class
1 and the other belongs to CATH class 3. The group Oth-
ers contains the proteins of unknown CATH codes or CATH
class codes other than 1, 2 and 3. Note that the CATH1,
CATH2 and CATH3 group may also contain multi-domain
proteins, in which cases, the different domains belong to the
same CATH class. In total, we have three length groups
(i.e., short, median and long), and six fold groups. Table 2
shows the average density of the contact points in the pro-
teins within each group. The numbers in parentheses are the
number of proteins in each group.

As shown from table 2, the CATH1 group, mainly-alpha

class, has significantly lower average densities than the other
groups. Whereas, the CATH2 groups, mainly-beta class, has
the highest average densities.

4.3 Results
Table 3 shows the average prediction accuracy and ran-
dom improvement factor of various models for different fold
groups, in which each row represents each model and each
column corresponds to each fold group. The overall per-
formance of each model is also included in the last column.
The values in parentheses are the average improvement over
a random predictor for the proteins within each fold group.
For each fold group, the entries of the best performance are
in bold face.

A number of observations can be made from table 3.
First, the overall best model is model 15, which achieved
0.2238 accuracy and performs 11.7 times better than a ran-
dom predictor. Second, in general, model 9, model 11 and
model 15 behaved very similarly. Model 9 is based only
on sequence separation (Sep) and predicted secondary struc-
ture (PSS) features. By adding correlated mutation analysis
(CMA) features, model 11 performed slightly better than
model 9 on average. By adding both CMA and sequence
profile (SP) features, model 15 achieved the best perfor-
mance. Third, for the CATH1 group, model 13, which is
based on CMA and SP features, produced the best predic-
tion accuracy of 0.0657 and random improvement factor of
4.6, which are 26% and 58% better than model 9, respec-
tively. On the other hand, for the rest of the fold groups,
except the CATH3 group, model 9 performed the best. For
the CATH3 group, model 15 produced the best prediction
on average. Finally, model 14 and model 1 performed more
than 40% worse than model 15 and model 9, respectively,
whereas, model 5 and model 11 had similar performance,
which suggests that the sequence separation is indeed an
important feature to be used together with PSS features, but
may not be very useful when combining with other features.

We also summarized detailed performance of model 15
for different fold groups and length groups in table 4, in
which each row corresponds to each fold group and each
column corresponds to each length group. The overall av-
erage prediction accuracy and random improvement of each
length group can be found in the last row. Again, the val-
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Table 2. Statistics of the Density of Contact-Points for Various Protein Categories

CATH1 (34) CATH2 (35) CATH3 (75) CATH1 & CATH3 (9) CATH2 & CATH3 (6) Others (18)
l < 100 (40) 0.0211(13) 0.0588(9) 0.0517(13) -(0) -(0) 0.0728(5)
100 < l < 300 (101) 0.0141(18) 0.0347(24) 0.0229(43) 0.0136(5) 0.0178(4) 0.0190(7)
l > 300 (36) 0.0088(3) 0.0135(2) 0.0099(19) 0.0110(4) 0.0107(2) 0.0100(6)

Table 3. Average Prediction Accuracy and Random Improvement of Various Models for Different Fold Groups

model CATH1 CATH2 CATH3 CATH1 & CATH3 CATH2 & CATH3 Others Overall
PSS 1 0.0545(2.9) 0.1504(3.9) 0.2024(9.6) 0.1547(12.6) 0.1225(8.3) 0.1435(6.4) 0.1523(6.9)
CMA 2 0.0528(3.3) 0.1304(3.6) 0.0910(4.4) 0.0990(8.2) 0.0596(4.1) 0.0804(3.3) 0.0897(4.1)
(based) 3 0.0476(2.8) 0.1120(2.9) 0.0921(4.1) 0.0719(5.7) 0.0459(3.2) 0.0832(3.6) 0.0839(3.6)

4 0.0502(3.0) 0.1088(2.9) 0.0933(4.1) 0.0632(5.0) 0.0486(3.6) 0.0737(2.5) 0.0830(3.5)
5 0.0489(3.2) 0.1256(3.4) 0.0900(4.4) 0.0958(7.9) 0.0643(4.4) 0.0730(2.5) 0.0868(3.9)

SP 6 0.0443(2.5) 0.1009(2.5) 0.0833(3.7) 0.0485(4.0) 0.0560(3.7) 0.0494(2.1) 0.0731(3.1)
(based) 7 0.0592(3.6) 0.1277(3.4) 0.1321(6.3) 0.1105(8.8) 0.0787(4.9) 0.0741(3.5) 0.1083(5.0)

8 0.0611(3.8) 0.1278(3.4) 0.1382(6.6) 0.1172(9.5) 0.0831(5.3) 0.0711(3.7) 0.1114(5.2)
Combined 9 0.0512(2.9) 0.2302(6.8) 0.2695(14.9) 0.2913(24.1) 0.3003(21.4) 0.2356(13.7) 0.2182(11.5)

10 0.0551(3.5) 0.1193(3.4) 0.0897(4.5) 0.0995(8.2) 0.0724(5.3) 0.0894(4.6) 0.0888(4.3)
11 0.0555(3.2) 0.2200(6.5) 0.2811(15.3) 0.2678(22.4) 0.2899(20.5) 0.2300(13.0) 0.2198(11.5)
12 0.0587(3.7) 0.1656(4.3) 0.2064(9.8) 0.1631(13.4) 0.1490(10.3) 0.1223(6.4) 0.1570(7.4)
13 0.0657(4.6) 0.1580(4.3) 0.1519(7.4) 0.1315(10.7) 0.1091(6.7) 0.0830(3.8) 0.1269(6.0)
14 0.0606(4.1) 0.1823(5.0) 0.2086(10.2) 0.1963(15.9) 0.1529(10.3) 0.1212(5.9) 0.1633(7.9)
15 0.0584(3.3) 0.2236(6.5) 0.2845(15.4) 0.2804(23.4) 0.2995(20.9) 0.2336(13.4) 0.2238(11.7)

ues in parentheses are the average improvement over a ran-
dom predictor. As shown in table 4, model 15 performed
well for the CATH3, CATH1 & CATH3 and CATH2 &
CATH3 group. For these groups, the overall performance is
in the range of 0.2805-0.2995 and 15.4 − 23.4 times better
than a random predictor. The best performance for CATH3
proteins may be due to the fact that the majority proteins
in our dataset are CATH3 proteins (i.e., 75 out of 177).
Model 15 also performed relatively well for CATH2 pro-
teins with an average prediction accuracy of 0.2236 and an
average random improvement factor of 6.5 overall. How-
ever, for CATH1 proteins, model 15 performed poorly, only
3.3 times better than a random predictor with an average
prediction accuracy of 0.0584. Since we have similar num-
ber of CATH1 proteins and CATH2 proteins in our dataset,
the significant performance difference must relate to some
characteristics of each fold group. Another observation we
can made from table 4 is that the prediction accuracy de-
creases as the sequence length increases. However, the de-
crease is within the range of 13%-16%, which is much less
significant than the ones reported before [4, 24]. The rela-
tively good performance for long proteins indicates that our
model is more robust to the length of proteins than other
approaches.

5 Discussion
Different Fold Groups Prefer Different Sets of Features
The most important observation from our experimental re-
sults is that for different fold groups (e.g., CATH1, CATH2
and CATH3), the model that achieved the best performance
is different. Predicted secondary structure (PSS) features

Table 4. Average Prediction Accuracy and Random
Improvement of Model 15 for Different Fold Groups
and Length Groups

l < 100 100 < l < 300 l > 300 Overall
CATH1 0.0501(2.2) 0.0670(4.0) 0.0426(4.0) 0.0584(3.3)
CATH2 0.2760(4.8) 0.2014(6.2) 0.2531(18.4) 0.2236(6.5)
CATH3 0.3125(6.9) 0.2836(13.5) 0.2664(26.0) 0.2845(15.4)
CATH1 & 3 -(-) 0.3021(23.0) 0.2532(23.8) 0.2804(23.4)
CATH2 & 3 -(-) 0.3121(18.4) 0.2744(25.8) 0.2995(20.9)
Others 0.2703(3.5) 0.2578(15.9) 0.1747(18.6) 0.2336(13.4)
Overall 0.2137(4.5) 0.2257(10.9) 0.2297(22.2) 0.2238(11.7)

performed the best for CATH2 but poorly for CATH1. On
the other hand, correlated mutation analysis (CMA) and se-
quence profile (SP) features performed the best for CATH1
but poorly for CATH2. Finally, for CATH3, in which se-
quences contain both alpha structures and beta structures,
the combined model (model 15) performed the best.

For CATH2 proteins, a great proportion of the non-local
contacts are the contacts within each beta sheet, which are
closely related to the secondary structures. Hence, the
predicted secondary structures contain very strong signals
for identifying such non-local contacts and performed very
effectively for CATH2 proteins. On the other hand, for
CATH1 proteins, in which sequences contain mainly alpha
structures, PSS features are less effective than CMA fea-
tures and SP features, which indicates that the non-local
contacts in CATH1 proteins are not greatly related to sec-
ondary structure of the residues in contact.

In addition, the different performance of the various
models also suggests that we can learn separate models for
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each fold class (mainly alpha, mainly beta, and alpha-beta),
which may achieve better performance than a unified model.
Since the state-of-art of the secondary structure prediction
achieves an accuracy of 76%, it is feasible to first predict
which CATH class the sequence is and than apply the corre-
sponding predictor.

Predicted Secondary Structure (PSS) Features and Cor-
related Mutation Analysis (CMA) Features Predict Dif-
ferent Sets of Contacts To further study the prediction
ability of various features, we looked at the predictions of
PSS and CMA features more closely. Figures 1 and 2 shows
the true contact map, the contact map predicted by model 9
(PSS + Sep) and model 4 (CMA (30)) for protein 5pti and
3gatA, respectively. Note that the thin bands anti-parallel
to the main diagonal in the contact map correspond to beta-
sheets. As shown in both figures, PSS features and CMA
features predict different sets of contacts. As we discussed
before, the contacts within each beta sheet are closely re-
lated to the secondary structure, it is not surprised to see
that PSS features discovered these non-local contacts effec-
tively. On the other hand, CMA targets the problem from
a different angle and utilizes the evolutionary information.
Therefore, the predictions in general are not limited to be
the non-local contacts within the same secondary structure.

Since FSS and CMA features predict different sets of
contacts, the next question is how we can combine these
two types of features. The combined model (model 15) in
our study was trained using SV Mlight [7] with a linear ker-
nel. The resulting model was dominated by FSS features
(Model 15 behaves similarly as model 9), which indicates
that linear kernels are not able to combine these two types
of features effectively and non-linear kernels are desired.

The Use of AAindex in correlated mutation analysis
(CMA) and sequence profile (SP) Features As shown
in table 3, model 2 (CMA (McLachlan)) performed the
best among the CMA based models. Our attempts of in-
corporating AAindex in CMA did not improve the perfor-
mance, which may be due to the fact that we included too
many physicochemical vectors from various AAindex clus-
ters. The prediction abilities of the vectors from different
clusters may vary for various fold classes. Since we trained
all the models using a linear kernel, the overall performance
may be damaged by including all the various vectors.

As for sequence profile (SP) features, although model 6
(SP (AAindex)) performed worse than model 7 (SP (Amino
Acids), adding SP (AAindex) features (model 8) indeed im-
proved the performance with a factor of 10% on average,
which indicates that the average values of each physico-
chemical vector for a position contain useful information
about the environment and can be used to improve predic-
tions.

Comparing to Other Approaches The comparison to
previous reported results is in general difficult for contact
map prediction for two reasons. First, previous studies
adopted different definitions of the distance between two
amino acids, contact threshold and the scope of contacts.
For example, Fariselli et al. [4] focused on non-local con-
tacts (|i − j | > 6), whereas, Pollastri and Baldi [15] con-
sidered all contacts without any sequence separation con-
straints. Since the scope of contacts influences the den-
sity of the contacts directly and the prediction of local con-
tacts is quite different from non-local contacts, the direct
comparison between the results of predicted contact maps
with different scope is not fair. Second, average accuracy
is not a good measure for it is influenced by the propor-
tions of different length groups and fold groups. It will fa-
vor more short proteins and non-CATH1 proteins. However,
we can still make relatively fair comparison to the results re-
ported by Fariselli et al. [4, 3], the best contact map predic-
tor reported at CASP4, because their dataset contains more
short sequences and is “lack of representation of all-α pro-
teins” [3]. They reported an average accuracy of 0.21 and
with an improvement over random of a factor greater than
6. Whereas, our predictor achieved an average accuracy of
0.2238 with an improvement over a random predictor of a
factor 11.7. Especially, our predictor achieved average ac-
curacies of 0.2257 and 0.2297 with random improvement
factors of 10.9 and 22.2 for median and long sequences, re-
spectively. Our average accuracies are more than 20% and
100% better than those reported in [3] for median and long
sequences, respectively, which indicates that our model can
predict long sequences more robustly.

6 Concluding Remarks
In this paper, we present our approach for predicting contact
maps using support vector machines (SVMs). Our predictor
achieved better results than those of previous approaches,
especially for median and long sequences. We also evalu-
ated the effectiveness of different features for various pro-
tein fold families. Our experimental results showed that
different set of features achieved the best performance for
various protein fold families, which directly leads to our fu-
ture work. That is, learning models that are specific for each
fold family. We also would like to adopt non-linear kernels
to learn models that combine predicted secondary structure
(PSS) features and correlated mutation analysis (CMA) fea-
tures more effectively and develop filtering processes based
on secondary structure constraints to further improve the ac-
curacy of our predictors.
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Figure 1. (a)true contact map for 5pti (b)contact map predicted by model 9 (c)contact map predicted by model 4
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Figure 2. (a)true contact map for 3gatA (b)contact map predicted by model 9 (c)contact map predicted by model 4
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