
A

Algorithms for Mining the Coevolving Relational Motifs
in Dynamic Networks

REZWAN AHMED, University of Minnesota
GEORGE KARYPIS, University of Minnesota

Computational methods and tools that can efficiently and effectively analyze the temporal changes in dy-
namic complex relational networks enable us to gain significant insights regarding the entity relations and
their evolution. This paper introduces a new class of dynamic graph patterns, referred to as coevolving re-
lational motifs (CRMs), which are designed to identify recurring sets of entities whose relations change in
a consistent way over time. Coevolving relational motifs can provide evidence to the existence of, possibly
unknown, coordination mechanisms by identifying the relational motifs that evolve in a similar and highly
conserved fashion. We developed an algorithm to efficiently analyze the frequent relational changes between
the entities of the dynamic networks and capture all frequent coevolutions as CRMs. Our algorithm follows
a depth-first exploration of the frequent CRM lattice and incorporates canonical labeling for redundancy
elimination. Experimental results based on multiple real world dynamic networks show that the method is
able to efficiently identify CRMs. In addition, a qualitative analysis of the results shows that the discovered
patterns can be used as features to characterize the dynamic network.

Categories and Subject Descriptors: G.2.2 [Graph Theory]: Graph mining; I.2.8 [Problem Solving, Con-
trol Methods, and Search]: Graph mining

General Terms: Algorithms

Additional Key Words and Phrases: Dynamic networks, Evolving pattern mining, Network evolution

ACM Reference Format:
Rezwan Ahmed and George Karypis, 2013. Algorithms for Mining the Coevolving Relational Motifs in Dy-
namic Networks. ACM Trans. Knowl. Discov. Data. V, N, Article A (YYYY), 28 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Networks are generic models used in various applications from different domains to
model the relations between various entities. Examples of some widely studied net-
works include the friends-networks of popular social networking sites like Facebook
and Myspace [Boyd and Ellison 2007], the Enron email network [Borgwardt et al.
2006; Cohen 2005], co-authorship and citation networks [Liu et al. 2005; Lawrence
et al. 1999; Chen and Redner 2010; Perc 2010], web-page linking networks [Brin and
Page 1998; Liu 2007], protein-protein interaction networks [Hu 2005; Schwikowski
et al. 2000], and networks derived from the IMDB movie database[Koren et al. 2007].
Many of these networks are dynamic in nature as the entities and relations that need
to be modeled change over time. With the emergence of new application areas, there
has been a great need to analyze the temporal changes underlying many of these sys-
tems, and to develop tools capable of capturing the dynamic aspects of the data, as well

Author’s addresses: R. Ahmed and G. Karypis, Department of Computer Science & Engineering, University
of Minnesota, Minneapolis, MN 55455. Email: {ahmed,karypis}@cs.umn.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
© YYYY ACM 1556-4681/YYYY/-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

A:2 R. Ahmed and G. Karypis

as analyze and process this data. Such analysis can identify relational patterns that
provides strong observational evidence of the existence of mechanisms that control,
coordinate, and trigger the evolutionary changes, which can be used to focus further
studies and analysis. A recent review [Holme and Saramäki 2012] analyzed various
dynamic networks and stated the need for tools to efficiently analyze and mine such
networks. Additionally, a related body of research [Perc and Szolnoki 2010] presented
the need for analyzing co-evolution in such networks while investigating the evolution
of cooperation among humans in social dynamics.

Dynamic networks have recently emerged as an important research area. The fo-
cus of this growing research has been mainly defining important recurrent struc-
tural patterns and developing algorithms for their identification. In recent years,
studies have been done for finding frequent patterns [Borgwardt et al. 2006], clus-
tering [Chakrabarti et al. 2006], characterizing network evolution rules [Berlinge-
rio et al. 2009], detecting related cliques [Cerf et al. 2009; Robardet 2009], identify-
ing conserved relational states [Ahmed and Karypis 2012], finding subgraph subse-
quences [Inokuchi and Washio 2010], and identifying co-evolution patterns capturing
attribute trends [Jin et al. 2007; Desmier et al. 2012] in dynamic networks. Although
the existing techniques can detect various patterns in a dynamic network, they have
not focused on identifying frequent conserved changes of the relational patterns over
time. Understanding the evolution of relational patterns that occur frequently can pro-
vide evidence of, possibly unknown, coordination mechanisms and to the existence of
external factors that are responsible for changing the stable relational patterns in the
dynamic network.

Our contribution in this paper is two fold: Firstly, we introduce a new class of pat-
terns, referred to as coevolving relational motifs (CRM), designed to capture patterns
that change in a consistent way in a dynamic networks. CRMs identify consistent
patterns of relational motif evolution that can provide valuable insights on the pro-
cesses of the underlying networks. Secondly, we present an algorithm, referred to as
CRMminer, to efficiently mine a subclass of these patterns by identifying all frequent
coevolving relational motifs such that the motifs that make up the CRM share at least
one relation (i.e., an edge) that changes over time. Our algorithm follows a depth-
first exploration of the frequent CRM lattice and incorporates canonical labeling for
redundancy elimination. We impose both frequency based and node overlap based con-
straints for pruning the search space to increase efficiency and an approximate prun-
ing to reduce the complexity of our algorithm.

We provide a comprehensive evaluation of the performance of CRMminer and the
usefulness of the discovered patterns. We experimentally evaluate the performance
and scalability of CRMminer on a large co-authorship network, on a cell culture biopro-
cess network (multivariate time series data), and on a a market sales network (mul-
tivariate time series data) by varying different input parameters. Furthermore, our
experiments show that the approximate version of CRMminer is able to identify the
majority of the CRMs while reducing the amount of time that is required. In addition,
we investigate some discovered coevolving relational motifs from all three datasets
and provide a qualitative analysis of the information captured in them. We show that
some of the discovered CRMs capture relational changes between the nodes that are
thematically different (i.e., edge labels transition between two clusters of topics that
have very low similarity). In addition, we investigate the extent to which these discov-
ered CRMs can lead to high quality features to build a predictive model. Our results, in
the context of a bioprocess dataset, show that the discovered CRMs are present mostly
as part of the high yield production runs.

The rest of the paper is organized as follows. Section 2 reviews some graph-related
definitions and introduces the notation that is used in the paper. Section 3 captures

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

Algorithms for Mining the Coevolving Relational Motifs in Dynamic Networks A:3

a brief survey of the related research in this area. Section 4 introduces the concept of
coevolving relational motifs and Section 5 describes in detail the algorithm to detect
such patterns. Section 6 describes the datasets and metrics used in the experimental
evaluation of our algorithm. Section 7 presents a detailed analysis of the experimental
results and Section 8 provides some concluding remarks and future directions.

2. DEFINITIONS AND NOTATION
A relational network is represented via labeled graphs. A labeled graph G =
(V,E, L[V], L[E]) is composed of a set of nodes V modeling the entities of the network,
a set of edges E modeling the relations between these entities, a set of node labels L[V]
modeling the type of the entities (|V | = |L[V]|), and a set of edge labels L[E] modeling
the type of the relations (|E| = |L[E]|). The labels assigned to the vertices (edges) are
typically not unique and multiple vertices (edges) can have the same label. A subgraph
G′ = (V ′, E′, L[V ′], L[E′]) of G is a graph such that V ′ ⊆ V , E′ ⊆ E ∩ (V ′ × V ′). An in-
duced subgraph G′′ = (V ′′, E′′, L[V ′′], L[E′′]) of G is a graph such that V ′′ ⊆ V , E′′ ⊆ E
and ∀(u, v) ∈ E such that v ∈ V ′′ and u ∈ V ′′, (u, v) ∈ E′′.

Given a connected graph G = (V,E) and a depth-first search (DFS) traversal of G,
its depth-first search tree T is the tree formed by the forward edges of G. All nodes of G
are encoded with subscripts to order them according to their discovery time. Given a
DFS tree T of graph G containing n nodes, the root node is labeled as (v0) and the last
discovered node is labeled as (vn−1). The rightmost path of the DFS tree T is the path
from vertex v0 to vertex vn−1.

A dynamic network N = 〈G1, G2, . . . , GT 〉 is modeled as a finite sequence of graphs,
where each Gt = (V,Et, Lt[V], Lt[Et]) is a labeled graph describing the state of the sys-
tem at a discrete time interval t. The term snapshot will be used to refer to each of
the graphs in the sequence. Snapshots are assumed to contain the same set of nodes,
which will also be referred to as the nodes of N , denoted by VN , but potentially differ-
ent sets of edges and node/edge labels. When nodes appear or disappear over time, the
set of nodes of each snapshot is the union of all the nodes over all snapshots. Also, the
nodes across the different snapshots are numbered consistently, so that the ith node of
Gk (1 ≤ k ≤ T) will always correspond to the same ith node of N .

We define the span sequence of an edge as the sequence of maximal-length time in-
tervals in which an edge is present in a consistent state. An edge (u, v) is in a consistent
state over a maximal time interval s :e if it is present in all snapshots Gs, . . . , Ge with
the same label l and it is different in both Gs−1 and Ge+1 (assuming s > 1 and e < T).
The span sequence of an edge will be described by a sequence of vertex labels, edge
labels and time intervals of the form 〈(lu1

, le1 , lv1 , s1 :e1), . . . , (lun
, len , lvn , sn :en)〉, where

lui
, lvi ∈ L[V], lei ∈ L[E], si ≤ ei, and ei ≤ si+1.
An injection is defined as a function f : A → B such that ∀a, b ∈ A, if f(a) = f(b),

then a = b. A function f : A→ B is a bijective function or bijection, iff ∀b ∈ B, there is
a unique a ∈ A such that f(a) = b. A function composition g◦f implies that for function
f : X → Y and g : Y → Z, then composite function g ◦ f : X → Z.

A relational motif is a subgraph that occurs frequently in a single snapshot or a
collection of snapshots. In Figure 1, the three-vertex subgraph consisting of the shaded
nodes that are connected via the labeled edges corresponds to a relational motif that
occurs a total of four times (twice in G1 and once in each of G2 and G3). The set of nodes
that support the multiple occurrences of a relational motif do not need to be the same.
In order to determine if a snapshot supports a relational motif (and how many times),
we need to perform subgraph isomorphism operations (i.e., identify the embeddings of
the relational motif ’s graph pattern). We will use M to denote a relational motif and
the underlying subgraphs will be denoted by the tuple (N,A,L[N], L[A]), where N is

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

A:4 R. Ahmed and G. Karypis

a

c

b

a

b a

a

b a

a

G1

c

b

a

b a

a

G2

a

a

b

a

G3

b

Fig. 1. Examples of relational motifs. The shaded nodes that are connected via the labeled edges corre-
sponds to a relational motif.

the set of nodes, A is the set of edges (arcs), L[N] is the set of node labels, and L[A] is
the set of edge labels.

3. RELATED WORK
Unlike the problem of finding patterns in static networks for which there exist a con-
siderable body of research [Kramer et al. 2001; Pei et al. 2001b; Zaki 2002; Asai et al.
2002; Inokuchi et al. 2000; Huan et al. 2003; Kuramochi and Karypis 2004; Hu et al.
2005; Pei et al. 2005; Yan et al. 2005], the problem of mining dynamic networks is
comparatively less studied.

Borgwardt et. al. [Borgwardt et al. 2006] introduced the notion of the dynamic sub-
graph, which extends the traditional notion of the subgraph to include the sequence
of subgraphs that exist in a consecutive sequence of snapshots and developed algo-
rithms to identify the set of dynamic subgraphs that occur frequently in a dynamic
network. Jin et. al. [Jin et al. 2007] introduced the notion of the trend motif, which is
a connected subgraph with nodes containing time series and each node’s time series
exhibits a consistent trend over a time interval. Their work focused only on developing
algorithms for finding frequently occurring trend motifs that show either an increasing
or a decreasing trend. With a similar objective, Desmier et. al. [Desmier et al. 2012]
defined the problem of mining cohesive co-evolving patterns which capture the local
co-evolution of similar vertices at several timestamps based on their attributes trends.
Lahiri et. al. [Lahiri and Berger-Wolf 2008] proposed a mining problem of finding pe-
riodic or near periodic subgraphs in dynamic networks.

Berlingerio et. al. [Berlingerio et al. 2009] also provided an algorithm to detect fre-
quent subgraphs in time-evolving graphs for deriving graph-evolution rules that sat-
isfy a minimum confidence constraint. Robardet [Robardet 2009] represented the fre-
quent patterns of a graph as pseudo-cliques and proposed an algorithm that first mines
each graph snapshot of a dynamic graph for local patterns and then combines these
with patterns from previous snapshot based on some constraints to form evolving pat-
terns. Inokuchi et. al. [Inokuchi and Washio 2008; 2010] solved a similar problem of
finding frequent induced subgraph subsequences from graph sequence data and cap-
turing the changes of a subgraph over the subsequence. Ahmed et. al. [Ahmed and
Karypis 2012] introduced a new class of patterns that captures the time-persistent re-
lations among the nodes, called relational states and presented an algorithm to identify
all maximal non-redundant evolution paths of the stable relational states of a dynamic
network.

A related body of research has investigated the task of identifying and tracking pat-
terns in biological networks [You et al. 2009; Koyutürk et al. 2006; Wackersreuther

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

Algorithms for Mining the Coevolving Relational Motifs in Dynamic Networks A:5

PMPE
AE

AE/IE/FG

AE/IE/FG

AE/IE/FG

AE/IE/FG

1990

AE

IE/FG

RM

AE

IE/FG

RM

RM

IE/FG AE
AE

IE/FG

RM

2000

RM

PE

ME/FG

PM
AE

PM

PE

AE

RMME/FG

RM

ME/FG

2005

Legend

AE Agricultural equipment

PE Processing equipment

ME Manufacturing equipment

IE Industrial equipment

RM Raw materials

PM Processed materials

FG Finished goods

Fig. 2. An example of a coevolving relational motif in the context of a hypothetical country-to-country
trading network where labels represent the commodities been traded.

et al. 2010], evolving communities in social networks [Berger-Wolf and Saia 2006;
Duan et al. 2009], and evolutionary clustering [Chakrabarti et al. 2006; Tang et al.
2008]. Even though these methods provide valuable insights on the evolution of dy-
namic networks, the nature of co-evolving relational patterns focused in this paper is
different from the various types of evolution addressed in other papers.

4. COEVOLVING RELATIONAL MOTIFS
Coevolving relational motifs are designed to identify the relational patterns that
change in a consistent way over time. An example of this type of conservation is illus-
trated in Figure 2, in the context of a hypothetical country-to-country trading network
where labels represent the commodities been traded. The network for 1990 shows a
simple relational motif (M1) between pairs of nodes that occurs four times (shaded
nodes and solid labeled edges). This relational motif has evolved in the network for
2000 in such a way so that in all four cases, a new motif (M2) that includes an ad-
ditional node has emerged. Finally, in the network for 2005 we see that three out of
these four occurrences have evolved to a new motif (M3) that now involves four nodes.
This example shows that the initial relational motif among the four sets of nodes has
changed in a fairly consistent fashion over time (i.e., it coevolved) and such a sequence
of motifs M1 ;M2 ;M3 represents an instance of a CRM.

CRMs identify consistent patterns of relational motif evolution that can provide
valuable insights on the processes of the underlying networks. For example, the CRM
of Figure 2 captures the well-known phenomenon of production specialization due
to economic globalization, in which the production of goods have been broken down
into different components performed by different countries [Friedman 2005]. Similarly,
CRMs in health-care networks can capture how the set of medical specialties required
to treat certain medical conditions have changed over the years, in communication
networks CRMs can capture the evolution of themes being discussed among groups
of individuals as their lifestyles change, whereas CRMs in corporate email networks
can capture how the discussion related to certain topics moves through the companies’
hierarchies.

The formal definition of a CRM that is used in this paper is as follows:

Definition 4.1 A CRM of length m is a tuple {N, 〈M1, . . . ,Mm〉}, where N is a set of
vertices and each Mj = (Nj , Aj) is a relational motif defined over a subset of the vertices
of N that satisfies the following constraints:

i) it occurs at least φ times,
ii) each occurrence uses a non-identical set of nodes,

iii) Mj 6=Mj+1, and
iv) |Nj | ≥ β|N | where 0 < β ≤ 1.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

A:6 R. Ahmed and G. Karypis

A relational motif Mj is defined over a subset of vertices N if there is a injection ξj
from Nj to N . An m-length CRM occurs in a dynamic network whose node set is V if
there is a sequence of m snapshots 〈Gi1 , Gi2 , . . . , Gim〉 and a subset of vertices B of V
(i.e., B ⊆ V) such that:

i) there is a bijection ξ from N to B
ii) the injection ξ ◦ ξj is an embedding of Mj in Gij

iii) there is no embedding of Mj via the injection ξ ◦ ξj in Gij+1
or no embedding of

Mj+1 via the injection ξ ◦ ξj+1 in Gij .
For example, the number of occurrences of the CRM in Figure 2 is 3. Note that the third
condition in the above definition is designed to ensure that for each pair of successive
motifs at least one of them is not supported by the snapshot-nodes pair that supported
the other motif. This is done to ensure that there is a relational change between the
nodes associated with those embeddings in each others snapshot.

The purpose of the parameters φ and β in Definition 4.1 are as follows: The param-
eter φ is used to eliminate sequences of evolving motifs that are not frequent enough
to indicate the existence of an underlying process driving these changes. The param-
eter β is used to control the degree of change between the sets of nodes involved in
each motif of a CRM and enforces a minimum node overlap among all motifs of CRM.
Finally, the third constraint of Definition 4.1 limits the discovered CRMs to only an
evolving sequence of motifs and not a sequence that remains the same. Note that the
frequent dynamic subgraphs introduced by Borgwardt et. al. [Borgwardt et al. 2006]
(Section 3) correspond to CRMs in which the snapshots supporting each set of nodes
are restricted to be consecutive and β = 1.

In this paper we focus on developing an efficient algorithm to mine a subclass of the
CRMs, such that in addition to the conditions mentioned in Definition 4.1, the motifs
that make up the CRM, also share at least one edge that itself is a CRM. Formally, we
focus on identifying the CRMs c = {Nc, 〈M1, . . . ,Mm〉} that contain at least a pair of
vertices {u, v} ∈ NC such that each induced subgraph M

′

i of Mi on {u, v} is connected
and x = {{u, v}, 〈M ′

1, . . . ,M
′

m〉} is a CRM. A CRM like x that contains only one edge
and two vertices will be called an anchor. We focus our CRM enumeration problem
around the anchors, since they ensure that the CRM’s motifs contain at least a pair
of nodes in common irrespective of the specified overlap constraint that evolves in a
conserved way. It also characterizes how the network around these core set of entities
coevolved with them. We will refer to the class of CRMs that contain an anchor as
anchored CRMs. For the rest of the discussion, any references to a CRM will assume
it is an anchored CRM.

Given the above definition, the work in this paper is designed to develop efficient
algorithm for solving the following problem:

Problem 1 Given a dynamic network N containing T snapshots, a user defined min-
imum support φ (1 ≤ φ), a minimum number of edges kmin per CRM, and a minimum
number of motifs mmin per CRM, find all CRMs such that the motifs that make up the
CRM, also share an anchor CRM.

A CRM that meets the requirements specified in Problem 1 is referred as a frequent
CRM and it is valid if it also satisfies the minimum node overlap constraint (Defini-
tion 4.1(iv)).

5. FINDING COEVOLVING RELATIONAL MOTIFS
A consequent of the way anchored CRMs are defined is that the number of motifs that
they contain is exactly the same as the number of motifs that exist in the anchor(s)
that they contain. As a result, the CRMs can be identified by starting from all the

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

Algorithms for Mining the Coevolving Relational Motifs in Dynamic Networks A:7

AE/IE/FG

v0 v1

M1

AE

IE/FG

RM

v0

v2

v1

M2

RM

PE

ME/FG

PMAE

v0

v2

v1

v3

M3

BEL NTH

GDR ITA

BEL BELNTH NTH

GDR

ω

ω
RM

 ω
 AE

 PE

AE/IE/FG

IE/FG

ME/FG

ω
RM

PM

ω

ω
AE

v0

v2

v1

v3

ω

ω
ITA

BEL

BEL

BEL

NTH

NTH

NTH

ω
GDR

GDR

Fig. 3. A CRM Representation. The CRM c consists of 3 motifs 〈M1,M2,M3〉 and represents relations
among vertices N = {v0, v1, v2, v3} using 5 edges. Gc (bottom graph) shows the CRM representation cap-
turing vertex and edge label vectors.

available anchors and try to grow them by repeatedly adding edges as long as the
newly derived CRMs satisfy the constraints and have exactly the same number of
motifs as the anchor. Since a CRM can contain more than one anchor, this approach
may identify redundant CRMs by generating the same CRM from multiple anchors.
Therefore, the challenge is to design a strategy that is complete and non-redundant. To
achieve this, we develop an approach that generates each CRM from a unique anchor.
Given a CRM, the anchor from which it will be generated is referred to as its seed
anchor.

The algorithm that we developed, named CRMminer, for finding all non-redundant
valid CRMs (Problem 1) initially identifies all frequent anchors and then performs
a depth-first exploration of each anchor pattern space along with a canonical labeling
that is derived by extending the ideas of the minimum DFS code [Yan and Han 2002] to
the case of CRMs for redundancy elimination. We impose frequency-based constraints
by stopping any further exploration of a CRM when the pattern does not occur at least
φ times in the dynamic network N .

5.1. CRM Representation
A CRM c = {N, 〈M1, . . . ,Mm〉} is represented as a graph Gc = (N,Ec), such that an
edge (u, v) ∈ Ec is a 5-item tuple (u, v, lu, lu,v, lv), where u, v ∈ N , the vectors lu and
lv contain the vertex labels and lu,v contains the edge labels of all motifs. If the CRM
consists of m motifs, then lu = 〈lu1

, . . . , lum
〉, lv = 〈lv1 , . . . , lvm〉 and lu,v = 〈lu1,v1 , . . . ,

lum,vm〉. The kth entry in each vector lu, lu,v, and lv records the connectivity informa-
tion among the vertices of the kth motif (Mk). If an edge (u, v) is part of motif Mk, then
the kth entry of lu, lv, and lu,v are set to the labels of u and v vertices, and the label
of the (u, v) edge respectively. If both vertices u and v are part of motif Mk, but the
(u, v) edge is not, or at least one of the vertices u or v is not part of the Mk motif (i.e.,
no (u, v) edge is possible), then ω is inserted at the kth entry of the lu,v to capture the

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

A:8 R. Ahmed and G. Karypis

disconnected state. Similarly, if u or v does not have any incident edges in the Mk motif
(i.e., the vertices are not present in that motif), then ω is added as the vertex label at
the kth entry of lu or lv. Note that the value of ω is lexicographically greater than the
maximum edge and vertex label.

This representation is illustrated in Figure 3. The CRM consists of 3 motifs
〈M1,M2,M3〉 and represents relations among vertices N={v0, v1, v2, v3} using
5 edges. The edge between (v0, v1) exists in all 3 motifs capturing changes
in relation as the edge label changes from AE/IE/FG ; IE/FG ;ME/FG.
It is represented as lv0=〈BEL,BEL,BEL〉, lv1=〈NTH,NTH,NTH〉, and
lv0,v1=〈AE/IE/FG, IE/FG,ME/FG〉. The next edge between (v1, v2) appears
in 2 motifs and the label vectors are represented as lv1=〈NTH,NTH,NTH〉,
lv2=〈ω,GDR,GDR〉, and lv0,v1=〈ω,RM,PM〉. Following similar process, we can
represent edges (v2, v0), (v2, v3), and (v3, v0).

5.2. Mining Anchors
The search for CRMs is initiated by locating the frequent anchors that satisfy the CRM
definition and the restrictions defined in Problem 1. This is done as following: Given
a dynamic network N , we sort all the vertices and edges by their label frequency and
remove all infrequent vertices and edges. Remaining vertices and edges are relabeled
in decreasing frequency. We determine the span sequences of each edge and list ev-
ery edge’s span sequence if that sequence contains at least a span with an edge label
that is different from the rest of the spans. At this point, we use the sequential pat-
tern mining technique prefixSpan [Pei et al. 2001a] to determine all frequent span
sequences. Since the frequent sequences can be partial sequences of the original input
span sequences, it is not guaranteed that they all contain consecutive spans with dif-
ferent labels. Thus, the frequent sequences that contain different consecutive spans in
terms of label are considered as the anchors. The number of spans in a frequent span
sequence corresponds to the total number of motifs in the anchor.

5.3. CRM Enumeration
Given an anchor c, we generate the set of desired CRMs by growing the size of the
current CRM one edge at a time following a depth-first approach. To ensure that each
CRM is generated only once in the depth-first exploration, we use an approach similar
to the gSpan algorithm [Yan and Han 2002], which we have extended for the problem
of CRM mining.

gSpan explores the frequent pattern lattice in a depth-first fashion. The pattern
lattice is represented as a hierarchical search space where each node corresponds to
a connected frequent pattern, the highest node being an empty pattern (i.e., a single
vertex), the next level nodes represent 1-edge patterns, and so on. The nth level nodes,
which represent n-edge patterns, contain one more edge than the corresponding (n−1)
level nodes. To ensure that each frequent pattern in this lattice is visited exactly once,
gSpan’s exploration amounts to visiting the nodes of the lattice (i.e., frequent patterns)
by traversing a set of edges that form a spanning tree of the lattice. This spanning
tree is defined by assigning to each node of the lattice a canonical label, called the
minimum DFS code. A DFS code of a graph, is a unique label that is formed based
on the sequence of edges added to that node during a depth-first exploration. The
minimum DFS code, is the DFS code that is lexicographically the smallest. Given this
canonical labeling, the set of lattice edges that are used to form the spanning tree
correspond to the edges between two successive nodes of the lattice (parent and child)
such that the minimum DFS code of the child can be obtained by simply appending
the extra edge to the minimum DFS code of the parent. For example, given a DFS
code α = 〈a0, a1, · · · , am〉, a valid child DFS code is γ = 〈a0, a1, . . . , am, b〉, where b

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

Algorithms for Mining the Coevolving Relational Motifs in Dynamic Networks A:9

is the new edge. This spanning tree guarantees that each node has a unique parent
and all nodes are connected [Yan and Han 2002]. To efficiently grow a node, gSpan
generates the child nodes by only adding those edges that originate from the vertices
on the rightmost path of the DFS-tree representation of the parent node. It then checks
whether the resulting DFS code of the child node corresponds to the minimum DFS
code. Construction of the child nodes generated by adding other edges (i.e., not from
the rightmost path) are skipped, since such child nodes will never contain a DFS code
that corresponds to the minimum DFS code.

In order to apply the ideas introduced by gSpan to the problem of efficiently min-
ing CRMs, we need to develop approaches for (i) representing the DFS code a CRM, (ii)
ordering the DFS codes of a CRM using the DFS lexicographic ordering, (iii) represent-
ing the minimum DFS code of a CRM to use as the canonical label, and (iv) extending
a DFS code of a CRM by adding an edge. Once properly defined, the correctness and
completeness of frequent CRM enumeration follows directly from the corresponding
proofs of gSpan.

5.3.1. DFS code of a CRM. In order to derive a DFS code of a CRM, we need to develop
a way of ordering the edges. Given a CRM c, represented as a graph Gc = (N,Ec), we
perform a depth-first search in Gc to build a DFS tree Tc. The vertices (N) are assigned
subscripts from 0 to n− 1 for |N | = n according to their discovery time. The edges (Ec)
are grouped into two sets: the forward edge set ETc,fw = {(vi, vj) ∈ Ec| i < j} and
the backward edge set ETc,bw = {(vi, vj) ∈ Ec| i > j}. Let us denote a partial order
on ETc,fw as ≺Tc,fw, a partial order on ETc,bw as ≺Tc,bw, and a partial order on Ec as
≺Tc,bw+fw. Given two edges e1 = (vi1 , vj1) and e2 = (vi2 , vj2), the partial order relations
are defined as:

a) ∀e1, e2 ∈ ETc,fw, if j1 < j2, then e1 ≺Tc,fw e2.
b) ∀e1, e2 ∈ ETc,bw, if i1 < i2 or (i1 = i2 and j1 < j2), then e1 ≺Tc,bw e2.
c) ∀e1 ∈ ETc,bw and ∀e2 ∈ ETc,fw, if i1 < j2, then e1 ≺Tc,bw+fw e2.
d) ∀e1 ∈ ETc,fw and ∀e2 ∈ ETc,bw, if j1 ≤ i2, then e1 ≺Tc,bw+fw e2.

The combination of the three partial orders defined above enforces a linear order≺Tc,Ec

on Ec.
Given this linear order ≺Tc,Ec

, we can order all edges in Gc and construct an edge
sequence to form a DFS code of a CRM, denoted as code(c, Tc). An edge of the DFS
code of a CRM is represented similar to the CRM edge definition and uses a 5-tuple
representation (i, j, li, li,j , lj), where i and j are the DFS subscripts (i.e., the discovery
time) of the vertices, and li, lj , and li,j are the label vectors of the vertices and edge,
respectively. The kth entry in each vector li, lj , and li,j contains the labels of vertices
and edges of motif Mk.

For example, Figure 4 presents two CRMs and their corresponding DFS codes. The
DFS codes are listed below to show the sequence of edges and their differences (i.e.,
the edge labels):

CRM C1 - Figure 4 (a) CRM C2 - Figure 4 (c)
〈(0, 1, 〈a, a, b〉, 〈X, Y, X〉, 〈b, c, c〉), 〈(0, 1, 〈a, a, b〉, 〈X, Y, X〉, 〈b, c, c〉),
(1, 2, 〈b, c, c〉, 〈Y, ω, Y〉, 〈c, c, f〉), (1, 2, 〈b, c, c〉, 〈Y, Z, ω〉, 〈c, c, f〉),
(2, 0, 〈c, c, f〉, 〈Z, ω, ω〉, 〈a, a, b〉), (2, 0, 〈c, c, f〉, 〈ω, ω, Z〉, 〈a, a, b〉),
(2, 3, 〈c, c, f〉, 〈ω, Z, Z〉, 〈ω, d, g〉)〉 (2, 3, 〈c, c, f〉, 〈ω, ω, Z〉, 〈ω, d, g〉)〉

Note that the kth entry of a vertex and edge label vector of a DFS code is filled with ω if
the corresponding vertex or edge is not present in motif Mk. DFS code’s Neighborhood
restriction property defined in [Yan and Han 2002] still holds for DFS code of a CRM.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

A:10 R. Ahmed and G. Karypis

 Z

 ω

 ω

Z

Z

Z

Y

X

v0

v1

M1 M2 M3

a

b v2

c
Z

Y

v0

v1

a

c v2

c

Y

X

v0

v1

b

c v2

f v3
g

v3
d

DFS Code: <(v0,v1),(v1,v2),(v2,v0),(v2,v3)>

(v0,v1) = (0,1, <a,a,b>, <X,Y,X>, <b,c,c>)

(v1,v2) = (1,2, <b,c,c>, <Y,ω,Y>, <c,c,f>)

(v2,v0) = (2,0, <c,c,f>, <Z,ω,ω>, <a,a,b>)

(v2,v3) = (2,3, <c,c,f>, <ω,Z,Z>, <ω,d,g>)

Z

Z

Y

X

v0

v1

a

b v2

c

Y

v0

v1

a

c v2

c

X

v0

v1

b

c v2

f v3
g

DFS Code: <(v0,v1),(v1,v2),(v2,v0),(v2,v3)>

(v0,v1) = (0,1, <a,a,b>, <X,Y,X>, <b,c,c>)

(v1,v2) = (1,2, <b,c,c>, <Y,Z,ω>, <c,c,f>)

(v2,v0) = (2,0, <c,c,f>, <ω,ω,Z>, <a,a,b>)

(v2,v3) = (2,3, <c,c,f>, <ω,ω,Z>, <ω,ω,g>)

 ω

 Z

 Z

 Y

 ω

 Y

X

Y

X

v0

v1

a

a

b

b

c

c

v2
c

c

f

v3

ω

d

g

 ω

 ω

 Z

 ω

 ω

 Z

 Y

 Z

 ω

X

Y

X

v0

v1

a

a

b

b

c

c

v2
c

c

f

v3

ω

ω

g

M1 M2 M3

(a)

(b)

(c)

(d)

Fig. 4. DFS code for two CRMs represented as a sequence of edges (v0, v1), (v1, v2), (v2, v0), and (v2, v3).
(a) Presents CRM C1 consisting of 3 motifs, 4 vertices, and 4 edges. (b) Presents GC1

and the corresponding
DFS code for CRM C1. (c) Presents CRM C2 consisting of 3 motifs, 4 vertices, and 4 edges. (d) Presents GC2

and the corresponding DFS code for CRM C2.

5.3.2. DFS Lexicographic Ordering. To establish a canonical labeling system for a CRM,
CRMminer defines the DFS lexicographical ordering based on the CRM’s DFS code
definition. The linear ordering is defined as follows. Let two DFS codes of a CRM
consisting of m motifs be α = code(cα, Tα) = 〈e0α, e1α, . . . , epα〉 and δ = code(cδ, Tδ) =
〈e0δ , e1δ , . . . , e

q
δ〉, where p and q are the number of edges in α and δ, and 0 ≤ p, q. Let the

forward and backward edge set for Tα and Tδ be Eα,fw, Eα,bw, Eδ,fw, and Eδ,bw, respec-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

Algorithms for Mining the Coevolving Relational Motifs in Dynamic Networks A:11

tively. Also, let exα = (ixα, j
x
α, lixα , li

x
α,j

x
α
, ljxα) and eyδ = (iyδ , j

y
δ , liyδ , li

y
δ ,j

y
δ
, ljyδ) be two edges,

one in each of the α and δ DFS codes. Now, exα < eyδ , if any of the following is true:

i) exα ∈ Eα,bw and eyδ ∈ Eδ,fw, or
ii) exα ∈ Eα,bw, eyδ ∈ Eδ,bw, and jxα < jyδ , or

iii) exα ∈ Eα,bw, eyδ ∈ Eδ,bw, jxα = jyδ and lixα,j
x
α
< liyδ ,j

y
δ

, or
iv) exα ∈ Eα,fw, eyδ ∈ Eδ,fw, and iyδ < ixα, or
v) exα ∈ Eα,fw, eyδ ∈ Eδ,fw, ixα = iyδ and lixα < liyδ , or

vi) exα ∈ Eα,fw, eyδ ∈ Eδ,fw, ixα = iyδ , lixα = liyδ and lixα,j
x
α
< liyδ ,j

y
δ

, or
vii) exα ∈ Eα,fw, eyδ ∈ Eδ,fw, ixα = iyδ , lixα = liyδ , lixα,jxα = liyδ ,j

y
δ

, and ljxα < ljyδ .

Based on the above definitions, we derive the following conditions to compare two DFS
codes of a CRM. We define α ≤ δ, iff any of the following conditions is true:

a) Fω(α) ≤ Fω(δ), where Fω(x) is the number of edges (litx,j
t
x
) that are set to ω, or

b) ∃t, 0 ≤ t ≤ min(p, q), ekα = ekδ for k < t, and etα < etδ, or
c) ekα = ekδ for 0 ≤ k ≤ p and p ≤ q.

Note that the DFS lexicographical ordering ranks edges with label vectors containing
no ω labels higher than the edges which does. To define the relation between ω and
valid vertex/edge label, the value of ω is set to a lexicographically higher value than the
maximum edge and vertex label. This is important as we show later in Section 5.3.5. In
order to provide a detailed example of the DFS lexicographical ordering, let us compare
the DFS codes of CRMs C1 and C2 presented in Figure 4 following the rules presented
above. For both the DFS codes, the first edge (v0, v1) is the same. In case of the second
edge (v1, v2), both the DFS codes contain the same vertex label vectors. However, the
edge label vectors are different and the edge label vector 〈Y, Z, ω〉 of DFS code 2 is
smaller than 〈Y, ω, Y 〉 DFS code 1. Thus, DFS code 2 is lexicographically smaller than
DFS code 1.

5.3.3. Minimum DFS Code. A CRM can be represented by different DFS trees resulting
in different DFS codes. To define a canonical label for a CRM, we select the minimum
DFS code according to the DFS lexicographic order, represented by min code(c). Simi-
lar to simple graph isomorphism, given two CRMs c and c′, c is isomorphic to c′ if and
only if min code(c) = min code(c′). Thus, by searching frequent minimum DFS codes,
we can identify the corresponding frequent CRMs.

5.3.4. Pattern lattice growth. The difference between a simple graph pattern and a CRM
is the vertex/edge label representation. One contains a single label and the other con-
tains a label vector (i.e., sequence of labels including an empty label ω). The growth of a
simple graph by one edge results in a number of simple graphs based on the number of
unique labels of the frequent edges on the rightmost path. However, a CRM extended
by an edge can generate large number of CRMs, since these are formed based on the
combination of the label vectors of the frequent edges on the rightmost path.

In Figure 5, we illustrated one edge growth of a simple graph and a CRM according
to rightmost extension. Both the simple graph and the CRM are expanded by adding
a frequent edge (v2, v3). In case of the simple graph (Figure 5(a)), the original DFS
code consisted sequence of two edges (v0, v1) and (v1, v2) represented as (0, 1, a,X, b)
and (1, 2, b, Y, c). After the one edge extension, the new edge (2, 3, c, Z, d) connected the
new vertex v3 to the rightmost vertex v2. When the CRM is considered (Figure 5(c)),
the original DFS code consisted the same sequence of edges {(v0, v1), (v1, v2)} repre-
sented as: (0, 1, 〈a, a, b〉, 〈X,Y,X〉, 〈b, c, c〉), (1, 2, 〈b, c, c〉, 〈Y, ω, Y 〉, 〈c, ω, f〉). Based on
the combination of the label vectors of vertices v2 and v3, and edge (v2, v3), we have the

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

A:12 R. Ahmed and G. Karypis

Z

Y

X

v0

v1

M1 M2 M3

a

b

v2

c Z

Y

v0

v1

a

c

v2
c

Y

X

v0

v1

b

c

v2

f v3
g

v3

d

Z

Y

X

v0

v1

a

v2

c v3

d

b
(a)

(c)

(v0,v1) = (0,1, a, X, b)

(v1,v2) = (1,2, b, Y, c)

New Edge:

(v2,v3) = (2,3, c, Z, d)

(b)

(v0,v1) = (0,1, <a,a,b>, <X,Y,X>, <b,c,c>)

(v1,v2) = (1,2, <b,c,c>, <Y,ω,Y>, <c,c,f>)

New Edges:

(v2,v3) = (2,3, <c,c,f>, <ω,Z,Z>, <ω,d,g>)

(v2,v3) = (2,3, <c,ω,f>, <ω,ω,Z>, <ω,ω,g>)

(v2,v3) = (2,3, <c,c,f>, <ω,Z,ω>, <ω,d,ω>)

(d)

Fig. 5. Adding an edge according to rightmost extension rules. (a) Extending a simple graph, (b) DFS code
of the simple graph, (c) extending a CRM, and (d) DFS code of the CRM.

following options for the (v2, v3) edge: (2, 3, 〈c, c, f〉, 〈ω,Z, Z〉, 〈ω, d, g〉), (2, 3, 〈c, ω, f〉,
〈ω, ω, Z〉, 〈ω, ω, g〉), and (2, 3, 〈c, c, f〉, 〈ω,Z, ω〉, 〈ω, d, ω〉). Note that we allow a CRM to
grow by an edge that may not be present or frequent in all motifs of that CRM to
ensure complete set of the results.

To efficiently determine the frequent candidate edges during the rightmost exten-
sion, we apply the sequential pattern mining technique [Pei et al. 2001a]. Even though
there can be significantly more number of child CRMs from one edge extension of a
CRM than a simple graph, the extended lexicographic ordering is able to order all
candidates and enable us to perform pre-order search on the pattern lattice. Since
traversal of the pattern lattice of a CRM remains similar to a simple graph, it allows
CRMminer to prune the pattern with non-minimum DFS codes and their descendants
similar to gSpan without impacting the completeness of the results.

5.3.5. Algorithm Completeness. To eliminate redundancy during the CRM expansion
process, we use minimum DFS code as the canonical label and construct the pattern
lattice to ensure that every node (i.e., a CRM) is connected to a unique parent and
grown via single edge addition. This process ensures that each potential CRM is only
explored once.

To ensure that all discovered CRMs contain at least one anchor, we show how we
can identify an anchor of a valid CRM. Given a valid CRM c and its canonical label
(i.e., the minimum DFS code) min code(c) = 〈e1, e2, . . . , ek〉, where ei is an edge in the
lexicographically ordered edge sequence. We claim that the first edge (e1) of the canon-
ical label of a CRM (c) is an anchor of that CRM. To prove this claim, assume e1 is
not an anchor and ex is an anchor, where 1 < x ≤ k. Given the graph in CRM c, we
can construct a DFS code for c that starts with ex as the first edge. Assume, the new
DFS code is represented as code(c) = 〈ex, ep1 , . . . , epk−1

〉, where 〈ep1 , . . . , epk−1
〉 is an

edge sequence containing a permutation of the edges {e1, . . . , ek} \ {ex}. Since e1 is not
an anchor, it contains some ω labels. Based on the DFS lexicographic ordering and ex
being an anchor, ex < e1. Hence, we can state that 〈ex, ep1 , . . . , epk−1

〉 < 〈e1, e2, . . . , ek〉.
This is a contradiction, since 〈e1, e2, . . . , ek〉 is the minimum DFS code of c. Thus, e1 is

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

Algorithms for Mining the Coevolving Relational Motifs in Dynamic Networks A:13

an anchor of CRM c. Given that the first edge is an anchor, then CRMminer will gener-
ate that CRM by starting from the anchor and then following its right-most extension
rule to add the rest of the edges one by one.

5.4. Search space pruning
One of the challenges that any graph mining algorithm needs to handle is the expo-
nential growth of the search space during enumeration. Traditionally, user specified
constraints are used to prune the search space. To ensure discovery of the complete set
of patterns, the pruning constraints need to have the anti-monotonicity property. For
CRMminer, we use both support measure and minimum overlap constraints to prune
the search space.

5.4.1. Minimum Support (φ). To efficiently search patterns in a single large graph
using a minimum support constraint, the support measure needs to guarantee the
anti-monotonicity property. Bringmann [Bringmann and Nijssen 2008] presented the
minimum image based support measure to prune the search space in a single large
graph. Given a pattern p = (Vp, Ep, Lp) and a single large graph G = (VG, EG, LG),
this measure identifies the vertex in p which is mapped to the least number of unique
vertices in G and uses this number as the frequency of p in G. To formally define the
support measure, let each subgraph g of G that is isomorphic to p be defined as an
occurrence of p in G. For each occurrence g, there is a function ϕ : Vp → VG that maps
the nodes of p to the nodes in G such that (i) ∀v ∈ Vp ⇒ Lp(v) = LG(ϕ(v)) and (ii)
∀(u, v) ∈ Ep ⇒ (ϕ(u), ϕ(v)) ∈ EG. The minimum image based support of a pattern p in
G is defined as:

σ(p,G) = min
v∈Vp

| {ϕi(v): ϕi is an occurrence of p in G} |. (1)

This minimum image based support is anti-monotonic [Bringmann and Nijssen 2008].
We adopted the minimum image based support measure to calculate the minimum

support of a CRM in a dynamic network. As defined in Section 2, a dynamic network
N can be represented as a single large graph where the nodes N are considered
as the vertices of the large graph. Hence, it is possible to calculate the least num-
ber of unique vertices of the dynamic network that are mapped to a particular
vertex of a CRM. Given a CRM c = {Nc, 〈M1,M2, . . . ,Mm〉} in a dynamic network
N = {VN , 〈G0, G1, . . . , GT 〉} where m ≤ T , the minimum image based support of c is
defined as:

σ(c,N) = min
v∈Vc

| {ϕi(v): ϕi is an occurrence of c in N} |. (2)

Similar to the support measure of a pattern in a single large graph, by selecting the
support of the vertex in c that has the least number of unique mapping in N , we
maintain the anti-monotonicity property.

Recall from Section 5.3.4 that the frequent candidate edges are identified using fre-
quent sequence mining. Since we use the minimum image based support measure, the
frequent edges detected by the sequence mining tool may not have sufficient support
when calculated using such measure. Thus, we compute the minimum image based
support for all candidate edges to only consider the edges that ensures the CRM ex-
tension to have sufficient minimum image based support.

5.4.2. Minimum Overlap (β). Each motif of a CRM needs to contain at least a mini-
mum percentage of the nodes from all the nodes of the CRM. This minimum node

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

A:14 R. Ahmed and G. Karypis

D

C

C

D

B

A

v0

v1

v2

B

v0

v1
B

A

v0

v1

v2

M0 M1 M2

Min. Overlap

= 2/3 = 66%

Min. Overlap

= 2/4 = 50%

Min. Overlap

= 3/4 = 75%

B

A

v0

v1

v2

B

A

v0

v1

v2

B

v0

v1

B

v0

v1

B

A

v0

v1

v2

B

A

v0

v1

v2

v3

v3

v3

(1)

(2)

(3)

Fig. 6. Example of a CRM growth when the minimum overlap constraint is not anti-monotonic. Assume the
minimum overlap constraint is 60%.

overlap threshold (defined as β in Section 4) controls the degree of change that
is allowed between the sets of nodes in each motif of a CRM. Given a CRM c =
{Nc, 〈M1,M2, . . . ,Mm〉} containing m motifs, the minimum overlap of a CRM is defined
as:

ρ(c) =

min
1≤i≤m

{|VMi
|}

|Nc|
, (3)

where VMi
is the set of nodes in motifMi. Even though the minimum overlap constraint

is a reasonable approach to ensure that the motifs that make the CRM are coherent, it
is not anti-monotonic [Zhu et al. 2007]. Thus, to generate a complete set of CRMs that
meet user specified thresholds of support and overlap, we cannot prune CRMs that do
not satisfy this constraint as CRMs derived from it can satisfy the constraint.

For example, let us assume the minimum overlap threshold is 60% in Figure 6. In
step (1), motif M1 contains 2 out of 3 nodes of the CRM (i.e., the minimum). Therefore,
the minimum overlap at step (1) (2/3 > 60%) is valid. We added vertex v3 by including
edge (v2, V3) to the CRM at step (2). This dropped the minimum overlap (2/4) below
the threshold. However, in step (3), inclusion of edge (v3, v0) adds vertex v3 to motif M1.
This increases the minimum overlap to be 3/4 and makes the CRM valid again. Hence,
we need to enumerate all CRMs that meet the support threshold and then search the
output space for CRMs that meet the minimum overlap requirement.

To improve the performance, we developed an approximate version of our algorithm,
named CRMminerx, that discovers a subset of the valid CRMs (i.e., meet the con-
straints of Definition 4.1) by pruning the pattern lattice using the minimum overlap
threshold. We first check whether a CRM meets the overlap threshold. If it does, we
continue the enumeration process. If it does not, then we check whether any of the
patterns at the previous level of the pattern lattice from which the current pattern
was derived, referred as parent CRMs, meet the overlap threshold. If at least one does,
we continue enumeration. If none of the parent CRMs meet the overlap threshold, we
prune that CRM.

To approximately calculate the minimum overlap of the parent CRMs, we do not
generate all possible parent patterns. The parent is defined to contain one less node
than the current CRM; thus, we remove a node v ∈ Nc. In such case, the parent pattern
will contain (|Nc|−1) nodes and each motif Mi may contain (|VMi

|−1) nodes if v ∈ VMi

or (|VMi
|) nodes if v /∈ VMi

. For at least one parent CRM to meet the overlap threshold,

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

Algorithms for Mining the Coevolving Relational Motifs in Dynamic Networks A:15

Z

Y

X

v0

v1

v2

Step 2

X

v0

v1

Y

v0

v1

X

v0

v1

Step 1

Step 3

Y
Y

X

v0

v1

v2

Step 4

v3

v4

M0 M1 M2

Min. Overlap

= 2/2 = 100%

Min. Overlap

= 2/3 = 66%

Min. Overlap

= 2/4 = 50%

Min. Overlap

= 2/5 = 40%

Y

X

v0

v1

v2

Y

X

v0

v1

v2

Y

v0

v1

Y

v0

v1

Y

v0

v1

Y
Y

X

v0

v1

v2 v3

Y

X

v0

v1

v2

Fig. 7. Minimum overlap calculation based on (4) is used for search space pruning during the CRM enu-
meration process. Assuming β = 60%, this CRM enumeration terminates at step 4.

we consider the best case when v /∈ VMi
. Therefore, the minimum overlap threshold of

a parent CRM cp of the CRM c = {Nc, 〈M1,M2, . . . ,Mm〉} is defined as:

ρ(cp) =

min
1≤i≤m

{|VMi
|}

|Nc| − 1
. (4)

In Figure 7, we illustrate the minimum overlap calculation during search space prun-
ing. Assume the user specified β = 60%. We start with the anchor at step 1 when the
minimum overlap threshold is 100%. Next the edge (v1, v2) is added for motif M0 and
M2 and the minimum overlap based on motif M1 is (2/3) = 66%. Since the β threshold
is met, we continue the enumeration process. At step 3, an edge (v2, v3) is added to
motif M2. Since motif M1 contains the lowest number of nodes, the minimum overlap
is (2/4) = 50%, which does not meet the β threshold. At this point, we check whether
any of the parent CRM meets the β threshold and the minimum threshold for it’s par-
ent is (2/(4 − 1)) = 66% > β. Thus, we continue the enumeration by adding an edge
(v3, v4) to motif M2 at step 4. The minimum overlap is (2/5) = 40% and it’s parent
overlap threshold is (2/(5 − 1)) = 50%. Both thresholds are lower than β, hence we
stop enumerating this CRM any further.

6. EXPERIMENTAL DESIGN
All experiments are conducted on a 64-bit Linux desktop with 8-core Intel Core i7-3770
processor at 3.40GHz and 16GB of RAM.

6.1. Datasets
We have used two different types of datasets to evaluate CRMminer. The DBLP
co-authorship network is a real world dynamic network that captures yearly co-
authorship relations. The bioprocess network (GT) and the sales network (Sales)
datasets are based on multivariate time-series data. To characterize the relations
among different variables and understand changes over time, we represent the time-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

A:16 R. Ahmed and G. Karypis

Table I. Dynamic Network Datasets.

Dataset #Vertices #Edeges 66 Span Avg. #Edeges Avg. Degree

DBLP 1,057,524 4,841,084 55 88,020 0.08
GT 3458 83,454 47 1776 0.51
Sales 2697 138,044 66 2092 0.78

#Vertices denotes the total number of vertices in the dynamic network. #Edeges denotes
the total number of edges in the dynamic network. Span denotes the total number of
snapshots in the dynamic network. Avg. #Edeges denotes the average number of edges
per snapshot in the dynamic network. Avg. Degree denotes the avg. number of edges
per node in a snapshot.

1

10

100

1,000

10 k

100 k

1,000 k

1
9

5
8

1
9

6
1

1
9

6
4

1
9

6
7

1
9

7
0

1
9

7
3

1
9

7
6

1
9

7
9

1
9

8
2

1
9

8
5

1
9

8
8

1
9

9
1

1
9

9
4

1
9

9
7

2
0

0
0

2
0

0
3

2
0

0
6

2
0

0
9

2
0

1
2

Ed

ge
s

(l
o

g
sc

al
e

)

Years

DBLP # Vtxs

Edges

Fig. 8. The edge distribution of the DBLP co-authorship network.

series data as a dynamic network. The CRMs discovered from these networks can be
used to characterize the overall network, as shown in Section 7.2.3.

6.1.1. Co-Authorship Network (DBLP). This is a co-authorship network that models the
yearly co-authorship relations from 1958 to 2012 based on the DBLP Computer Sci-
ence Bibliography Data [Ley 2008]. The snapshots of the dynamic network that we
created corresponds to the co-authorship network of each year, leading to a dynamic
network consisting of 2012 − 1958 = 55 snapshots. The nodes model the authors of
the publications from various conferences, journals, books, lecture series, etc. and the
undirected edges between the authors model the collaboration between two scientists
at a certain year. If an author A co-authors a publication with an author B in a given
year, the edge (A,B) is added to that year’s co-authorship graph. Multiple publications
by the same authors in a year are counted as a single relation.

The edge distribution among the snapshots is skewed. In Figure 8, we show the
edge distribution of the DBLP network. To determine co-authorship relations between
authors with significant contribution, we removed authors who published less than
5 different years. We also removed all the relations of an author if he/she had co-
authored with more than 50 other authors in a single year. To assign edge labels, we
used the CLUTO software1 to cluster the publication titles into 50 groups. These title
groups can be thought as the research areas or publication topics that the authors
focused on their collaboration.

1http://www.cs.umn.edu/∼cluto

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

Algorithms for Mining the Coevolving Relational Motifs in Dynamic Networks A:17

Table II. Bioprocess Network Dataset

Vertex label Variable(s) Description

ASX Air sparge rate, Air sparge total
BT Base totalized
CO2 CO2 sparge rate, CO2 sparge total
DOX Dissolved oxygen controller output, Dissolved oxygen primary
FRO Flowrate overlay
O2X O2 sparge rate, O2 sparge total
PHX pH Controller output, pH Online
ST Sparge total
WLC Weight load cell

The vertex labels of the 14 parameters used to construct the Bioprocess Network Dataset (GT)
dataset. The labels ASX, CO2, DOX, O2X, and PHX represent two parameters each.

6.1.2. Bioprocess Network (GT). This is a cell culture bioprocess data [Le et al. 2012]
captured from the production bioreactors at Genentech’s manufacturing facility. This
multivariate time-series data tracks the dynamics of various process parameters at
every minute over 11 days period for a 247 production runs. In Table II, we show the
parameters that are used to construct the GT network. Note that some of the related
variables are assigned the same vertex label. To represent this data as a dynamic
network, we computed correlation matrices for 14 of the process parameters using
a sliding window of 12 hours interval with 50% overlap. This process resulted in 47
correlation matrices per production run. To construct a network snapshot based on a
correlation matrix, we use each parameter as a vertex and two parameters/vertices are
connected with an edge labeled as positive/negative if their correlation is above +0.9
or below −0.8 threshold. These threshold values are chosen to select equal number
of positive and negative labeled edges. This way we construct 47 network snapshots
where each snapshot contains a 3458 vertices (14 parameter * 247 runs) and the edges
between them.

6.1.3. Store Transaction Network (Sales). This dynamic network is constructed using Do-
minicks Finer Foods store sales data collected from the James M. Kilts Center, Uni-
versity of Chicago Booth School of Business2. The data captures weekly store-level
sales from 93 stores collected over a period of more than seven years (400 weeks). We
considered the sales data as multivariate time-series data for each store where 29
variables are the different categories of the product sold. In Table III, we show the
different categories of the product considered in the Sales network. Note that some of
the related variables are assigned the same vertex label. To represent this data as a
dynamic network, we considered the total number of items sold per category in a week
at a store and computed correlation matrices between 29 categories using a sliding
window of 12 weeks interval with 50% overlap. This process resulted in 66 correlation
matrices per store. To construct a network, we use each category as a vertex and two
vertices are connected with an edge labeled as positive or negative if their correla-
tion is above +0.85 or below −0.4 respectively. These threshold values are chosen to
select equal number of positive and negative labeled edges. This way we construct 66
network snapshots where each snapshot contains a 2697 vertices (29 parameters * 93
stores) and the edges between them.

6.2. Metrics
In order to asses the scalability and performance of the algorithm, we collect two sets
of results for the discovered CRMs. The first set of results is collected by running

2http://research.chicagobooth.edu/kilts/marketing-databases/dominicks/dataset

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

A:18 R. Ahmed and G. Karypis

Table III. Sales Dataset

Vertex label Variable(s) Description

ANA Analgesics
BER Beer
CEX Cereals, Oatmeal
CHE Cheeses
CIG Cigarettes
CRX Cookies, Crackers, Snack Crackers
CSO Canned Soup
DID Dish Detergents
DTX Laundry Detergents, Fabric Softeners
FEC Front-end-candies
FRX Frozen Dinners, Entree, Juices
GRO Grooming Products
JUX Bottled Juices, Refrigerated Juices
PTW Paper Towels
SDR Soft Drinks
SPX Bath Soap, Soaps, Shampoos
TEX Toothbrushes, Toothpastes
TNA Canned Tuna
TTI Bathroom Tissues

The vertex labels of the 29 parameters used to construct the Sales dataset. The
labels CRX, FRX, and SPX represent three parameters each. The labels CEX,
DTX, JUX, and TEX represent two parameters each.

CRMminer, that does not perform any overlap based pruning during CRM enumera-
tion. This process generates the complete set of CRMs (TCRM) for the specified support
threshold and then applies the overlap threshold to identify the valid CRMs (QCRM)
from the output space. The second set of results are collected by running CRMminerx,
that applies the overlap threshold to prune the search space during enumeration. This
process uses Equation (4) to perform the overlap threshold check for search space prun-
ing to collect all CRMs (TCRM) and then performs a final check using Equation (5) to se-
lect the valid CRMs (QCRM). As discussed in Section 5.4.2, overlap based pruning does
not guarantee complete set of results. Thus, the set of CRMs in TCRM and QCRM collected
using the CRMminerx are subsets of TCRM and QCRM collected by using the CRMminer
correspondingly.

7. RESULTS
The evaluation consists of two parts. The first focuses on assessing the performance of
the algorithm that we developed for finding CRMs and to assess how the different pa-
rameters associated with the definition of CRMs impacts the performance. The second
focuses on assessing the information that can be extracted from the discovered CRMs
by analyzing some of the patterns of coevolving relational motifs that were identified
in the three datasets.

7.1. Performance Results
7.1.1. Minimum Support & Overlap. Table IV and Figure 9 show the performance of the

CRM mining algorithms and the size distribution of the discovered CRMs, respectively.
These results are presented for different values of the minimum support and overlap
thresholds.

The following observations can be made from these results. First, the number of dis-
covered CRMs increases as the minimum support decreases and/or the amount of over-
lap decreases. Both of which were expected. Moreover, as the minimum support and/or
overlap decrease, the size of the discovered CRMs increases. Second, the amount of

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

Algorithms for Mining the Coevolving Relational Motifs in Dynamic Networks A:19

Table IV. Minimum Support (φ) & Overlap (β) study.

Data φ β #A CRMminer CRMminerx

#TCRM #QCRM Time #TCRM #QCRM Time

DBLP

100 0.70 9 261 84 27.00 261 84 26.05
0.60 ” ” 84 ” 261 84 26.28
0.50 ” ” 261 ” 261 261 26.49
0.40 ” ” 261 ” 261 261 27.22

90 0.70 14 548 126 61.99 496 126 49.09
0.60 ” ” 133 ” 496 133 47.48
0.50 ” ” 496 ” 548 496 62.06
0.40 ” ” 548 ” 548 548 54.09

80 0.70 16 1,724 203 2,298.84 1,044 203 109.78
0.60 ” ” 225 ” 1,044 225 120.15
0.50 ” ” 1,044 ” 1,399 1,044 239.89
0.40 ” ” 1,492 ” 1,558 1,491 694.31

GT

90 0.70 7 6,255 1,370 7.10 4,553 1,370 5.92
0.60 ” ” 3,724 ” 4,730 3,410 5.92
0.50 ” ” 5,173 ” 6,027 5,173 7.04
0.40 ” ” 6,255 ” 6,255 6,255 7.18

80 0.70 7 240,828 145,633 200.44 216,233 144,243 182.92
0.60 ” ” 205,674 ” 224,188 200,439 184.44
0.50 ” ” 231,222 ” 240,376 231,222 198.87
0.40 ” ” 240,828 ” 240,828 240,828 199.59

70 0.70 9 973,116 626,877 730.21 804,228 611,206 611.04
0.60 ” ” 796,897 ” 871,176 778,893 685.46
0.50 ” ” 922,324 ” 958,742 919,640 712.06
0.40 ” ” 973,116 ” 973,116 973,116 714.63

Sales

45 0.70 65 11,917 134 18.70 1,472 134 3.52
0.60 ” ” 134 ” 1,472 134 3.49
0.50 ” ” 1,472 ” 5,785 1,472 9.75
0.40 ” ” 10,480 ” 11,908 10,480 18.84

40 0.70 90 183,437 551 207.75 7,422 551 14.03
0.60 ” ” 1,027 ” 7,741 1,027 14.39
0.50 ” ” 8,582 ” 37,109 8,582 52.46
0.40 ” ” 99,174 ” 156,320 99,174 182.53

35 0.70 109 24,509,851 47,535 11,904.75 263,475 38,429 299.80
0.60 ” ” 552,297 ” 1,205,965 351,611 904.21
0.50 ” ” 3,701,651 ” 4,950,385 2,617,409 3,040.26
0.40 ” ” 13,780,709 ” 18,563,088 13,427,964 8,327.78

φ denotes the minimum support. #A denotes the number of discovered anchors. #TCRM denotes the total number of dis-
covered CRMs. #QCRM denotes the number of CRMs that meet the β threshold out of #TCRM . Time denotes the amount of
time spent in seconds expanding the anchors to discover QCRM . For all datasets, kmin is 4, kmax is 10, and mmin is 4.

time required by CRMminerx is lower than that required by CRMminer. Depending on
the experiment, it is 1−40 times faster than CRMminer with an average speedup of 5.8.
The performance gap is higher for large values of overlap and progressively shrinks
as the overlap decreases. This is expected, as CRMminerx’s overlap-based pruning be-
comes less effective for low overlap values. Third, the number of CRMs missed by the
approximate nature of CRMminerx is either none or relatively small. This indicates
that CRMminerx is a viable algorithm for CRM discovery as it is both faster and also
quite effective in finding most valid CRMs.

Finally, comparing how the two algorithms scale with the size of the output space
(i.e., the number of valid discovered CRMs), we see that for most datasets, they ei-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

A:20 R. Ahmed and G. Karypis

0%

20%

40%

60%

80%

100%

4 5 6
Number of Edges

DBLP φ110/β0.60

φ110/β0.40

φ90/β0.60

φ90/β0.40

0%

20%

40%

60%

80%

100%

4 5 6 7 8 9 10
Number of Edges

GT φ90/β0.70

φ90/β0.60

φ80/β0.70

φ80/β0.60

0%

20%

40%

60%

80%

100%

4 5 6 7 8 9 10
Number of Edges

Sales φ45/β0.50

φ45/β0.40

φ40/β0.50

φ40/β0.40

0%

20%

40%

60%

80%

100%

4 5 6 7 8 9 10
Number of Edges

DBLP φ90/β0.60

φ90/β0.40

φ80/β0.60

φ80/β0.40

Fig. 9. CRMs size distribution of different datasets for different minimum support and overlap
thresholds. For all datasets, kmin = 4, kmax = 10, and mmin = 4.

1

10

100

1000

1 2 3 4 5 6 7 8 9

R
u

n
ti

m
e

 (S
e

co
n

d
s)

Levels (Number of edges)

Total time per level

φ100

φ90

φ80

0.00

0.01

0.10

1.00

10.00

1 2 3 4 5 6 7 8 9

R
u

n
ti

m
e

 (S
e

co
n

d
s)

Levels (Number of edges)

Cost per Candidate

φ100

φ90

φ80

1

10

100

1 k

10 k

100 k

1 2 3 4 5 6 7 8 9

C
o

u
n

t

Levels (Number of edges)

Embeddings per CRM

φ100
φ90
φ80

(a) (b) (c)

Fig. 10. CRM enumeration details at each level of the extension for the DBLP dataset. (a)
Shows the total time spent at each level. (b) Shows the average time needed to generate a can-
didate CRM at each expansion level. The cost is calculated as the sum of the average time to
locate a frequent edge, the average time to perform minimum DFS code check, and the average
time to locate the embeddings of the candidate CRM. (c) shows the average number of embed-
dings maintained by each CRM at each level. The results in the Y-axis are in log scale. For all
experiments, β = 0.60 and mmin = 4.

ther scale linearly or better than linearly. The only exception is the DBLP run of
CRMminer for φ = 80. For this experiment, CRMminer took 37 times more time than
the φ = 90 experiment and depending on the specific overlap value, it only discovered
1.6−2.7 times more CRMs. To better understand CRMminer’s behavior for this dataset,
Figure 10 shows various statistics about the amount of time required by the different
phases of the algorithm and the number of embeddings of the discovered CRMs. From
these results we can see that the reason for the dramatic increase in runtime is due to
the fact that for φ = 80DBLP contains a large number of candidate CRMs that contain
many edges (Figure 10(a)) and also have a large number of embeddings (Figure 10(c)).
As a result, CRMminer spends most of its time processing these large embedding lists,
leading to its substantial increase in runtime. However, most of these candidate CRMs
fail to meet the overlap constraint and this is the reason that CRMminerx performs
better and scales better.

Understanding the missing CRMs. The results presented in Table IV show that
CRMminerx is able to find almost all the valid CRMs for the DBLP and the Sales
datasets in less time than CRMminer. For the GT dataset, even though the runtime
decreased significantly, only a subset of the valid CRMs were found by CRMminerx.
As we have seen in the size distribution characteristic of the CRMs of the GT dataset
presented in Figure 9, the CRMminerx fails to discover all CRMs, since the CRMs
that become valid at later stage will get eliminated by the overlap threshold based
pruning. The lack of anti-monotonicity property for the overlap threshold based prun-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

Algorithms for Mining the Coevolving Relational Motifs in Dynamic Networks A:21

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0.29 0.33 0.4 0.43 0.5 0.6 0.67 0.75 0.8 1

C
R

M
 D

is
tr

ib
u

ti
o

n

Inter-motif node similarity

Similarity Distribution: φ80/β60
Found
Missing

32% 41%

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0.25 0.29 0.33 0.38 0.4 0.43 0.5 0.57 0.6 0.67 0.75 0.8 1

C
R

M
 D

is
tr

ib
u

ti
o

n

Inter-motif node similarity

Similarity Distribution: φ70/β60
Found
Missing

21% 15% 35%

Fig. 11. CRMs distribution based on the minimum inter-motif similarity using the GT dataset.

ing strategy eliminated a large number of potential CRMs at the early stages of the
enumeration process.

To understand the characteristics of the missing CRMs, we calculated the minimum
inter-motif similarity of all CRMs based on the following equation:

ψ(c) =

min
1<i<j<m

{|VMi ∩ VMj |}

|Nc|
, (5)

where |VMi
∩VMj

| is the number of common vertices between motif Mi and Mj and |Nc|
is the total number of vertices in CRM c.

We analyzed the GT dataset results presented in Table IV for two different experi-
ments (φ = 80, β = 60 and φ = 70, β = 60). Figure 11 shows the minimum inter-motif
similarity distribution of all identified CRMs from two separate experiments using GT
datasets. The found bars represent the CRMs that were identified by CRMminerx and
the missing bars represent the CRMs that were missed due to overlap based pruning
during enumeration step. These plots show that the minimum inter-motif similarity
among the missing CRMs are low. Hence, these missing CRMs contain motifs that are
mostly different from each other in terms of their nodes and resulting in CRMs that
may not be capturing interesting relational changes.

7.1.2. Minimum Span. The performance of the algorithm for different values of the min-
imum span (mmin) is shown in Table V. The value of mmin represents the minimum
number of motifs per CRM. From the reported results in Table V, we observe that

Table V. Minimum Span (mmin) study.

mmin = 3 mmin = 4

Data φ #A #TCRM #QCRM Time #A #TCRM #QCRM Time

DBLP 120 334 84,950 25,610 12,858.88 9 70 34 5.54
110 410 116,968 35,582 17,204.75 9 140 55 10.18
100 502 165,365 50,580 22,577.21 9 263 86 17.49

GT 40 12 1,834,449 1,210,710 381.13 1 19,797 6,490 5.92
35 15 3,092,486 2,059,379 551.42 2 51,698 16,554 12.47
30 20 5,150,967 3,392,215 717.02 4 123,853 47,702 23.36

Sales 35 109 425,867 46,832 135.33 11 124 7 0.26
30 136 3,064,882 441,652 649.85 18 7,642 156 6.25
25 175 10,840,277 1,379,708 1,817.96 33 518,390 1,308 139.32

mmin denotes the minimum number of motifs per CRM, and rest of the column labels are described in Table IV. For all
datasets, β is 0.60, kmin is 4 and kmax is 6.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

A:22 R. Ahmed and G. Karypis

0

20

40

60

80

100

120

140

160

180

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40

C

R
M

s

Support

Number of CRMs - G25

L35

L50

L60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40

R
u

n
ti

m
e

 (
Se

co
n

d
s)

Support

Runtime - G25

L35
L50
L60

0

1 k

2 k

3 k

4 k

5 k

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40

C

R
M

s

Support

Number of CRMs - G50

L35

L50

L60

0

5 k

10 k

15 k

20 k

25 k

30 k

35 k

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40
R

u
n

ti
m

e
 (

Se
co

n
d

s)

Support

Runtime - G50

L35
L50
L60

0

1 k

2 k

3 k

4 k

5 k

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40

C

R
M

s

Support

Number of CRMs - G75

L35

L50

L60

0

5 k

10 k

15 k

20 k

25 k

30 k

35 k

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40

R
u

n
ti

m
e

 (
Se

co
n

d
s)

Support

Runtime - G75

L35

L50

L60

Fig. 12. Performance of CRMminer for different versions of the DBLP dataset. For all experi-
ments, β is 0.60, mmin is 4, kmin is 3 and kmax is 10.

as the value of mmin decreases, the number of discovered CRMs and the runtime in-
creases. The value of mmin directly impacts the number of anchors and as the number
of anchors increases the total number of CRMs increases.

For the DBLP dataset with φ = 120, the number of anchors increases from 9 to
334 for mmin = 4 to mmin = 3. As a result, the number of valid CRMs discovered by
CRMminer increases from 34 to 25, 610 and the CRMminer runtime increases by 2321
times. We observe similar increase in number of CRMs discovered and runtime for
other support thresholds. For the GT dataset, the increase in the number of CRMs
and the runtime is less significant than DBLP dataset. As the number of anchors
increased from 4 to 20 for mmin = 4 to mmin = 3 with φ = 30, the total number of CRMs
(#QCRM) increased by 72 times and the runtime increased by 31 times. For the Sales
dataset, we observe similar increase in both the number of CRMs and the runtime.

7.1.3. Label Diversity & Network Density. The performance of a CRM mining algorithm,
as well as any pattern mining algorithm is primarily impacted by the label diversity
and the network density of the dataset. To evaluate the performance of our algorithms
for different types of dynamic network datasets, we used the DBLP dataset to gener-
ate nine different networks varying the number of edge labels and the density of the

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

Algorithms for Mining the Coevolving Relational Motifs in Dynamic Networks A:23

0

20

40

60

80

100

120

140

160

180

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40

C

R
M

s

Support

Number of CRMs - G25

L35

L50

L60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40

R
u

n
ti

m
e

 (
Se

co
n

d
s)

Support

Runtime - G25

L35

L50

L60

0

1 k

2 k

3 k

4 k

5 k

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40

C

R
M

s

Support

Number of CRMs - G50

L35
L50
L60

0

5 k

10 k

15 k

20 k

25 k

30 k

35 k

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40
R

u
n

ti
m

e
 (

Se
co

n
d

s)

Support

Runtime - G50

L35
L50
L60

0

1 k

2 k

3 k

4 k

5 k

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40

C

R
M

s

Support

Number of CRMs - G75

L35
L50
L60

0

5 k

10 k

15 k

20 k

25 k

30 k

35 k

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40

R
u

n
ti

m
e

 (
Se

co
n

d
s)

Support

Runtime - G75

L35

L50

L60

Fig. 13. Performance of CRMminerx for different versions of the DBLP dataset. For all experi-
ments, β is 0.60, mmin is 4, kmin is 3 and kmax is 10.

networks. First, we generated three datasets L35, L50, and L60 containing different
number of labels by clustering the publication titles into 35, 50, and 60 groups respec-
tively. Then for each of the three datasets, we generated three networks G25, G50,
and G75. The G25 dataset was generated by removing all the relations of an author
if he/she had co-authored with more than 25 other authors in a single year. Similarly,
for G50 and G75, the maximum co-authorship threshold per year was set to 50 and 75
correspondingly. The total number of authors remained the same while the total num-
ber of edges increased from G25 to G75. Thus, the density is lowest in G25 and highest
in G75. The number of edges in G25, G50, and G75 datasets are 2522412, 3973710 and
4554474 correspondingly.

Figures 12 and 13 present the results using these datasets from CRMminer and
CRMminerx, respectively. The results are displayed in increasing order of density from
G25 to G75 and each graph shows the impact of support threshold in finding CRMs.
Overall, as the dataset density increases, the number of discovered CRMs increases.
This is expected, since the number of patterns in a denser network will most likely be
greater. In addition, as the label diversity increases, the number of discovered CRMs
decreases. This is because by increasing the number of labels the effective support of
a CRM decreases, leading to fewer CRMs. Finally, these results show that a signif-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

A:24 R. Ahmed and G. Karypis

2626

26

4188

29

b41ab8a b8a 41a

d

41

Publication Topics

 8: Image, Segment, Color, and Retrieval

41: Classifier, Feature, Model, and Predict

An embedding

a: Jan Cornelis

b: Adrian Munteanu

c: Geert Van Der Auwera

d: Yiannis Andreopoulos

e: Peter Schelkens

(a)

b26ab29a b29a ba

c

26

Publication Topics

 26: Graph, Planar, Edge, and Color

 29: Tree, Approximate, Set, and Search

An embedding

a: Maurizio Patrignani

b: Giuseppe Di Battista

c: Maurizio Pizzonia

d: Fabrizio Frati

e: Pier Francesco Cortese

(b)

41

d

e

b

c

e

Fig. 14. Two CRMs capturing co-authorship patterns. The edge labels represent the domain or
subject of the publications the authors were involved together. The vertices are labeled to show
the changes in relations between the nodes. These CRMs are collected using φ = 90 and β = 0.60.

icant improvement in runtimes between CRMminer and CRMminerx is found when
comparing the same graph sets in Figures 12 and 13. For example, a comparison of
results between the G75 datasets shows that CRMminerx is able to complete execution
for lower thresholds in about 2 − 30 times faster than CRMminer. In addition, the in-
crease in runtimes as the support decreases is linear and proportional to the output
space. Hence, CRMminerx is an excellent option for processing the dense graphs with
low label diversity.

7.2. Qualitative Analysis
7.2.1. DBLP Case Studies. For the DBLP dataset, the yearly co-authorship relations

among the authors are divided into 50 clusters based on the title of the papers (Sec-
tion 6.1). To rank the discovered CRMs, we use the cosine similarity between the cen-
troids of the clusters, referred as topic similarity, that ranges from 0.02 to 0.52. For
each CRM, we determine a score by calculating the average topic similarity based on
all topic transitions (i.e., edge label changes) between two consecutive motifs of the
CRM. The CRMs containing the least score ranks the highest. This ranking is de-
signed to capture the frequent co-authorship relational changes that are thematically
the most different. Note that the clusters are based on the publication titles and we
use the most frequent words that belong to a cluster to describe the topic it represents.

Two of the high-ranked CRMs are shown in Figure 14. The first CRM shows the
periodic changes in research topics represented as 8 and 41 and the topic similarity
between these topics is 0.22. The CRM captures the periodic transitions of the relations
as author a and b collaborate with other authors c, d, and e over the time. The second
CRM shows the periodic changes in research topics represented as 29 and 26 and the
topic similarity between these topics is 0.20. The CRM captures similar the periodic
transitions of the relations as author a and b collaborate with other authors c, d, and e
over the time.

7.2.2. Sales Case Studies. For the Sales dataset, we ranked the discovered CRMs ac-
cording to their size (i.e., the number of edges) and larger CRMs are ranked higher. We

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

Algorithms for Mining the Coevolving Relational Motifs in Dynamic Networks A:25

+

++

+

++

+ +

+++
-

-

-

BERCEX
CEX = Cereals

BER = Beer

CSO = Canned Soup

JUX = Juices

SPX = Shampoo

ANA = Analgesics

CHE = CheesesJUXCSO

(a)

DIDCHE
CHE = Cheeses

DID = Dish Detergents

CSO = Canned Soup

CRX = Crackers

SPX = Shampoo

ANA = Analgesics

JUX = Juices

BER = Beer
CSO

+

(b)

+ BERCEX SPX

CHE

ANA
-

BERCEX

CRX

DIDCHE
- DIDCHE +

JUX

SPX ANA

BER

Fig. 15. Two CRMs capturing store sales patterns. The edge labels + and − correspond to pos-
itive and negative correlation between entities. These CRMs are collected using φ = 40 and
β = 0.40.

want to capture the sales pattern where a large group of products either gain or lose
their sales correlation (i.e., tendency of being sold together). In Figure 15(a), a CRM
of size 8 is presented from the Sales network capturing correlated product groups at
a certain period and the changes in their relations. At first, the sale of CEX, CSO,
and JUX product groups seem to be negatively correlated with BER. In the next motif,
the sale of five product groups becomes positively correlated. Based on the relations
among the nodes, the itemsets (CEX, BER, CHE) and (BER, SPX, CHE) are strongly
correlated. In the last motif, the relation between the items changed as (CEX, BER)
became negatively correlated. Based on the details of the different embeddings and
motif occurrence period, it seems that during the holiday periods (i.e., thanksgiving,
Christmas) all the product groups are positively correlated.

In Figure 15(b), another CRM of size 7 is presented. In this case, product groups are
all positively correlated at the beginning. (DID, CSO, CRX) are positively correlated
with CHE. In the next motif, the sale of (CHE, DID) becomes negatively. However,
at the last period, (DID, JUX, SPX) product groups become positively correlated with
CHE. The sale of (JUX, ANA) are also positively correlated with BER. Note that one
can focus on understanding why the relation between CHE and DID changed and try
to plan for some actions that stores can take to change the sales of those products.

7.2.3. Genentech Case Studies. For the GT dataset, the discovered CRMs display the
dynamics of various process parameters during the cell culture process. As it is diffi-
cult to understand the relations between the nodes (i.e., parameters) without sufficient
domain knowledge in Bio-Chemical processes, we decided to analyze the discovered
CRMs by using them as features to discriminate the production runs. Out of the 247
production runs included in the GT dataset, based on the quality of the yields, 48 of
the runs are labeled as Good, 48 of the runs are labeled as Bad, and the remaining
were not labeled. To understand the class distribution (i.e., Good or Bad) of the discov-
ered CRMs, we analyzed the embeddings of the discovered CRMs from three different
experiments using φ of 90, 80 and 70. Since we have 96 labeled runs, we do not count
the embeddings that belong to unlabeled runs. Figure 16 shows the class distribution
of the embeddings for the discovered CRMs. It shows that the CRMs were present

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

A:26 R. Ahmed and G. Karypis

0%

20%

40%

60%

80%

100%

φ=90 φ=80 φ=70

Em
b

e
d

d
in

gs

Support

CRM Class Distribution Good
Bad

Fig. 16. A distribution of the CRM embeddings. The Good class represents the production runs
with high yield and the Bad class represents with poor yield. CRMs were collected using φ = (90,
80 and 70), β = 0.60, mmin = 3, kmin = 4, and kmax = 10.

-
+

+

-
+

-
ASX O2X

ASX = Air sparge rate/total

DOX= Dissolved O2

ST = Sparge total

O2X = O2 sparge rate/total

CO2 = CO2 sparge rate/total

ST
-

ASXDOXCO2

- -

+ASX O2X

ASXDOX
-

-

-
ASX O2X

O2XDOX

Fig. 17. A CRM capturing a cell culture bioprocess pattern. The edge labels + and − correspond
to positive and negative correlation between entities. This CRM is collected using φ = 90 and
β = 0.50.

mostly as part of the high yield runs, since more than 70% of the embeddings belong
to the Good class. The class representation is consistent for different support parame-
ters. These results suggest that there is a consistency of what makes some thing good
but runs can go bad for many reasons. Note that using such information, if we can
determine the low yield runs at the early stage of experiment, we can terminate the
experiment and save a lot of resources.

Figure 17 shows a CRM of size 10 from the GT network capturing the changes in
entity correlation based on their recorded measurements at a particular stage of the
cell culture process. Based on the embedding details, we noticed that the motif spans
are mostly non overlapping. This indicates that the changes in the entity relations
occur at different stages of the cell culture process based the experimental/process
environment setup.

8. CONCLUSION & FUTURE DIRECTIONS
In this paper, we introduced coevolving relational motifs to represent patterns that
change in a consistent way over time in a dynamic network and presented an algo-
rithm to efficiently find all frequent coevolving relational motifs. The algorithm can be
used to discover unknown coordination mechanisms in a system by identifying the pat-
terns that evolve and move in a similar and highly conserved fashion in the dynamic
networks. The experimental evaluation using multiple real world datasets show that
CRMminer is able to discover CRMs from all datasets and CRMminerx scales better
than CRMminer for large and dense dynamic networks. Further, the qualitative analy-
sis shows that the discovered patterns capture important information and can be used
as differentiating features for other mining problems.

There are a number of ways the CRM definition can be modified to address impor-
tant special classes of CRMs. First, require that the set of identified CRMs is non-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

Algorithms for Mining the Coevolving Relational Motifs in Dynamic Networks A:27

redundant in the sense that no CRM is a subsequence of another CRM. This can sub-
stantially reduce the number of identified CRMs without loss of information. Second,
the occurrences of the motifs are temporally synchronized, i.e., the snapshot in which
each CRM s motif occurs is the same. Third, mine the CRMs that do not contain an
anchor. Finally, require that the set of identified CRMs to be closed; i.e., at least one of
its extensions occurs fewer times.

ACKNOWLEDGMENTS

This work was supported in part by NSF (IOS-0820730, IIS-0905220, OCI-1048018, CNS-1162405, and
IIS-1247632) and the Digital Technology Center at the University of Minnesota. Access to research and
computing facilities was provided by the Digital Technology Center and the Minnesota Supercomputing
Institute.

REFERENCES
Rezwan Ahmed and George Karypis. 2012. Algorithms for mining the evolution of conserved relational

states in dynamic networks. Knowledge and Information Systems (2012), 1–28.
Tatsuya Asai, Kenji Abe, Shinji Kawasoe, Hiroki Arimura, Hiroshi Sakamoto, and Setsuo Arikawa. 2002.

Efficient substructure discovery from large semi-structured data. In Proc. of the 2nd SIAM Symposium
on Data Mining. 158–74.

T.Y. Berger-Wolf and J. Saia. 2006. A framework for analysis of dynamic social networks. In ACM KDD.
523–528.

M. Berlingerio, F. Bonchi, B. Bringmann, and A. Gionis. 2009. Mining graph evolution rules. Machine Learn-
ing and Knowledge Discovery in Databases (2009), 115–130.

Karsten M. Borgwardt, Hans-Peter Kriegel, and Peter Wackersreuther. 2006. Pattern Mining in Frequent
Dynamic Subgraphs. In IEEE ICDM. 818–822.

Danah Boyd and Nicole Ellison. 2007. Social Network Sites: Definition, History, and Scholarship. Journal of
Computer-Mediated Comm. 13, 11 (October 2007).

Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual Web search engine. Com-
puter Networks and ISDN Systems 30, 1-7 (1998), 107–117.

Björn Bringmann and Siegfried Nijssen. 2008. What is frequent in a single graph? Advances in Knowledge
Discovery and Data Mining (2008), 858–863.

L. Cerf, T. Nguyen, and J.F. Boulicaut. 2009. Discovering relevant cross-graph cliques in dynamic networks.
Foundations of Intelligent Systems (2009), 513–522.

Deepayan Chakrabarti, Ravi Kumar, and Andrew Tomkins. 2006. Evolutionary clustering. In ACM KDD.
554–560.

P Chen and Sidney Redner. 2010. Community structure of the physical review citation network. Journal of
Informetrics 4, 3 (2010), 278–290.

W. W. Cohen. 2005. Enron email dataset. Website. (2005). http://www.cs.cmu.edu/∼enron/.
Elise Desmier, Marc Plantevit, Céline Robardet, and Jean-François Boulicaut. 2012. Cohesive Co-evolution

Patterns in Dynamic Attributed Graphs. In Discovery Science. Springer, 110–124.
D. Duan, Y. Li, Y. Jin, and Z. Lu. 2009. Community mining on dynamic weighted directed graphs. In Pro-

ceeding of the 1st ACM international workshop on Complex networks meet information & knowledge
management. ACM, 11–18.

Thomas L. Friedman. 2005. The world is flat: A brief history of the twenty-first century. Farrar, Straus &
Giroux.

Petter Holme and Jari Saramäki. 2012. Temporal networks. Physics reports 519, 3 (2012), 97–125.
H. Hu, X. Yan, H. Yu, J. Han, and X.J. Zhou. 2005. Mining coherent dense subgraphs across massive biolog-

ical networks for functional discovery. In ISMB. Ann Arbor, MI, 213–221.
Xiaohua Hu. 2005. Mining and analysing scale-free protein protein interaction network. Int. Journal of

Bioinformatics Research and Applications 1, 1 (2005), 81–101.
Jun Huan, Wei Wang, and Jan Prins. 2003. Efficient Mining of Frequent Subgraph in the Presence of Iso-

mophism. In IEEE ICDM.
A. Inokuchi and T. Washio. 2008. A fast method to mine frequent subsequences from graph sequence data.

In IEEE ICDM. 303–312.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

A:28 R. Ahmed and G. Karypis

A. Inokuchi and T. Washio. 2010. Mining frequent graph sequence patterns induced by vertices. In Proc. of
10th SIAM Intl. Conf. on Data Mining. 466–477.

Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. 2000. An Apriori-based algorithm for mining fre-
quent substructures from graph data. In Proc. of the 4th European Conf. on Principles of Data Mining
and Knowledge Discovery. Springer-Verlag, 13–23.

Ruoming Jin, Scott McCallen, and Eivind Almaas. 2007. Trend Motif: A Graph Mining Approach for Analy-
sis of Dynamic Complex Networks. In IEEE ICDM. 541–546.

Yehuda Koren, Stephen C. North, and Chris Volinsky. 2007. Measuring and extracting proximity graphs in
networks. ACM Trans. Knowl. Discov. Data 1, 3 (2007), 12.

M. Koyutürk, Y. Kim, S. Subramaniam, W. Szpankowski, and A. Grama. 2006. Detecting conserved interac-
tion patterns in biological networks. Journal of Computational Biology 13, 7 (2006), 1299–1322.

S. Kramer, L. De Raedt, and C. Helma. 2001. Molecular Feature Mining in HIV Data. In ACM KDD.
Michihiro Kuramochi and George Karypis. 2004. An Efficient Algorithm for Discovering Frequent Sub-

graphs. IEEE TKDE 16, 9 (2004), 1038–1051.
M. Lahiri and T.Y. Berger-Wolf. 2008. Mining periodic behavior in dynamic social networks. In IEEE ICDM.

373–382.
Steve Lawrence, C. Lee Giles, and Kurt Bollacker. 1999. Digital Libraries and Autonomous Citation Index-

ing. Computer 32, 6 (1999), 67–71.
Huong Le, Santosh Kabbur, Luciano Pollastrini, Ziran Sun, Keri Mills, Kevin Johnson, George Karypis,

and Wei-Shou Hu. 2012. multivariate analysis of cell culture bioprocess data–Lactate consumption as
process indicator. Journal of Biotechnology (2012).

Michael Ley. 2008. DBLP, Computer Science Bibliography. Website. (2008). http://www.informatik.uni-trier.
de/\∼ley/.

Bing Liu. 2007. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. Springer.
Xiaoming Liu, Johan Bollen, Michael L. Nelson, and Herbert Van de Sompel. 2005. Co-Authorship Networks

in the Digital Library Research Community. Information Processing and Management 41, 6 (2005),
1462–1480.

Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Ping, Qiming Chen, Umeshwar Dayal, and Mei-Chun
Hsu. 2001a. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. In
Proceedings 2001 International Conference on Data Engineering.

Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umeshwar Dayal, and Meichun
Hsu. 2001b. PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth. In ICDE. 215–224.
citeseer.nj.nec.com/pei01prefixspan.html

Jian Pei, Daxin Jiang, and Aidong Zhang. 2005. On mining cross-graph quasi-cliques. In ACM KDD. 228–
238.

Matjaž Perc. 2010. Growth and structure of Slovenias scientific collaboration network. Journal of Informet-
rics 4, 4 (2010), 475–482.

Matjaž Perc and Attila Szolnoki. 2010. Coevolutionary gamesa mini review. BioSystems 99, 2 (2010), 109–
125.

C. Robardet. 2009. Constraint-based pattern mining in dynamic graphs. In IEEE ICDM. 950–955.
B. Schwikowski, P. Uetz, and S. Fields. 2000. A network of protein-protein interactions in yeast. Nature

Biotechnology 18, 12 (December 2000), 1257–1261.
Lei Tang, Huan Liu, Jianping Zhang, and Zohreh Nazeri. 2008. Community evolution in dynamic multi-

mode networks. In ACM KDD. 677–685.
B. Wackersreuther, P. Wackersreuther, A. Oswald, C. B

”ohm, and K.M. Borgwardt. 2010. Frequent subgraph discovery in dynamic networks. In Proc. of the 8th
Workshop on Mining and Learning with Graphs. ACM, 155–162.

Xifeng Yan and Jiawei Han. 2002. gSpan: Graph-based substructure pattern mining. In Data Mining, 2002.
ICDM 2003. Proceedings. 2002 IEEE International Conference on. IEEE, 721–724.

Xifeng Yan, X. Jasmine Zhou, and Jiawei Han. 2005. Mining closed relational graphs with connectivity
constraints. In ACM KDD. 324–333.

C.H. You, L.B. Holder, and D.J. Cook. 2009. Learning patterns in the dynamics of biological networks. (2009).
Mohammed J. Zaki. 2002. Efficiently mining frequent trees in a forest. In ACM KDD. 71–80.
Feida Zhu, Xifeng Yan, Jiawei Han, and S Yu Philip. 2007. gPrune: a constraint pushing framework for

graph pattern mining. In Advances in Knowledge Discovery and Data Mining. Springer, 388–400.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: YYYY.

