
Discriminating Subsequence Discovery for Sequence Clustering∗

Jianyong Wang
†

, Yuzhou Zhang
‡

, Lizhu Zhou
§

Tsinghua University, Beijing, 100084, China

{
†

jianyong,
§

dcszlz}@tsinghua.edu.cn,
‡

zhangyz04@mails.tsinghua.edu.cn

George Karypis
University of Minnesota, Minneapolis, MN 55455, USA

karypis@cs.umn.edu

Charu C. Aggarwal
IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA

charu@us.ibm.com

Abstract

In this paper, we explore the discriminating subsequence-
based clustering problem. First, several effective optimiza-
tion techniques are proposed to accelerate the sequence min-
ing process and a new algorithm, CONTOUR, is developed
to efficiently and directly mine a subset of discriminating
frequent subsequences which can be used to cluster the in-
put sequences. Second, an accurate hierarchical clustering
algorithm, SSC, is constructed based on the result of CON-
TOUR. The performance study evaluates the efficiency and
scalability of CONTOUR, and the clustering quality of SSC.
Keywords. Sequence mining, summarization subse-
quence, clustering.

1 Introduction

A sequence Si is an ordered list of events, denoted by
〈ei1, ei2, . . . , eim〉 (or ei1ei2 . . . eim for brevity), where
eij (∀j, 1 ≤ j ≤ m) is an event belonging to a set of
distinct events, E = {e1, e2, . . . , en}. In this study, any
event in E is atomic (thus, we can alternatively call it an
item), and can be repetitive in a sequence. The length of
a sequence Si is defined as the number of events in Si,
and a sequence with length l is called an l-sequence. An
l-sequence Sα=α1α2 . . . αl is said to be contained in a k-
sequence Sβ=β1β2. . . βk, if l ≤ k and there exist integers
1 ≤ o1 < o2 < . . . < ol ≤ k such that α1=βo1

, α2=βo2
, . . . ,

αl=βol
. If sequence Sα is contained in sequence Sβ , Sα is

called a subsequence of Sβ and Sβ a supersequence of Sα.
This is denoted by Sα v Sβ or equivalently Sβ w Sα.

An input sequence database SDB contains a set of
input sequences, and the number of sequences in SDB is
called the base size of SDB, denoted by |SDB|. Given a
sequence Sα, the number of input sequences in SDB that

∗This work was supported in part by Basic Research Foundation
of Tsinghua National Laboratory for Information Science and Technol-
ogy(TNList), 973 Program under Grant No. 2006CB303103, and National
Natural Science Foundation of China (NSFC) under Grant No. 60573061.

contain Sα is called the absolute support of sequence Sα

w.r.t. sequence database SDB, denoted by supSDB(Sα).
The percentage of input sequences in SDB that contain Sα

(i.e., supSDB(Sα)/|SDB|) is called the relative support
of Sα. Sequence Sα is said to be frequent if supSDB(Sα)
≥ min sup, where min sup is a user-specified absolute
support threshold.

As a sequence can be used to naturally model the tempo-
ral ordering relationship among a set of events, and abundant
sequence data have emerged in recent years such as DNA
string, protein sequence, Web log data, and so on, pattern
discovery from sequence databases has attracted much atten-
tion in data mining research area. A fundamental problem
formulation is the sequential pattern mining problem [2],
which finds the complete set of frequent (closed) subse-
quences from an input sequence database SDB with a user-
specified support threshold min sup.

There exist several shortcomings of traditional sequen-
tial pattern mining which hinder its wide application. The
first one is its huge result set. It is not uncommon that the
complete set of sequential patterns contains millions of fre-
quent subsequences. Although each frequent subsequence is
statistically significant in terms of its support, it may not be
interesting from an application point of view. Second, min-
ing the complete set of frequent subsequences is inefficient,
and is in fact impractical for the large and dense sequence
databases when the minimum support threshold is low.

In this paper we explore the frequent subsequence-
based clustering algorithm. Previous study has shown that
frequent subsequences can be used as features for sequence
clustering [5]. The approach proposed in [5] first adopts
any existing sequential pattern mining algorithm to find
the complete set of frequent subsequences from which a
subset of subsequences can be further identified with special
attention and used as features to project the input sequences
into a new vector space. Finally it applies the traditional
vector-space K-means clustering algorithm to find a given
number of clusters. However, as analyzed above, this can be

inefficient when the database is large and dense. Differently
from the previous approach, our basic idea here is to directly
mine a subset of frequent subsequences which can be used as
a condensed representation of the original database instead
of being treated as features. For each input sequence, Si, one
subsequence supported by Si is mined and used as a concise
summarization of Si. The input sequences with the same
summarization subsequence can form a micro-cluster. The
set of micro-clusters can be further grouped into a final set of
macro-clusters using any clustering paradigm (Note in our
implementation we adopted the agglomerative hierarchical
clustering algorithm with our own definition of the similarity
between two micro-clusters based on their summarization
subsequences). This two-step summarization subsequence-
based clustering outperforms the traditional whole sequence-
based clustering algorithm in two folds. On one hand,
clustering on a concise data representation can lead to more
efficient algorithm, on the other hand, by leaving out the
noisy events from the input sequences, the summarization
subsequence representation is also potentially helpful for
improving the clustering accuracy.

(1.1) SIM(Cλ) =
|sλ| × l

∑l

i=1 |Si|

Consider a summarization subsequence sλ and its cor-
responding micro-cluster Cλ consisting of l input sequences,
S1, S2, ..., Sl. As described above sλ is a common subse-
quence among sequences in Cλ, we expect the summariza-
tion subsequence sλ can be used to evaluate the internal sim-
ilarity of micro-cluster Cλ, SIM(Cλ), in a way as defined
by Equation 1.1.

In Equation 1.1, |sλ| and |Si| denote the length of
summarization subsequence sλ and the length of input se-
quence Si, respectively. We see that one way to maxi-
mize SIM(Cλ) is to try to maximize the length of the
summarization subsequence, that is, we hope the discov-
ered summarization subsequence contains as many events
as possible. However, Equation 1.1 is based on an unreal
assumption, which means each distinct event in sλ con-
tributes equally to the internal similarity of micro-cluster
Cλ. In fact, in many real cases the events in a sequence
database may not be equally differentiable in terms of clus-
tering. A good clustering criterion function should reflect
the differentiability of each event. In the following we use
a weight wei

(0<wei
≤1) to denote the relative differentia-

bility for a unique event ei (1≤i≤n). For simplicity, here
we temporarily suppose all the events are equally differen-
tiable (i.e., they have an equal weight), and let wei

=1 (∀i,
1≤i≤n). In our real implementation, we assign a weight,
wei

=(1
supSDB(ei)

)τ , to any event ei, where supSDB(ei) is
the global support of event ei, τ (τ≥0) is called the weight
differentia factor and by default τ is set to 1. In this way, an

Input Sequences Summarization Subsequences

C A B A C CBAC:2
A B A A ABA:3
A B C B ABCB:2
C B A C CBAC:2

A C B B A ABA:3, ABB:3, ACB:3
A B C B C ABCB:2

Table 1: An example sequence database SDB.

event with higher global frequency is given a lower weight,
and this kind of handling is similar to the Inverse Doc-
ument Frequency measure in the TF*IDF term weighting
scheme, which has been popularly adopted in information
retrieval.The weight of a sequence, S=e′1e

′
2...e

′
m, can then

be computed as WS=
∑m

i=1 we′
i
=
∑m

i=1(
1

supSDB(e′
i)

)τ . Given
the concept of the event differentiability, the internal similar-
ity of micro-cluster Cλ, SIM(Cλ), can be defined in a better
way as shown in Equation 1.2.

(1.2) SIM(Cλ) =
Wsλ

× l
∑l

i=1 WSi

A good criterion to choose the summarization subse-
quence for an input sequence Si is to try to maximize the
internal similarity of the micro-cluster that Si belongs to.
For a micro-cluster Cλ, which contains a fixed set of input
sequences, it may support multiple common subsequences,
thus may have multiple choices for a summarization subse-
quence. In order to maximize the internal similarity of each
micro-cluster as defined in Equation 1.2, the summarization
subsequence sλ of an input sequence Si is heuristically de-
fined as one of the frequent subsequences that are supported
by Si and have the largest weight. The Summarization Sub-
sequence of input sequence Si is denoted by SSSi

. Note
that given a minimum support min sup, we may not be able
to find any frequent covering subsequences for an input se-
quence. In this case we treat the input sequence as an outlier.

EXAMPLE 1. The first column of Table 1 shows the input
sequence database SDB in our running example. The
database has a total of three unique items and six input
sequences (i.e., |SDB|=6). Suppose min sup = 2, the
corresponding summarization subsequences supported by
each input sequence are shown in column 2. We can see
from Table 1 that the input sequence ACBBA has three
summarization subsequences, ABA:3 (Note here ‘3’ is the
absolute support of ABA.), ABB:3, and ACB:3. �

The goal of this study is to mine one summarization sub-
sequence for each non-outlier input sequence, and use the set
of summarization subsequences to construct a sequence clus-
tering algorithm. For this purpose, we devise an algorithm,
CONTOUR 1, in order to perform this task. When an in-

1CONTOUR stands for efficiently mining the COvering frequeNT
summarization subsequences fOr clUsteRing.

put sequence supports several summarization subsequences,
CONTOUR only reports the one discovered first. For ex-
ample, in Table 1, CONTOUR only reports ABA:3 as the
summarization subsequence for input sequence ACBBA if
ABA:3 is discovered before ABB:3 and ACB:3, and the set
of summarization subsequences mined by CONTOUR in our
running example is {CBAC:2, ABA:3, ABCB:2}.

The paper is organized as follows. Section 2 describes
the CONTOUR algorithm in detail. Section 3 introduces a
summarization subsequence-based sequence clustering algo-
rithm. Section 4 presents the experimental results. Finally
we will conclude with Section 5.

2 Efficiently Mining Summarization Subsequences

In this section, we describe a basic framework for frequent
subsequence enumeration and introduce several optimization
techniques to improve the performance of mining summa-
rization subsequences. The CONTOUR algorithm can be
built by integrating the optimization techniques with the sub-
sequence enumeration framework.

2.1 Frequent Subsequence Enumeration

Mining the complete set of frequent subsequences from a
given sequence database has been studied extensively in re-
cent years, and various efficient mining methods have been
proposed. In this paper, we choose the pattern growth
paradigm [6, 7] as the general framework to mine the sum-
marization subsequences. Under this framework, there al-
ways exists a current prefix subsequence before the algo-
rithm finishes, which is initially set to empty. For each pre-
fix, the mining algorithm builds its projected database, and
computes the set of locally frequent events by scanning the
projected database. Here the projected database consists of
a set of projected sequences, where a projected sequence
is defined as the subsequence of an input sequence after the
first appearance of the prefix. If an input sequence does not
contain the prefix, its corresponding projected sequence is
empty. Each locally frequent event will be chosen according
to a certain ordering scheme such as lexicographic ordering
and used to extend the current prefix to get a new prefix. The
same procedure will be applied to the new prefix in a re-
cursive way. This mining process complies with depth-first
traversal and the divide-and-conquer paradigm.

Note that there are two popular methods in construct-
ing the projected databases. One is the so called physical
projection, another is pseudo projection [6]. Pseudo projec-
tion uses a pointer to record the starting place of a projected
sequence, thus avoids building and maintaining the physi-
cally projected sequences. It is a common belief that pseudo
projection is more space efficient than physical projection.
CONTOUR adopts the pseudo projection to build projected
database. We refer the interested readers to [6, 7] for more
details about the pseudo projection method.

In the above discussion we mentioned that the lexico-
graphical ordering can be used to sort the locally frequent
events. However, because our goal is to find a set of high-
quality summarization subsequences which are good for
clustering, the lexicographical ordering may not be the best
ordering scheme from the clustering point of view. Among
other event ordering schemes, support ascending ordering
and support descending ordering are two candidates which
are popular in pattern discovery. As an input sequence may
support multiple summarization subsequences, CONTOUR
prefers the summarization subsequences with low support.
We made this decision based on the heuristic that the summa-
rization subsequences with very high support are usually not
very differentiable in terms of class labels. Thus, in CON-
TOUR the ascending ordering by support is adopted as the
default ordering scheme.

2.2 Optimization Techniques for Summarization Sub-
sequence Discovery

A naı̈ve method to mine the set of summarization subse-
quences is that in the above frequent subsequence enumer-
ation process we always maintain for each input sequence
a frequent subsequence Si that has the largest weight and
was discovered first so far, and when the algorithm finishes,
each currently maintained frequent subsequence becomes a
summarization subsequence. As the set of summarization
subsequences is only a subset of the set of all frequent sub-
sequences, this enables us to devise some effective pruning
methods to prune the unpromising search subspaces that do
not contain any summarization subsequence.

2.2.1 Closed Sequence-based Optimization

The first class of optimization techniques that can be ex-
ploited by CONTOUR is based on the following property
of a summarization subsequence.

PROPERTY 2.1. A summarization subsequence must be a
closed subsequence, but may not be a maximal subse-
quence 2.

Proof. We will prove the first part by contradiction. Suppose
a summarization subsequence, p, is not closed, there must
exist one of its super-sequences, p′, such that p v p′ and
supSDB(p) = supSDB(p′). This means Wp′ > Wp,
which contradicts with the definition of a summarization
subsequence. The second part can be easily proved by
a counterexample shown in Table 1. As shown in Table
1 ABB:3 is a summarization subsequence, but it is not
maximal, as one of its super-sequence, ABCB:2, is frequent
and in fact it is also a summarization subsequence.�

2A subsequence p is a closed subsequence if none of its super-sequences
has the same support as p, while p is a maximal subsequence if none of its
super-sequences is frequent.

Property 2.1 implies that some optimization techniques
proposed for closed sequence mining can be exploited to
mine summarization subsequences. In CONTOUR, we ap-
plied the BackScan search space pruning method to enhance
the algorithm efficiency. Due to limited space, we will not
introduce it in detail here but give a simple example as an
illustration, and refer the interested readers to [7] for an in-
depth description of the method. In our running example
as shown in Table 1, suppose the current prefix sequence is
BAC:2, which appears in the first and the fourth input se-
quences. It can be seen that there exists an event ‘C’ that
always occurs before subsequence BAC in both the first and
the fourth input sequences, in this case, we do not need to
mine the frequent subsequences with prefix BAC:2, which
can be safely pruned.

2.2.2 Unpromising Projected Sequence Pruning

Although Property 2.1 illustrates that a summarization sub-
sequence must be a closed subsequence, CONTOUR does
not need to perform the sequence closure checking in or-
der to ensure each mined summarization subsequence is a
closed one, as long as we can make sure that a summariza-
tion subsequence w.r.t. an input sequence Si, SSSi

, is one
of the covering frequent subsequences of Si that have the
largest weight. Because a frequent closed subsequence may
not be among the frequent covering subsequences that have
the largest weight for any input sequence, the set of summa-
rization subsequences is just a subset of all frequent closed
subsequences, thus, we should also devise some methods to
prune the unpromising search subspaces that do not contain
any summarization subsequence.

In the following, we use CFCSSi
to denote the Cur-

rent Frequent Covering Subsequence w.r.t. an input sequence
Si that has the largest weight and was discovered first so
far. Let the current prefix subsequence be p, its support
be supSDB(p), its projected database (i.e., the set of pro-
jected subsequences w.r.t. p) be SDB|p={PS1, PS2, ...,
PSsupSDB(p)}. By scanning SDB|p once, the locally fre-
quent events in SDB|p can be found, and the locally in-
frequent events are removed from SDB|p. The projected
database w.r.t. prefix p without infrequent events is denoted
by SDB|

′

p={PS
′

1, PS
′

2, ..., PS
′

supSDB(p)}. Note that any

projected subsequence in SDB|
′

p (or SDB|p) can be empty.
An important observation is that some short projected se-
quences may not contain sufficient number of events to gen-
erate any summarization subsequence. Thus, they should be
identified and pruned3.

DEFINITION 1. (Trivial projected sequence) A projected se-
quence PS

′

i in SDB|
′

p (where 1≤i≤supSDB(p)), is a triv-

3In essence, it shares a similar spirit with the pruning methods adopted
in [8, 9].

ial projected sequence if it satisfies one of the following two
conditions (Note that in Equation 2.4, j ∈ [1..supSDB(p)]):

(2.3) (W
PS

′

i
+ Wp) ≤ WCFCSSi

(2.4) |{ ∀j, PS
′

j |(WPS
′

j
+ Wp) > WCFCSSi

}| < min sup

Otherwise, PS
′

i is said to be non-trivial. �

For any projected sequence PS
′

i w.r.t. prefix p, the up-
per bound of the weight of a frequent subsequence grown
from p and supported by PS

′

i is (W
PS

′

i
+Wp). The first case

in Definition 1 (i.e., Equation 2.3) states that its upper bound
is no greater than the weight of the currently maintained fre-
quent covering subsequence of Si (Here we use Si to denote
the corresponding input sequence of PS

′

i). Thus, there is no
subsequence derived by extending prefix p and supported by
PS

′

i , and also has a weight larger than WCFCSSi
. In the

second case of Definition 1 (i.e., Equation 2.4), it states that
although the weight of projected sequence PS

′

i may be large
enough to derive subsequences whose weight is greater than
WCFCSSi

, the number of projected sequences with large

weight in SDB|
′

p is not sufficient to obtain a subsequence
whose weight is larger than WCFCSSi

and is also frequent.

Although a trivial projected sequence PS
′

i cannot be
used to derive any summarization subsequence for input se-
quence Si, it may contribute to some summarization subse-
quences grown from other non-trivial projected sequences.
Thus, such sequences should not be simply pruned. How-
ever, a trivial projected sequence PS

′

i satisfying Equation
2.5 can be safely pruned according to the following Lemma.

LEMMA 2.1. (Trivial projected sequence pruning) A trivial
projected sequence w.r.t. prefix p and input sequence Si,
PS

′

i , cannot be used to derive any summarization subse-
quence by extending prefix p, if the following condition holds
(where j ∈ [1, supSDB(p)]):

(2.5) (W
PS

′

i
+ Wp) ≤ min

∀j, PS
′

j is non−trivial

WCFCSSj

Proof. We prove it by contradiction. Suppose PS
′

i con-
tributes to the derivation of a summarization subsequence,
SSSj

, by extending prefix p, whose weight is greater than

WCFCSSj
(∀j, PS

′

j is non-trivial). Because the upper
bound of the weight of any subsequence extended from p and
supported by PS

′

i is (W
PS

′

i
+ Wp), we have:

(W
PS

′

i
+ Wp) ≥ WSSSj

Also, the following equation holds:

WSSSj
> WCFCSSj

Thus, we get:

(W
PS

′

i
+ Wp) > WCFCSSj

which contradicts with Equation 2.5. �

Lemma 2.1 introduces a method to identify some un-
promising projected sequences that can be safely pruned. In
some cases, the projected database may not contain any non-
trivial projected sequences, the entire projected database can
then be safely pruned.

2.3 The CONTOUR Algorithm

By incorporating the optimization techniques described in
Sections 2.2.1 and 2.2.2 into the sequence enumeration
framework introduced in Section 2.1, we get the integrated
CONTOUR algorithm. Due to limited space, we will not
elaborate on it.

3 Summarization Subsequence based Clustering

After the set of summarization subsequences have been dis-
covered by CONTOUR, they will be used to cluster the in-
put sequences. We denote the Summarization Subsequence
based Clustering by SSC. SSC is performed in two steps.
First, a set of small micro-clusters are generated according
to the discovered summarization subsequences. Next, a set
of final macro-clusters are created by merging the micro-
clusters generated in the first step. This two-step clustering
paradigm is in essence very similar to the one adopted by
several previous studies [10, 1].

3.1 Micro-cluster Generation

Once we have discovered the set of summarization subse-
quences, it is straightforward to generate the set of micro-
clusters. In SSC the input sequences with the same summa-
rization subsequence are grouped together to form a micro-
cluster. As a summarization subsequence w.r.t. an input se-
quence Si is defined as one of the frequent covering subse-
quences of Si that have the largest weight, the internal sim-
ilarity defined in Equation 1.2 of the corresponding micro-
cluster can be approximately maximized. In SSC we use the
prefix-tree structure to group the input sequences with the
same summarization subsequence together.

3.2 Macro-cluster Creation

The number of micro-clusters is usually larger than the
number of real clusters, thus we need to apply certain
clustering algorithm to create K macro-clusters from the
set of micro-clusters, where K is a user-specified parameter
which indicates the real number of clusters in the input
sequence database. In SSC, we adopt the agglomerative
hierarchical clustering paradigm to create K macro-clusters.
Initially each micro-cluster is treated as a macro-cluster, and
if the number of macro-clusters is larger than K, two closest

macro-clusters are merged to form a large macro-cluster,
and this process is repeated until exact K macro-clusters are
retained.

To apply the agglomerative hierarchical clustering
paradigm, we first compute the similarity matrix of the set of
micro-clusters. Suppose the number of micro-clusters gen-
erated by CONTOUR is Nmi, we use MIj (1 ≤ j ≤ Nmi) to
denote a micro-cluster, and SSj to denote its corresponding
summarization subsequence.

Before we define the similarity between any two micro-
clusters, let us first define the similarity between any two
sequences, S1 and S2. If we use sc=e1e2...eq to denote a
common subsequence of S1 and S2, the similarity between
S1 and S2, SIM(S1, S2), is defined as the maximum se-
quence weight among all the common subsequences divided
by the sum of the sequence weights of S1 and S2, which is
shown in the following equation.

(3.6) SIM(S1, S2) =
max

∀sc
Wsc

WS1
+ WS2

The maximum sequence weight among all the com-
mon subsequences of S1 and S2, max

∀sc
Wsc

, can be com-
puted using Dynamic Programming with time complexity of
O(|S1|×|S2|), where |S1| and |S2| are the lengths of S1 and
S2 respectively [3]. The similarity between any two micro-
clusters, MI1 and MI2 can be defined to be the similarity
between their corresponding summarization subsequences,
SS1 and SS2, that is,

(3.7) SIM(MI1,MI2) = SIM(SS1,SS2)

After defining the similarity between two micro-
clusters, we now turn to define the Group Average similarity
between two macro-clusters, MA1 and MA2. If we use NMA1

and NMA2
to denote the number of micro-clusters in MA1

and MA2 respectively, and MI1
i (1 ≤ i ≤ NMA1

) and MI2
j

(1 ≤ j ≤ NMA2
) to denote a micro-cluster in MA1 and MA2

respectively, the Group Average similarity between MA1 and
MA2 is defined as follows.

(3.8)

SIM(MA1,MA2) =

∑NMA1

i=1

∑NMA2

j=1 SIM(MI1
i ,MI

2
j)

NMA1
× NMA2

As we initially treat each micro-cluster as a macro-
cluster, the initial similarity matrix can be very easily com-
puted according to Equation 3.7. At each stage of the ag-
glomerative hierarchical clustering, the SSC algorithm needs
to update the similarity matrix upon merging two closest
macro-clusters and getting a new macro-cluster. Let the
newly generated macro-cluster be MA1 and the two compo-
nent macro-clusters forming MA1 be MA11 and MA12, and

denote the number of micro-clusters in MA11 and MA12 by
NMA11

and NMA12
respectively. A naı̈ve way to com-

pute the similarity between MA1 and another existing macro-
cluster MA2 can be based on Equation 3.8. However, this is
inefficient. As we know, at the current stage SSC already
maintains SIM(MA11,MA2) and SIM(MA12,MA2), a more
clever way to compute SIM(MA1,MA2) could be based on
these already known information, as shown in Equation 3.9.

SIM(MA1,MA2) =

∑NMA1

i=1

∑NMA2

j=1 SIM(MI1
i ,MI

2
j)

NMA1
× NMA2

=

∑NMA11

k=1

∑NMA2

j=1 SIM(MI1
k,MI2

j)

NMA1
× NMA2

+

∑NMA1

l=NMA11
+1

∑NMA2

j=1 SIM(MI1
l ,MI

2
j)

NMA1
× NMA2

=

SIM(MA11,MA2) × NMA11
+ SIM(MA12,MA2) × NMA12

NMA11
+ NMA12

(3.9)

One of the most time-consuming operations in agglom-
erative hierarchical clustering is to find the two closest
macro-clusters which have the maximum similarity among
all pairs of macro-clusters. In CONTOUR, the similarity ma-
trix is indexed by a red-black tree structure where the sim-
ilarity is designated as the key and updated synchronously
with the similarity matrix. As a red-black tree with n in-
ternal nodes has height at most 2 lg(n + 1) [3], the search
of the maximum similarity can be efficiently implemented
in O(lg n), where n is the number of pairs of initial micro-
clusters. We should note that the number of initial micro-
clusters is usually much smaller than the number of se-
quences in the input database.

4 Empirical Results

Our performance study shows that CONTOUR is very effi-
cient and the pruning techniques proposed in this paper are
effective in improving the algorithm efficiency. Figure 1a)
shows the comparison result with BIDE, while Figure 1b)
evaluates the effectiveness of the pruning techniques with
dataset Snake.

We also conducted an extensive performance study to
evaluate the scalability of CONTOUR, and the accuracy of
the frequent subsequence-based clustering algorithm, SSC.
The results show that CONTOUR has good scalability, and
SSC is a promising approach for clustering sequentialized
XML documents and achieves better clustering quality than
the latest structure summary based XML clustering algo-
rithm [4].

10

100

1000

10000

40 45 50 55 60 65 70

R
u

n
ti

m
e
 i

n
 s

e
c
o

n
d

s

Relative support threshold (in %)

BIDE
CONTOUR

a) Efficiency

100

1000

30 35 40 45 50 55 60

R
u

n
ti

m
e
 i

n
 s

e
c
o

n
d

s

Relative support threshold (in %)

CONTOUR with no pruning
CONTOUR with pruning

b) Pruning effectiveness

Figure 1: Efficiency and pruning effectiveness test (Snake)

5 Conclusions

In this paper we devise a simple and efficient algorithm,
CONTOUR, to mine a set of summarization subsequences,
which is a concise representation of the original sequence
database and preserves much structural information, and can
be used to efficiently cluster the input sequences with a high
clustering quality. Our performance study shows that CON-
TOUR is efficient to mine the set of summarization subse-
quences, and the optimization techniques are effective in im-
proving the efficiency of CONTOUR. In addition, the sum-
marization subsequence based clustering algorithm, SSC,
can generate high quality clustering results, and provides a
promising alternative approach to sequence clustering.

References

[1] C.C. Aggarwal, J. Han, J. Wang, P.S. Yu. A Framework for
Clustering Evolving Data Streams. VLDB’03.

[2] R. Agrawal, R. Srikant. Mining Sequential Patterns.
ICDE’95.

[3] T. Cormen, C. Leiserson, R. Rivest, C. Stein. Introduction to
Algorithms. MIT Press, 2001.

[4] T. Dalamagas, T. Cheng, K. Winkel, T. Sellis. A Methodology
for Clustering XML Documents by Structure. Information
Systems, 31 (3):187-228, 2006.

[5] V. Guralnik, G. Karypis. A scalable algorithm for clustering
sequential data. ICDM’01.

[6] J. Pei, J. Han, B. Mortazavi-Asl, Q. Chen, U. Dayal,
M.C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently
by Prefix-Projected Pattern Growth. ICDE’01.

[7] J. Wang, J. Han. BIDE: Efficient Mining of Frequent Closed
Sequences. ICDE’04.

[8] J. Wang, G. Karypis. SUMMARY: Efficiently Summarizing
Transactions for Clustering. ICDM’04.

[9] J. Wang, G. Karypis. HARMONY: Efficiently Mining the Best
Rules for Classification. SDM’05.

[10] T. Zhang, R. Ramakrishnan, M. Livny. BIRCH: An Efficient
Data Clustering Method for Very Large Databases. SIG-
MOD’96.

